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Les sources d’incertitude et d’imprécision des données sont nombreuses. Une ma-
nière de gérer cette incertitude est d’associer aux données des annotations probabi-
listes. De nombreux modèles de bases de données probabilistes ont ainsi été proposés,
dans les cadres relationnel et semi-structuré. Ce dernier est particulièrement adapté
à la gestion de données incertaines provenant de traitement automatiques. Un impor-
tant problème, dans le cadre des bases de données probabilistes XML, est celui des
requêtes d’agrégation (count, sum, avg, etc.), qui n’a pas été étudié jusqu’à présent.
Dans un modèle unifiant les différents modèles probabilistes semi-structurés étudiés à
ce jour, nous présentons des algorithmes pour calculer la distribution des résultats de
l’agrégation (qui exploitent certaines propriétés de régularité des fonctions d’agréga-
tion), ainsi que des moments (en particulier, espérance et variance) de celle-ci. Nous
prouvons également l’intractabilité de certains de ces problèmes.
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1 Introduction
The study of queries over imprecise data has generated much attention in the setting of relational
databases [4, 9, 20, 28]. The Web (with HTML or XML data) in particular is an important source
of uncertain data, for instance, when dealing with imprecise automatic tasks such as information
extraction. A natural way to model this uncertainty is to annotate semi-structured data with
probabilities. Some works have recently addressed queries over such imprecise hierarchical infor-
mation [2, 14, 15, 17, 19, 22, 26, 27]. An essential aspect of query processing has been ignored
in these works, namely aggregate queries. This is the problem we study here.
In this article, we consider probabilistic XML documents, described using the unifying model of

p-documents [1, 17]. A p-document can be thought of as a probabilistic process that generates a
random XML document. Some nodes, namely distributional nodes, specify how to perform this
random selection. We consider three kinds of distributional operators: cie, mux, det, respectively
for conjunction of independent events (based on conjunctive conditions of some probabilistic
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events), mutually exclusive (at most one node selected from a set of a nodes), and deterministic
(all nodes selected). This model, introduced in [1, 17], captures a large class of models for
probabilistic trees that had been previously considered. We consider queries that involve the
standard aggregate functions count, sum, min, max, countd (count distinct) and avg. The focus
here is on aggregation itself and not arbitrary query processing. We therefore focus our attention
to aggregating all the leaves of a document. We briefly discuss the issue of reducing the evaluation
of general aggregate queries to this problem.
A p-document is a (possibly compact) representation of a probabilistic space of (ordinary)

documents, i.e., a finite set of possible documents, each with a particular probability. The result
of the aggregate function is a single value for each possible document. Therefore, its result over
a p-document is a random variable, i.e., a set of values, each with a certain probability. We
investigate how to compute the distribution of this random variable. Such a distribution may be
too detailed to present to a user. This leads us to consider some summaries of the distribution,
especially its expected value and other probabilistic moments.
Our results highlight an (expectable) aspect of the different operators in p-documents: the use

of cie (a much richer means of capturing complex situations) leads to a complexity increase. For
documents with cie nodes, we show the problems are hard (typically NP- or FP#P-complete).
This difficulty is yet another reason to consider expected values and other moments. For count
and sum, we show how to obtain them in P. Unfortunately, we show that for min, max, countd,
and avg, the problem of computing moments is also FP#P-complete. We present Monte-Carlo
methods that allow tractable approximation of probabilities and moments of aggregate functions.
On the other hand, with the milder forms of imprecision, namely mux and det, the complexity

is lower. Computing the distribution for count, min and max is in P. The result distribution
of sum may be exponentially large, but the computation is still in P in both input and output.
On the other hand, computing avg or countd is FP#P-complete. The good news is that we can
compute expected values (and moments) for all of them in P.
Finally, we also provide results for a large class of aggregate queries where the aggregate

function is based on the operator of a monoid and can be evaluated by a divide-and-conquer
strategy. Examples of these functions are count, sum, min and max. We show how to use an
algebraic structure of p-documents to evaluate monoid aggregate functions in general. Interesting
non-monoid aggregate queries are rare but they exist, e.g. avg or countd, and are typically harder
to compute. It should be noted that we don’t know how to use the monoid properties in presence
of the cie operator.
After presenting some preliminaries and the main investigated problems in Section 2, we discuss

how to aggregate p-documents with cie nodes in Section 3. In Section 4, we present monoid
aggregate functions and show how to compute distributions of these functions on p-documents
with mux and det nodes by exploiting the structure of the documents. Then we continue with this
model of p-documents and study complexity of distributions and moments in Section 5. Finally,
we present related work and conclude in Section 6.

2 Preliminaries and Problem Definition
In this section we recall the model of probabilistic trees from [1], and formalize the problem we
study in this paper.

Documents. We assume a countable set of identifiers V and labels L, such that V ∩ L = ∅. A
labeling function, denoted θ, maps V to L. Inspired by XML, we define a document, denoted
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Figure 1: Documents d1 and d2 and aggregate query result Q(d1).

by d, as a finite, unordered1, labeled tree where each node has a unique identifier v and a label
θ(v). The set of all nodes and edges of d are denoted respectively by V(d) and E(d), where
E(d) ⊆ V(d)×V(d). We use the common notions child and parent, descendant and ancestor, root
and leaf in the usual way. We denote the root of d by root(d) and the empty tree, that is, the
tree with no nodes, by ε. A forest, denoted by F , is a set of documents.

Example 1. Consider the two example documents d1 and d2 in Figure 1. Identifiers appear
inside square brackets before labels. Both documents describe the personnel of an IT department
and bonuses that the personnel earned working on different projects. Document d1 indicates
John worked under two projects (pda and laptop) and got bonuses of 37 and 50 in the former
project and 50 in the latter one.

Aggregate Functions. An aggregate function is a function that maps finite bags of values into
some domain such as the rationals, the reals, or tuples of reals. For example,

• count and countd return the number of the elements and the number of distinct elements
in a bag, respectively.

• min, max over a bag of elements from a linearly ordered set (A,<) return, respectively, the
minimal and maximal element in the bag. (One can generalize max to topK.)

• sum and avg over bags of rational numbers compute their sum and average, respectively.

Aggregate functions can be naturally extended to work on documents d: the result α(d) is α(B)
where B is the bag of the labels of all leaves in d. This makes the assumption that all leaves are
of the type required by the aggregate function, e.g., rational numbers for sum. We ignore this
issue here and assume they all have the proper type (this can be ensured by a query that only
selects some of the leaves, as detailed further). We extend the notion of aggregate function over
documents to forests by considering the bag of leaves of all trees in the forest.
So-called monoid aggregate functions play an important role in our investigation, because they

can be handled by a divide-and-conquer strategy (see [8]). Formally, a structure (M,⊕,⊥) is
called an abelian monoid if ⊕ is an associative and commutative binary operation with ⊥ as
neutral element. If no confusion can arise, we speak of the monoid M . An aggregate function is
a monoid one if for some monoid M and every a1, . . . , an ∈M :

α({|a1, . . . , an|}) = α({|a1|})⊕ · · · ⊕ α({|an|}).
1This is a common simplification over the XML model; ordering children of a node does not significantly change
the results.
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It turns out that count, sum, min, max and topK are monoid aggregate functions. For sum,
min, max: α({|a|}) = a and ⊕ is the corresponding obvious operation. For count: α({|a|}) = 1
and ⊕ is +. For top2 over the natural numbers (and similarly for topK): α({|l|}) = (l, 0) and
(l1, l2)⊕ (l3, l4) = (li, lj), where li ≥ lj and li, lj are the top-2 elements in {|l1, l2, l3, l4|}.
It is easy to check that neither avg nor countd are monoid aggregate functions.

Aggregate Queries over Documents. An aggregate query is a query that uses aggregate func-
tions.

Example 2. Continuing with Example 1, one can compute the sum of bonuses for each project
that the personnel is involved in. In XQuery notation, this query Q can be written as follows:

for $x in distinct-values(//bonus/*/name())
return <project>

<name> { $x } </name>
<sum-bonus> { sum(//bonus/*[name()=$x]//*) } </sum-bonus>

</project>

The query result Q(d1) is the forest of two documents presented in the middle of Figure 1.

When the query Q above is executed over a document, the variable $x is bound to a number
of distinct values, which are computed in the outer loop. For each binding of $x, the expression
q = //bonus/*[name()=$x]//* is evaluated and the result is aggregated. In terms of XQuery,
the XPath pattern q is single-path, that is, it does not require any branching. Our further
investigations focus on single-path aggregate queries (the reasons will be discussed later while
presenting aggregate queries over p-documents).
Let Q have n variables and an aggregate function α applied to a single-path pattern q. Then

Q is computed in three steps: (i) find the matching n-tuples ā = a1, ..., an from the variables of
Q to the labels of d; (ii) for each match ā, instantiate the variables in q with ā, resulting in a
pattern qā and compute the document d(ā) that is the fragment of d satisfying qā; (iii) for every
ā, evaluate α over d(ā), and structure the resulting (n+ 1)-tuples (ā, α(d(ā))) according to Q.
Continuing with Example 2: (i) there are two matches for $x: laptop and pda; (ii) evaluating

q for them yields d(laptop) and d(pda), on the left of Figure 2; (iii) sum on these documents is
sum(d(laptop)) = 87, sum(d(pda)) = 109. The query result is in Figure 1.

px-Spaces. A probability space over documents is an expression (D,Pr), where D is a set of
documents and Pr maps each document to a probability with Σ{Pr(d) | d ∈ D} = 1. This
definition is extended in a straightforward way to probability spaces (F ,Pr) over forests, where
F is a set of forests. If F is finite then (F ,Pr) is called px-space and denoted by S.
Using the documents from the previous example, we can construct S = ({d1, d2, . . .},Pr) a

px-space with, say, Pr(d1) = 0.047 and Pr(d2) = 0.008, etc.

p-Documents. Following [1], we now introduce a very general syntax for representing compactly
px-spaces, called p-documents. P-documents are similar to documents, with the difference that
they have two types of nodes: ordinary and distributional ones. Distributional nodes are only
used for defining the probabilistic process that generates random forests (but they do not actually
occur in those ones). Ordinary nodes have labels and they may appear in random forests.
More precisely, we assume given a set X of Boolean random variables with some specified

probability distribution ∆ over them. A p-document, denoted by P̂, is an unranked, unordered,
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Figure 2: Non-aggregate query results for Q over d1, P̂1 ∈ PrXMLcie, P̂2 ∈ PrXMLmux,det.

labeled tree. Each node has a unique identifier v and a label µ(v) in L∪{cie(E)}E∪{mux(Pr)}Pr∪
{det} where L are labels of ordinary nodes, and the others labels are of distributional nodes. We
consider three kinds of the latter labels: cie(E) (for conjunction of independent events), mux(Pr)
(for mutually exclusive), and det (for deterministic). We will refer to distributional nodes labeled
with these labels, respectively, as cie, mux, det nodes. If a node v is labeled with cie(E), then
E is a function that assigns to each child of v a conjunction e1 ∧ · · · ∧ ek of literals (x or ¬x, for
x ∈ X ). If v is labeled with mux(Pr), then Pr assigns to each child of v a probability with the
sum equal to 1.
We require the leaves to be ordinary nodes2. There are two more kinds of distributional nodes

considered in [1] that we briefly discuss further.

Example 3. Two p-documents are shown in Figure 3. The left one, P̂1, has only cie distribu-
tional nodes. For example, node n21 has the label cie(E) and two children n22 and n24 such
that E(n22) = ¬x and E(n24) = x. The p-document on the right, P̂2, has only mux and det
distributional nodes. Node n52 has the label mux(Pr) and two children n53 and n56 such that
Pr(n53) = 0.7 and Pr(n56) = 0.3.

We denote classes of p-documents by PrXML with a superscript denoting the types of distri-
butional nodes that are allowed for the documents in the class. For instance, PrXMLmux,det is the
class of p-documents with only mux and det distributional nodes, like P̂2 on Figure 3.
The semantics of a p-document P̂, denoted by JP̂K, is a px-space over random forests, where

the forests are denoted by P and are obtainable from P̂ by a randomized three-step process.

1. We choose a valuation ν of the variables in X . The probability of the choice, according to
the distribution ∆, is pν =

∏
x in P̂,ν(x)=true ∆(x) ·

∏
x in P̂,ν(x)=false(1−∆(x)).

2. For each cie node labeled cie(E), we delete its children v such that ν(E(v)) is false, and
their descendants. Then, independently for each mux node v labeled mux(Pr), we select
one of its children v′ according to the corresponding probability distribution Pr and delete
the other children and their descendants, the probability of the choice is Pr(v′). We do not
delete any of the children of det nodes3.

2In [1], the root is also required to be ordinary. For technical reasons explained in Section 4, we do not use that
restriction here.

3It may seem that using det nodes is redundant, but actually they increase the expressive power when used
together with mux and other types of distributional nodes [1].
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Figure 3: P-documents P̂1 ∈ PrXMLcie, and P̂2 ∈ PrXMLmux,det.

3. We then remove in turn each distributional node, connecting each ordinary child v of a
deleted distributional node with its lowest ordinary ancestor v′, or, if no such v′ exists, we
turn this child into a root.

The result of this third step is a random forest P. The probability Pr(P) is defined as the
product of pν , the probability of the variable assignment we chose in the first step, with all Pr(v′),
the probabilities of the choices that we made in the second step for the mux nodes.

Example 4. Applying the randomized process to P̂2 in Figure 3 one obtains documents from
Figure 1: d1 with Pr(d1) ≈ 0.047 and d2 Pr(d2) ≈ 0.008. If one assumes that Pr(x) = .85 and
Pr(y) = .055 then one obtain d1 and d2 with the same probabilities .047 and .008, respectively,
from P̂1 by assigning {x/1, y/1} and {x/0, y/1}, respectively. We notice that the semantics of
both p-documents in Figure 3 is the same, that is, P̂1 and P̂2 represent the same px-space.

Remark. In [1] two more types of distributional nodes are considered. Firstly, ind nodes that
select their children independently of each other according to some probability for each child. It
has been shown in [1] that ind nodes can be captured by mux and det. Moreover, PrXMLcie is
strictly more expressive than PrXMLmux,det. Finally, one can consider exp nodes that explicitly
specify a probability for each given subset of their children to be chosen. This kind of distribu-
tional node is a generalization of mux and det, and most of the results for these distributional
nodes can be extended to exp. For simplicity, we shall not discuss this further.
It was shown in [17, 18] that query answering with projections is intractable for PrXMLcie

(FP#P-complete) whereas it is polynomial for PrXMLmux,det. In a similar vein, it will turn out
that in a number of cases aggregate query answering is more difficult for PrXMLcie than for the
restricted case of PrXMLmux,det.

Aggregate Queries over px-Spaces and p-Documents. In the following, we restrict ourselves
to queries of the form α(q), where q is a single-path. Note that in Example 2 the aggregate
query sum(//bonus/*[name()=$x]//*) is of this form and that such queries can occur as parts
of larger queries, as shown in that example. Moreover, we assume that our single-path queries do
not contain variables. The single-path query //bonus/*[name()=$x]//* contains the variable
$x, but when the query is executed, the variable is bound to a constant. Over the documents
and p-documents in the examples the two possible constants are pda and laptop, which give rise
to two constant-free queries qpda and qlaptop.
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The application of such a query α(q) to a document d according to the XQuery semantics can
be understood as computing first the subtree d′ of d whose leaves are the nodes satisfying q and
then α(d′) (note that according to our definition α(d′) is computed from the leaves of d′).
Moving to px-spaces, we first generalize the application of aggregate functions from documents

to px-spaces by defining α(S) as the probability distribution of the values of α over S, that is,

α(S) :=
{

(c, p)
∣∣∣ c is in the range of α, p =

∑
d∈S, α(d)=c Pr(d)

}
.

This is canonically extended to p-documents by defining α(P̂) := α(JP̂K), that is, applying α to
the px-space generated by P̂.
In a similar vein, if q is a single-path query, then q(S) is the px-space whose elements are the

images q(d) of documents d ∈ S and where the probability of an element q(d) is Pr(q(d)) =∑
d′∈S, q(d′)=q(d) Pr(d′). Combining aggregation and single path queries, we define the answer to

an aggregate query like above as α(q)(S) := α(q(S)), that is, α is applied to the px-space q(S).
Again, this is extended canonically to p-documents.
Let P̂ be in PrXMLcie. If q is single-path, we can apply it naively to P̂, ignoring the distribu-

tional nodes. The result q(P̂) is the subtree of P̂ containing the original root and as leaves the
nodes satisfying q. For example, applying qpda to P̂1 in Figure 3 yields “d(pda) for cie” in Fig-
ure 2. Interestingly, one can show that for all single path queries q it holds that Jq(P̂)K = q(JP̂K).
In other words, we have a strong representation system. If P̂ in PrXMLmux,det, then q(P̂) can be
obtained analogously (see for example “d(pda) for mux, det” in Figure 2 as the result of applying
qpda to P̂2 in Figure 3). One can show that, again, we have a strong representation system.
For aggregate queries where the aggregation is performed over single-path patterns, we have

isolated aggregation from query processing, which is the crux we use to solve the problem of aggre-
gate query answering in presence of probabilities. In this paper, the focus is on the computation
of α(qā(P̂)), that is, evaluation of aggregate functions and not of queries over p-documents.

The problems. Suppose we are given a px-space under the form of a p-document and we want to
compute an aggregate function over it. (Recall that, in general, we would like to ask first a query,
compute the leaves that are of interest and then apply the aggregate query on these leaves. We
deal here with the simpler problem of computing the aggregate function on all the leaves.) The
result of an aggregate function over a px-space is a random variable. Given an aggregate function
α, we are interested in the following problems, where the input parameters are a p-document P̂
with corresponding random forest P and possibly a number c:

Membership: Given c, is c in the carrier of α(P), i.e., is Pr(α(P) = c) > 0?

Probability computation: Given c, compute Pr(α(P) = c).

Distribution computation: Find all c’s such that Pr(α(P) = c) > 0, and for each such c compute
Pr(α(P) = c).

Moment computation: Compute E(α(P)k), where E is the expected value.

One may want to return to a user the entire distribution as the result (distribution compu-
tation problem). The membership and probability computation problems can be used to solve
it. Computing the distribution may be too costly or the user may prefer a summary of the
distribution. For example, a user may want to know its expected value E(α(P)) and the variance
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Var(α(r)). In general the summary can be an arbitrary k-th moment E(α(P)k) and the moment
computation problem addresses this issue4.
In the following we investigate these four problems for the aggregate functions min, count, sum,

countd and avg. We do not discuss max and topK since they behave similarly as min.

3 Aggregating PrXMLcie P-Documents
We now study the four problems highlighted in Section 2 for the more general class of p-
documents, PrXMLcie. Following the definitions, one approach is to first construct the entire
px-space of a p-document P̂, then to apply α to each document in JP̂K separately, combine the
results to obtain the distribution α(P̂), and finally compute the answers based on α(P̂). This
approach is expensive, since the number of possible documents is exponential in the number of
variables occurring in P̂.
Our complexity results show that for practically all functions and all problems nothing can be

done that would be significantly more efficient. Most decision problems are NP-complete while
computational problems are FP#P-complete. The only exception is the computation of moments
for sum and count. The intractability is due to dependencies between nodes of p-documents
expressed using variables. All intractability results already hold for shallow p-documents with
very simple dependencies that connect only events that label siblings. As an polynomial-time
alternative, we present an approach to compute approximate solutions by Monte-Carlo methods.

Functions in #P and FP#P. We recall here the definitions of some classical complexity classes
(see, e.g., [23]) that characterize the complexity of aggregation functions on PrXMLcie. An N-
valued function f is in #P if there is a non-deterministic polynomial time Turing machine T
such that for every input w, the number of accepting runs of T is the same as f(w). A function
is in FP#P if it is computable in polynomial time using an oracle for some function in #P.
Following [7], we say that a function is FP#P-hard if there is a polynomial-time Turing reduction
(that is, a reduction with access to an oracle to the problem reduced to) from every function in
FP#P to it. Hardness for #P is defined in a standard way using Karp (many-one) reductions. For
example, the function that counts for every propositional 2-DNF formula the number of satisfying
assignments is in #P and #P-hard [24], hence #P-complete. We notice that the usage of Turing
reductions in the definition of FP#P-hardness implies that any #P-hard problem is also

FP#P-hard. Therefore, to prove FP#P-completeness it is enough to show FP#P membership
and #P-hardness. Note also that #P-hardness clearly implies NP-hardness.
We now consider membership in FP#P. We say that an aggregate function α is scalable if for

every p-document P̂ ∈ PrXMLcie one can compute in polynomial time a natural number M such
that for every d ∈ JP̂K the product M ·α(d) is a natural number. The following result is obtained
by adapting proof techniques of [11].

Theorem 1. Let α be an aggregate function that is computable in polynomial time. If α is
scalable, then the following functions mapping p-documents to rational numbers are in FP#P:
(i) for every c ∈ Q, the function P̂ 7→ Pr(α(P) = c);
(ii) for every k ≥ 1, the function P̂ 7→ E(α(P)k).

The above theorem shows membership in FP#P of both probability and moment computation
for all aggregate functions mentioned in the paper, since they are scalable.

4The variance is the central moment of order 2; it turns out that the central moment of order k can be tractably
computed from the regular moments of order ≤ k.
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3.1 Computing sum and count
For sum and count only the computation of moments is tractable.

Theorem 2. For PrXMLcie the following complexity results hold for sum and count:
1. Membership is NP-complete.
2. Probability computation is in FP#P.
3. Moment computation is in P for moments of any degree.

To prove the theorem we show three lemmas. The first lemma highlights why membership is
difficult for PrXMLcie and all the aggregate functions of our interest.

Lemma 1 (Reducing Falsifiability to Membership). Let AGG = {sum, count,min, countd, avg}.
For every propositional DNF formula φ one can compute in polynomial time a p-document P̂φ ∈
PrXMLcie such that the following are equivalent: (1) φ is falsifiable, (2) Pr(α(P) = 1) > 0 over
P̂φ for some α ∈ AGG, (3) Pr(α(P) = 1) > 0 over P̂φ for all α ∈ AGG.

Proof. (Sketch) Let φ = φ1 ∨ · · · ∨ φn, where each φi is a conjunction of literals. Then P̂φ has
below its root a cie-node v with children v0, v1, . . . , vn, where each of v1, . . . , vn is labeled with
the number 1

2 and v0 with 1. The edge to v0 is labeled true while the edges to the vi are labeled
with φi. Clearly, 1 is a possible value for each of sum, count, min, countd and avg if and only if
in some world, v0 is the only child of v, that is, if and only if φ is falsifiable.

The next lemma shows that computation of the expected value for sum over a px-space, regard-
less whether it can be represented by a p-document, can be polynomially reduced to computation
of an auxiliary probability.

Lemma 2 (Regrouping Sums). Let S be a px-space and V be the set of all leaves occurring in
the forests of S. Suppose that the function θ labels all leaves in V with rational numbers and let
sumS be the random variable defined by sum on S. Then

E(sumSk) =
∑

(v1,...,vk)∈V k

( k∏
i=1

θ(vi)
)

Pr ({F ∈ S | v1, . . . , vk occur in F}) ,

where the last term denotes the probability that a random forest F ∈ S contains all the nodes
v1, . . . , vk.

Proof. (Sketch) Intuitively, the proof exploits the fact that E(sumS) is a sum over forests of sums
over nodes, which can be rearranged as a sum over nodes of sums over forests.

The auxiliary probability introduced in the previous lemma can be in fact computed in poly-
nomial time for px-spaces represented by P̂ ∈ PrXMLcie.

Lemma 3 (Polynomial Probability Computation). There is a polynomial time algorithm that
computes, given a p-document P̂ ∈ PrXMLcie and leaves v1, . . . , vk occurring in P̂, the probability

Pr
(
{F ∈ JP̂K | v1, . . . , vk occur in F}

)
.

Proof. (Sketch) Let φi be the conjunction of all formulas that label the path from the root of P̂
to vi for 1 ≤ i ≤ k. Obviously, Pr

(
{F ∈ JP̂K | v1, . . . , vk occur in F}

)
= Pr(φ1 ∧ · · · ∧ φk). Note

that each φi is a conjunction of literals and so is their conjunction φ. If some variable occurs
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both positively an negatively in φ, then φ is unsatisfiable and Pr(φ) = 0. Otherwise, we collect
all variables that occur positively in a set X+ and all variables that occur negatively in a set X−.
Then Pr(φ) =

∏
x∈X+ ∆(x)×

∏
x∈X−(1−∆(x)), where ∆ is the probability distribution over the

event variables of P̂.
Clearly, the variable sets X+ and X− can be computed by traversing the forest underlying P̂.

By marking nodes visited, the traversal will look at every edge of the forest at most once, which
yields the claim.

Now we are ready to prove the theorem.

Proof of Theorem 2. 1. Pr(sum(P) = 1) > 0 or Pr(count(P) = 1) > 0 for a given P̂ can be
checked by guessing an assignment for the event variables of P̂ and performing the aggregation
over the resulting document. Hardness follows from Lemma 1, since falsifiability of DNF-formulas
is NP-complete [10].

2. Follows from Theorem 1 and the fact that sum and count is scalable.

3. By Lemma 2, the k-th moment of sum over P̂ is the sum of |V |k products, where V is the
set of leaves of P̂. The first term of each product,

∏k
i=1 θ(vi), can be computed in time at most

|P̂|k. By Lemma 3, the second term can be computed in polynomial time. This shows that for
every k ≥ 1, the k-th moment of sum can be computed in polynomial time. The claim for count
follows as a special case, where all leaves carry the label 1.

3.2 Computing min, avg, and countd
The following theorem shows that nothing is tractable for min, avg and countd.

Theorem 3. For PrXMLcie the following complexity results hold for min, avg and countd:
1. Membership is NP-complete.
2. Probability computation is FP#P-complete.
3. Moment computation is FP#P-complete for moments of any degree.

To prove the theorem we use the next lemma that highlights why membership is difficult. Recall
that #DNF is the problem of counting all satisfying assignments of a propositional DNF-formula.

Lemma 4 (Reducing #DNF to Probability and Expected Value Computation). For every
propositional DNF formula φ with n variables one can compute in polynomial time p-documents
P̂φ ∈ PrXMLcie and Q̂φ ∈ PrXMLcie such that the following are equivalent: (1) φ has m satisfying
assignments. (2) Pr(min(Pφ) = 1) is m/2n. (3) E(min(Qφ)) is 1−m/2n.

Proof. (Sketch) Let φ = φ1∨· · ·∨φn be in DNF with n variables. Consider P̂φ that has below its
root a cie-node v with children v0, v1, . . . , vn, where each of v1, . . . , vn is labeled with the number
1 and v0 with 2. The edge to v0 is labeled with true while the edges to the vi are labeled with φi.
To show (1) ∼ (2) observe that (by construction) probability of every P ∈ JP̂K is 1/2n. Moreover,
min(P) = 1 holds if an only if P has at least two leaves: v0 and any other from vis. Hence, P is
obtained by an assignment of the event variables that satisfies φ and Pr(min(P) = 1) is the sum
over all such assignments multiplied by the probability of the resulting P, that is 1/2n. To show
(1) ∼ (3) consider Q̂φ, a modification of P̂φ where the node v0 is labeled with 1 and all the other
vis with 0, and apply similar reasoning.

Remark 1. Results of Lemma 4 can be extended to reduction of #DNF to probability and
expected value computation for countd and avg.
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Now we are ready to prove the theorem.

Proof of Theorem 3. 1. The proof is exactly the same as of the first claim of Theorem 2.

2. Hardness follows from Lemma 4 and Remark 1, since #DNF is #P-complete [10]. Member-
ship follows from Theorem 1 and the fact that min, avg and countd are scalable.

3. Hardness for the first moment, as in the previous part of the theorem, follows from Lemma 4
and this implies hardness for moments of any degree higher than 1. Membership can be shown
as in the previous case of theorem.

3.3 Approximate Computation
As we see earlier in this section, for several aggregate functions on PrXMLcie p-documents, prob-
ability computation and moment computation are hard. Fortunately, there are general sampling
techniques which give randomized approximation algorithms for tackling intractability of com-
puting the above quantities. In the following we present how to estimate cumulative distribu-
tions Pr(α(P) ≤ x) and moments E(α(P)k). We notice that from the cumulative distribution
Pr(α(P) ≤ x) one can estimate the distribution Pr(α(P) = x) by computing Pr(α(P) ≤ x − γ)
and Pr(α(P) ≤ x+ γ) for some small γ (that depends on α) and taking the difference of them.
For instance, suppose we wish to consider the aggregate function countd on a p-document
P̂. In particular, say we are interested in approximating the probability Pr(countd(P) ≤ 100).
This probability can be estimated by drawing independent random samples of the document,
and using the ratio of samples for which countd is at most 100 as an estimator. Similarly, if we
wish to approximate E(countd(P)), we can draw independent random samples and return the
the average of countd on the drawn samples.
The first important question is: is it possible at all to have a reasonably small number of

samples to get a good estimation? It would not be helpful if an enormous number of samples is
necessary. The good news is that the answer to the above question is “yes”. The second question
is: how many samples do we need? The following classical result from the probability literature
helps us to answer both questions.

Proposition 1 (Hoeffding Bound [13]). Suppose {U1, U2, . . . , UT } are T independent identically
distributed random variables , each of which takes values in an interval of width R and has
mean µ. Let Ū := 1

T

∑T
i=1 Ui be the empirical average. Then, for each ε > 0,

Pr(|Ū − µ| ≥ ε) ≤ 2× exp
(
−2ε2T

R2

)
.

Approximating Distribution Points. Suppose α is an aggregation function on some PrXMLcie

p-document P̂, and we wish to approximate the probability Pr(α(P) ≤ x) for some value x. We
sample instances of the p-document, and for each sample, let Xi be the corresponding value of
the aggregation function. We let Ui to be the Bernoulli variable that takes value 1 when Xi ≤ x,
and 0 otherwise. Then, it follows that E(Ui) = Pr(α(P) ≤ x), and Ū := 1

T

∑T
i=1 Ui is an estimate

of Pr(α(P) ≤ x). Hence, we immediately obtain the following result for approximating a point
for the cumulative distribution of an aggregation function.

Corollary 1. For any aggregation function α, p-document P̂ ∈ PrXMLcie, any value x, and for
any ε, δ > 0, it is sufficient to have O( 1

ε2 log 1
δ ) samples so that with probability at least 1− δ, the

quantity Pr(α(P) ≤ x) can be estimated with an additive error of ε.
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Observe that the number of samples in Corollary 1 is independent of the instance size. The
only catch is that if the probability that we are trying to estimate is less than ε, then an additive
error of ε would render the estimate useless. Hence, if we only care about probabilities above
some threshold p0, then it is enough to have the number of samples proportional to 1/p2

0 (with
additive error, say p0/10).

Approximating Moments. Suppose f is some function on an aggregation function α, and we
are interested in computing E(f(α(P))). For each sample, we let Ui := f(Xi), and compute the
estimator Ū := 1

T

∑T
i=1 Ui.

Corollary 2. Let P̂ ∈ PrXMLcie be a p-document and f be a function on an aggregation function
α such that f(α(P)) takes value in an interval of width R. Then, for any ε, δ > 0, it is sufficient
to have O(R2

ε2 log 1
δ ) samples so that, with probability at least 1− δ, the quantity E(f(α(P))) can

be estimated with additive error of ε. In particular, if α takes value in [0, R] and f(x) := α(P)k,
then the k-th moment of α(P) around zero can be estimated with O(R2k

ε2 log 1
δ ) samples.

Observe that if the range R has magnitude polynomial in the problem size, then we have a
polynomial-time algorithm. In our example of approximation E(countd(P̂)), the range R can be
at most the size of the problem instance. Hence, to estimate the expectation, it is enough to draw
a quadratic number of random samples, that gives a polynomial time approximation algorithm.

Remark 2. Note that the results we presented are about the additive error of an ε-approximation,
say Q̂, of a value, say Q, that is, |Q−Q̂| ≤ ε. In [11] the multiplicative error, defined as |Q−Q̂Q | ≤ ε,
is studied, and fully polynomial-time randomized approximation schemes (FPTRAS) give means
for computing approximation based on this notion. Both errors are related, since |Q − Q̂| ≤ ε

implies Q ≥ Q̂−ε we have that the multiplicative error is at most |Q−Q̂Q | ≤
ε

Q̂−ε
. Hence, to obtain

a certain multiplicative error, one simply needs to get an estimate with some initial additive error
(say 1). If the resulting multiplicative error is too large, then one decreases the additive error
(say by half), and obtain another estimate, until the multiplicative error is small enough.

4 Distributions of Monoid Aggregates Over PrXMLmux,det

We show that any px-space S that admits a description by a p-document P̂ in PrXMLmux,det can
be constructed in a bottom-up fashion from elementary spaces Se by means of three operations:
rooting, convex union, and product. This construction reflects the structure of P̂. Then we show
that the distribution α(S) of a monoid aggregate function α on such a space S can be computed
from α(Se)’s, the distributions over elementary spaces, by means of the three operations identity,
convex sum and convolution, which correspond to rooting, convex union and product, respectively.
This construction gives a bottom-up algorithm to compute distributions α(P̂) on p-documents P̂.

4.1 Algebra of px-Spaces
Operations on Sets of Forests. We first introduce three operations on sets of forests: union,
product, and rooting. Let F1, . . . ,Fn be sets of forests. All three operations are only applied to
sets of forests that are mutually node-disjoint, that is, where V(Fi) ∩ V(Fj) = ∅ for i 6= j.
The union of such set of forests, denoted as F1 ] · · · ] Fn, is the union of disjoint sets. Since

the arguments are node-disjoint, they are mutually disjoint and for every forest F in the union
there is a unique Fi such that F ∈ Fi.

12



The product, denoted with the operator “⊗”, is defined as

F1 ⊗ · · · ⊗ Fn := {F1 ∪ · · · ∪ Fn | Fi ∈ Fi}.

Similar to a Cartesian product, this product consists of all possible combinations of elements of
the arguments. Since the arguments are node disjoint, each forest in the product can be uniquely
decomposed into its components F1, . . . , Fn.
Rooting is a unary operator. We define it first for individual forests. Let v be a node, l a label

and F a forest without v. The rooting of F under v with l, denoted as rtlv(F ), is the document d
obtained by combining all documents d′ in F under the new root v. Formally,

root(d) := v, θ(root(d)) := l, V(d) := V(F ) ∪ {v}, E(d) := E(F ) ∪ {(v, root(d′)) | d′ ∈ F}.

Rooting is lifted to sets of forests by defining rtlv(F) := {rtlv(F ) | F ∈ F} where F is such that v
does not occur in any F ∈ F .

Operations on px-spaces. Next we extend the above definitions to px-spaces S1, . . . ,Sn, where
Si = (Fi,Pri). Our operations are only defined for px-spaces over node-disjoint sets of forests.
Let p1, . . . , pn be nonnegative rational numbers such that

∑n
i=1 pi = 1. We call such numbers

convex coefficients. The convex union of the Si wrt the pi is the px-space (F ,Pr) where F =
F1 ] · · · ] Fn and for every F ∈ F we define Pr(F ) := piPri(F ) where i is the unique index such
that F ∈ Fi. Intuitively, this means that the probability of an elementary event in the convex
union is its original probability multiplied by the corresponding coefficient. The convex union of
the Si wrt the pi is denoted as p1S1 ] · · · ] pnSn.
The product of the Si is the px-space (F ,Pr) where F = F1 ⊗ · · · ⊗ Fn and for every F ∈ F

we define Pr(F ) := Pr1(F1) × · · · × Prn(Fn) where Fi ∈ Fi are the unique forests such that
F = F1∪· · ·∪Fn. Intuitively, the elementary events of the product are combinations of elementary
events in the original spaces and the probability of such a combination is the product of the
probabilities of its components. The product of the Si is denoted as S1 ⊗ · · · ⊗ Sn.
Let S0 = (F0,Pr0) be a px-space and v be a node with label l such that v does not occur in

any forest in F0. The rooting of S0 under v with l is the px-space (F ,Pr) where F = rtv(F0) and
for every element rtvF ∈ F we define Pr(rtv(F )) := Pr0(F ). That is, rooting does not change
probabilities. The rooting of a space S under a node v with label l is denoted as rtlv(S).

The Algebra of px-Expressions. Whenever we are given a collection of px-spaces, we can con-
struct more complex ones using the three operations above.
A document is elementary if it consists of a single node. The elementary document whose only

node is v, carrying the label l, is denoted as dlv. A px-space (F ,Pr) is elementary if F contains
exactly one elementary document, say d. Since Pr is a probability, it follows that Pr(d) = 1. By
abuse of notation, we denote also such a space as dlv if no confusion can arise.
To describe the spaces that can be constructed in this way, we introduce expressions that are

composed according to the rule

E,E1, . . . , En → dlv | (p1E1 ] · · · ] pnEn) | (E1 ⊗ · · · ⊗ En) | rtlv(E),

where v ranges over all node identifiers, l over all labels and p1, . . . , pn over all sequences of convex
coefficients. An expression is a px-expression if any node-identifier is unique.
Every px-expression can be evaluated to yield a unique px-space. This is clearly the case for

elementary expressions dlv. Moreover, due to the condition on node-indentifiers, convex union
and product are always applied to arguments that are node disjoint. A similar argument applies
to rooting. We refer to the px-space denoted by E as JEK.
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Example 5. The px-expression

E = rtpda
n51 (0.7 (d15

n54 ⊗ d
44
n55) ] 0.3 d15

n56)

denotes a px-space containing two documents d1 and d2, where Pr(d1) = 0.7 and Pr(d2) = 0.3.
The root of both is node n51, which has two children in d1, namely nodes n54 and n55, and a
single child in d2, namely n56.

Expressivity of the px-Algebra. In the following we show that the px-spaces representable by
px-expressions are exactly those that are definable by p-documents of the class PrXMLmux,det.
Since rooting is a unary operation in our algebra, we are only able to map px-expressions to

a slightly restricted subclass of PrXMLmux,det, which has the same expressivity as the full class.
A p-document is normalized if each ordinary node has at most one child. We can transform any
p-document into an equivalent normalized one if we place below each ordinary node v that is not
a leaf a new det-node, say v′, and turn all children of v into children of v′.

Proposition 2. Let E be a px-expression and P̂ be a normalized p-document.
1. There exists a normalized p-document P̂E such that JP̂EK = JEK.
2. There exists a px-expression EP̂ such that JEP̂K = JP̂K.

Proof. (Sketch) From E, a p-document P̂E can be recursively constructed by creating for every
convex union expression in E a mux-node, for every product expression a det-node and for every
rooting expression an ordinary node. The resulting document is normalized because rooting is a
unary operation.
For the construction of EP̂ from P̂ one proceeds analogously. Since P̂ is normalized, ordinary

nodes can be mapped to the rooting operator.
A straightforward comparison of the semantics of p-documents in Section 2 and the semantics

of px-expressions shows that JP̂EK = JEK and JEP̂K = JP̂K.

Example 6. A p-document P̂E corresponding to the expression E in Example 5 is the subtree
with root n51 of P̂2 in Figure 3.

4.2 Distributions of Monoid Aggregate Functions
Let α be an aggregate function that maps bags of elements of X to values in Y and let S = (F ,Pr)
be a px-space. The application of α to S yields as a result the probability distribution α(S)
over Y that satisfies α(S)(y) = Pr({F ∈ F | α(F ) = y}). We will study how α(S) depends
on the structure of S if the latter is defined by a px-expression. In particular, we will show
that we can evaluate monoid aggregate functions α on P̂ ∈ PrXMLmux,det by, first, computing α
on the elementary px-spaces corresponding to the leaves of P̂ and then combining the resulting
distributions iteratively according to the structure of P̂ in a bottom-up fashion.
We use the letter π as the generic notation for probability distributions. All the distributions

we consider in this paper are finite, that is, if π is a distribution over Y , then there are finitely
many elements y1, . . . , yn ∈ Y such that pi := π({yi}) 6= 0 and

∑n
i=1 pi = 1.

For any y ∈ Y there is a probability distribution δy such that δy(z) = 1 if y = z and 0 otherwise.
δy is the distribution of a Y -valued random variable if and only if that variable returns with
probability 1 the value y.
If p1, . . . , pn are convex coefficients and π1, . . . , πn are finite probability distributions over Y ,

then the convex sum of π1, . . . , πn wrt p1, . . . , pn, written as p1π1 + · · ·+ pnπn, maps every y ∈ Y
to p1π1(y) + · · ·+ pnπn(y). The convex sum is a finite probability distribution over Y .
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Proposition 3. Let α be an aggregate function, S,S1, . . . ,Sn node-disjoint px-spaces, p1, . . . , pn
convex coefficients, v a node identifier not occurring in S and l a label. Then

1. α(dlv) = δα({|l|})
2. α(p1S1 ] · · · ] pnSn) = p1α(S1) + · · ·+ pnα(Sn)
3. α(rtlv(S)) = α(S).

Proof. The first claim holds because over dlv the function α returns with probability 1 the value
α({|l|}). To see the second claim, suppose that the probability for α to return y over Si is qi
for i = 1, . . . , n. Then, by definition, the probability for α to return y over the convex union is
p1q1 + · · ·+ pnqn. The third claim holds because rooting does not change probabilities.

With convex union and rooting alone, one can only construct trivial px-spaces. Unfortunately,
not much can be said in general about the relationship between α applied to a product space S
and α applied to the arguments Si of the product.
However, the situation is much better if α is a monoid aggregate function. An element F of S

is a forest that is the union of node-disjoint forests Fi in Si and the value α(F ) can be obtained
from the components Fi of F , since α(F ) = α(F1 ] · · · ] Fn) =

⊕n
i=1 α(Fi).

Distributions on a monoid can be combined by an additional operation. For any two finite dis-
tributions π1, π2 over a monoidM with binary operation “⊕”, the convolution is the distribution
over M defined by

(π1 ∗ π2)(m) =
∑

m1,m2∈M : m=m1⊕m2

π1(m1)π2(m2).

Note that the convolution not only depends on the setM , but also on the monoid operation “⊕”.
It is straightforward to see that convolution is an associative and commutative operation on the
probability distributions over M and that the neutral element is the distribution δ⊥, where ⊥ is
the neutral element of M . Therefore, the notation π1 ∗ · · · ∗ πn is unambiguous for all n ≥ 0.

Proposition 4. Let α be a monoid aggregate function and S1, . . . ,Sn be node-disjoint px-spaces.
Then α(S1 ⊗ · · · ⊗ Sn) = α(S1) ∗ · · · ∗ α(Sn).

For every monoid aggregate function α with range M , we introduce a mapping “α(·)” that
maps any px-expression E to a probability distribution α(E) over M . The mapping is de-
fined recursively as (i) α(dlv) = δα({|l|}), (ii) α(p1E1 ] · · · ] pnEn) = p1α(E1) + · · · + pnα(En),
(iii) α(rtlv(E)) = α(E), and (iv) α(E1 ⊗ · · · ⊗Dn) = α(E1) ∗ · · · ∗ α(En).
The following theorem says that the computation of distributions from expressions actually

reflects the semantics of expressions.

Theorem 4. Let α be a monoid aggregate function and E be a px-expression. Then

α(E) = α(JEK).

Proof. The claim holds clearly for elementary expressions. If follows for arbitrary expressions by
an inductive argument using Propositions 3 and 4.

Complexity Analysis. Let S1, S2 be px-spaces and α be a monoid aggregate function. We say
that α ismonotone (with respect to product) if the following holds on the sizes of the distributions:

|α(S1)|+ |α(S2)| ≤ |α(S1 ⊗ S2)|.

It is easy to see that min, count, sum are monotone aggregate functions.

15



Theorem 5. Let α be a monotone monoid aggregate function. Then for any P̂ ∈ PrXMLmux,det

the distribution α(P̂) can be computed in time polynomial in |α(P̂)|.

Thus, for monotone aggregate functions the time for computing the answer distribution over
a PrXMLmux,det document is polynomial in the size of the output.

5 Complexity of Aggregates Over PrXMLmux,det

We now study the complexity of the four problems highlighted in Section 2 for the class of p-
documents PrXMLmux,det. Recall that this class is strictly less expressive than PrXMLcie and
query answering is essentially easier for it: there is a complexity jump from #P-complete for
PrXMLcie to P for PrXMLmux,det [18]. We show that for aggregate functions PrXMLmux,det is still
easier than PrXMLcie, but the complexity gap is not as clear as in the case of queries.
For the monoid aggregate functions count and min, we show that probability distributions

can be computed in polynomial time. For sum they can be computed in time polynomial in
the size of the output. It means there is the same complexity jump in aggregation as in query
answering. For the non-monoid aggregate functions countd and avg we show that distribution
computation is FP#P-complete. It means PrXMLmux,det and PrXMLcie are equivalently difficult
for aggregation with countd and avg. The results exhibit a complexity borderline between monoid
and non monoid aggregate functions for PrXMLmux,det p-documents.

5.1 Computing min and count
For min and count all four problems can be solved in polynomial time.

Proposition 5. For PrXMLmux,det, distribution computation is in P for both min, count.

Proof. Let V be the set of all the leaves of a given P̂, and L be the set of V ’s labels. Since all
forests F ∈ JP̂K have nodes among V(P̂), the values min(F ) are in L. Therefore, the carrier of
the distribution min(P̂) is a subset of L. Analogously, the carrier of the distribution count(P̂) is
a subset of {1, . . . , |V |}. Therefore, |min(P̂)| and |count(P̂)| are limited by |P̂|. From this fact
and Theorem 5 the claim of the proposition follows.

Using the previous and the following propositions, we conclude that all four problems for min
and count are polynomial.

Proposition 6. Given a distribution of an aggregate function, one can decide membership and
compute probability and moments in polynomial time in the size of the distribution.

5.2 Computing sum
We show that computing moments for sum is polynomial, and the other problems are easy only
if the size of the distribution sum(P̂) is small.

Theorem 6. For PrXMLmux,det the following complexity results hold for sum:
1. Membership is NP-complete.
2. Distribution computation is in polynomial time in the size of the output.
3. Distribution computation can be done in exponential time and there is a p-document for

which the distribution is exponentially large in the size of the p-document.
4. Moment computation is in P for moments of any degree.
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The next lemma highlights why membership is difficult. The Subset-Sum problem is, given a
finite set A, an N-valued function s on A, and c ∈ N, is to decide whether there is some A′ ⊆ A
such that

∑
a∈A′ s(a) = c.

Lemma 5 (Reducing Subset-Sum to Membership). For every set A, N-valued (weight) function
s on A, and c ∈ N there is a p-document P̂A,s,c ∈ PrXMLmux,det such that the following are
equivalent: (1) there is A′ ⊆ A:

∑
a∈A′ s(a) = c, (2) Pr(sum(PA,s,c) = c) > 0.

Proof. (Sketch) Let A := {a1, . . . , am}. Then P̂A,s,c has a root r with m children v1, . . . , vm that
are mux-nodes. Each vi has one child ai labeled with the number s(ai). The edges to the ai
are labeled with 1/2. Clearly, c is a possible value for sum if and only if in some world the only
children of r are ai’s with labels summing-up to c, that is, if and only if there is A′ ⊆ A consisting
of these ai’s with the weights summing-up to c.

Now we are ready to prove the theorem.

Proof of Theorem 6. 1. Membership can be checked by guessing a child for everymux node of
P̂ and performing the aggregation over the resulting document. Hardness follows from Lemma 5
because Subset-Sum is NP-complete [10].

2. Follows from monotonicity of sum and Theorem 5.

3. The claim holds since there are at most exponentially many forests in the semantics of p-
documents. Consider P̂ that has a root r with one det child that in turn has n mux-children
each i-th of which has one child vi labeled with the number 2i, and the edges to vi are labeled
with 1/2. Then |sum(P̂)| = 2n.

4. Follows from Lemma 2 and the fact that one can compute the probability Pr({F ∈ S |
v1, . . . , vk occur in F}) that P contains all the nodes v1, . . . , vk in polynomial time. This proba-
bility is 0 if there is a common mux ancestor of any two nodes from v1, . . . , vk. Otherwise, one
takes a subtree P̂v1,...,vk of P̂ with the root r and the leaves v1, . . . , vk, and the probability is the
product of all probabilities that mark the edges of P̂v1,...,vk .

5.3 Computing countd and avg
Now now see that for non-monoid aggregates all but moment computation problems are hard.

Theorem 7. For PrXMLmux,det the following complexity results hold for countd and avg:
1. Membership is in NP.
2. Probability computation is FP#P-complete.
3. Moment computation is in P for moments of any degree.

We present next a lemma that highlights why probability computation is difficult for countd.
Recall that the #K-Cover problem is, given a finite set A, a set A of subsets of A and a constant
k ∈ N, to count the number of different combinations A′ ⊆ A of elements from A that have the
size k and cover A, that is, A =

⋃
S∈A′ S.

Lemma 6 (Reducing #K-Cover to Probability Computation). For every set A, set A of subsets
of A and k ∈ N one can compute in polynomial time a p-document P̂A,A,k ∈ PrXMLmux,det and a
constant cA,A,k such that the following are equivalent: (1) the number of A′ ⊆ A s.t. |A′| = k
and A =

⋃
S∈A′ S is m, (2) Pr(countd(PA,B,k) = k) is m× cA,A,k.
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Proof. (Sketch) Let A = {a1, . . . , an}, and A = {S1, . . . , Su}, let f be a N-valued injective
function on A. Let D be a set of k+1 natural numbers disjoint from {f(S1), . . . , f(Su)}. Assume
for each i that Si1 . . . , Siti are all the sets containing ai and t is the maximum among ti’s.
We construct PA,B,k as a p-document, having below its root n children a1, . . . , an. Each ai

has a det child that has t children, namely Si1 . . . , Siti and D
i
1, . . . , D

i
(t−ti). The edges to Sijs and

Di
js are all labeled 1/t. Each Sij is a leaf labeled with f(Sij) and each Di

j has k+ 1 children each
labeled with a distinct number from D. Nodes Di

j are needed to guarantee the probability of
every world of P̂A,B,k to be the same. Intuition behind nodes Sij is they indicate that an element
ai in A is “covered” with a set Sij in A′.
One can see that countd(PA,B,k) = k if and only if PA,B,k has no nodes Di

j and k different
values f(Sij) on its leaves, that is, exactly k elements of A are chosen that “cover” A. Hence,
Pr(countd(PA,B,k) = k) = m× p, where p is the probability of every world of P̂A,B,k.

We are ready to prove the theorem.

Proof of Theorem 7. 1. Can be shown as in Theorem 6.

2. Hardness for countd follows from Lemma 6 because #K-Cover is #P-complete [25]. Hard-
ness for avg can be shown by a straightforward reduction from the #P-complete problem #Non-
Negative-Subset-Average [25]. Membership follows from the FP#P-membership of the corre-
sponding problems for more general class PrXMLcie.

3. The proof is more involved, we omit it due to lack of space.

6 Conclusion
The literature about probabilistic relational databases is quite extensive. One of the early and
seminal works is [4] where probabilities are associated with attribute values. Among the number
of models and systems that have been proposed for representing and querying probabilistic data,
one can distinguish between not fully expressive systems such as the block-independent model [9]
(which can be seen as a relational counterpart to PrXMLmux,det) and the more complex, lineage-
oriented, probabilistic database management systems like Trio [28] and MayBMS [20], that are
closer in spirit to PrXMLcie. The latter are inspired by Imieliński and Lipski’s c-tables [16] (though
these are models for incomplete information, they can be applied to probabilistic information in
a straightforward way, as noted in [12]).
By contrast, research on probabilistic XML is a newer topic. P-documents have been proposed

recently [1, 17] as a generalization of previously developed models [2, 14, 15, 22, 26, 27]. Among
these, the one from [22] is essentially PrXMLmux,det while [2, 26] is PrXMLcie. Comparison between
the expressiveness of all these models is the topic of [1] and [18] investigates query processing.
Only a few works have considered aggregate queries in a setting of incomplete data. In

non-probabilistic settings aggregate queries were studied for conditional tables [21], for data
exchange [3] and for ontologies [5]. In probabilistic settings, to the best of our knowledge,
only two works [6, 25] study aggregate queries. Ré and Suciu [25] consider the problem of
evaluating HAVING queries (using aggregate functions) in block-independent databases. Cohen,
Kimelfeld, and Sagiv [6] deal with query answering when external constraints are imposed over
a PrXMLmux,det database, these constraints involving aggregate functions. In both cases, the
authors discuss the filtering of possible words that do not satisfy a condition expressed using
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aggregate functions, and neither on computing the distribution of the aggregation. Some connec-
tions exist to these works, however. In particular, the complexity bounds obtained for probability
computation of avg in Section 5.3 are a direct translation of the corresponding results for block-
independent databases presented in [25].
In addition to providing algorithms for, and a full characterization of, the complexity of com-

puting the aggregation for both PrXMLmux,det and PrXMLcie models (which corresponds to the
most studied and interesting probabilistic XML models), an originality of our contribution is
to consider the expected value or other moments as summaries of the probability distribution
of an aggregate function. In the case of PrXMLmux,det, we have identified a specific property of
aggregate functions (that of being monoid aggregate functions) that entails tractability. The in-
tractability of most aggregation problems for PrXMLcie has also led us to propose polynomial-time
randomized approximation schemes.
As the first work on aggregation queries in probabilistic XML, our research can be extended

in a number of ways. First, it is important to investigate more expressive query languages than
the single-path queries we considered in Section 2. The locality of PrXMLmux,det should make it
possible to evaluate the result of an aggregation defined by an arbitrary tree-pattern query [18], or
even other forms of navigational queries defined with a bottom-up tree automaton [7]. Adapting
the query evaluation algorithms proposed in [7, 18] to aggregation queries is ongoing work. This
may allow us to deal with queries involving arbitrary grouping of the aggregation results too.
The work presented here could also be straightforwardly extended to p-documents with exp
distributional nodes. Finally, aggregation queries that inherently manipulate leaf values would
be especially useful in conjunction with continuous probability distribution of these leaf values:
the result of an experimental measure might be a uniform distribution between two values, or
a Gaussian centered around a given value, etc. A preliminary study of this problem seems to
indicate that it is not harder to deal with such continuous probability distributions on leaves of
a p-document, at least when integration and differentiation of these distributions is tractable,
either symbolically or numerically.
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