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Abstract
We study the problem of, given a corpus of XML documents and its schema,

finding an optimal probabilistic model (optimality meaning maximizing the
likelihood of the corpus to be generated). We present an efficient algorithm
for finding the best probabilistic model, in absence of constraints. We further
study the problem in presence of integrity constraints (key, inclusion, and
domain constraints) and consider in this case two different kinds of generators:
a continuation-test generator that performs, while generating, some tests of
schema satisfiability; these tests allow avoiding the violation of constraints (but
as we show, are costly to implement), and a restart generator that may generate
an invalid document and then restart and try again.

Résumé
Étant donnés un corpus de documents XML et son schéma, nous étudions

le problème de déterminer un modèle probabiliste optimal (maximisant les
chances de générer ce corpus). Nous montrons comment obtenir le modèle
probabiliste optimal, en l’absence de contraintes. Nous étudions aussi le problème
en présence de contraintes d’intégrité (clés, inclusions et contraintes de domaine)
et considérons dans ce cas deux types de générateurs : (i) des générateur basés
sur des tests de continuation qui évitent de générer des documents invalides
au prix de tests coûteux ; et (ii) des générateurs qui produisent des documents
jusqu’à en obtenir un qui soit valide au prix d’un nombre potentiellement très
grand de productions de documents inutiles.
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1 Introduction
We are concerned with the following problem: given a corpus of XML documents, find
a “best model” for this corpus. We consider generative models, and optimality means
maximizing the likelihood of the corpus to be generated. There are two aspects in the
problem. The first is to find a type (e.g., in an XML schema language such as DTD or
XML Schema) the documents conform to. This has been intensively studied (see, e.g.,
[21, 19, 15, 8]). The second aspect is given such a type, find probabilities to “guide” this
type, that in some sense maximize the particular corpus. This is the contribution of the
present work: given a document corpus and a type for its documents, we show how to find
the best probabilistic model.
Such a probabilistic model has a variety of usages:

Testing. The model can be used to generate (many) samples of the documents for test
purposes. For instance, the document may describe some workflow sessions and the
samples be used to stress-test a new functionality.

Explaining. The type is already useful to explain the corpus to users. The probabilities
provide extra information on the semantics of data. E.g., in DBLP, how many journal
articles there are vs. conference ones, or how many authors a paper has on average.

Querying. One can get an approximation of query answers by “evaluating queries” on this
model in the style of query answering on probabilistic databases. For instance, one
can verify the probability that journal articles have page numbers.

Type mining. Given a corpus, many possible types are such that all documents in the corpus
satisfy them. To choose between them, one can use measures such as compactness
(how small the type is) or precision (how much it rules out documents outside of the
corpus). It turns out one can also use as a quality measure how well a probabilistic
model for this type fits the corpus.

This variety of usages motivates the present work.
For types, we consider a very general notion that is essentially based on automata

specifying the labels of the children of nodes with a certain label. This suggests the
following nondeterministic generator for all documents satisfying a particular schema. Start
with a single node with the root label. The children of a node of label l are generated
using the automaton Al corresponding to its label. Starting from the start state of Al the
generator nondeterministically chooses an accepted run of the automaton corresponding to
a word a1...an$ in L(Al) (where $ is a special terminating symbol) thereby generating a
sequence of children respectively labeled a1...an. To obtain a probabilistic generator, one
attaches to the transitions of the automata probabilities to be selected. This provides the
skeleton of the document. One needs also to feed in data values (at the leaves) following
some specified distribution. The entire generation process may be interpreted as tree
rewriting specified as ActiveXML documents [1].

Such a type together with the probabilities provides a probabilistic model for documents.
Our contribution consists in determining the “best” such model for a given corpus of
documents and a specific type. More precisely, we need to determine the probabilities to
attach to the automata transitions that make the corpus most likely.
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Model Shorthand Main results Sec.

XML schema
with/without
constraints

schema Formalization of the model 2.2,
2.3

Nondeterministic
generator

nd-generator Definition of the concept of a schema-based generator 3.1

Probabilistic
generator

p-generator An algorithm for finding the best probabilistic model
for a document corpus based on a given schema, and a
proof that termination probability is 1

3.2,
4.2

Restart generator r-generator Definition and discussion about the restart overhead 3.3,
5.2

Continuation-test
generator

ct-generator An algorithm for finding the best probabilistic model
for a document corpus based on a given binary schema

3.3,
5.1

Table 1: Summary of Results

We first introduce an elegant way of obtaining these probabilities. The documents of a
particular corpus are type-checked. For each automaton, we count the number of times
each transition is chosen. We prove that using the relative frequencies of the transitions
yields probabilities that optimize the generation of the corpus.

However, real applications also often involve (in addition to types) semantic constraints
that greatly complicate the issue. We consider the three main kinds of constraints considered
in practice, namely (unary) key, inclusion, and domain constraints. The main difficulty
is that during generation we may reach some states where some of the transitions do
not constitute real alternatives: following a particular transition, there is no chance of
generating an instance obeying the constraints. This motivates our considering two kinds
of generators, restart generators and continuation-test generators, as follows.

Restart generator. A run of a restart generator is quite simple. Ignore the constraints
and generate a skeleton. Check whether there exists a value assignment for this skeleton so
that the resulting document satisfies the constraints. If this fails, restart. Unfortunately,
we show that for some input instances, there is virtually no chance of generating a skeleton
that can be turned into a document satisfying the constraints, rendering restart-generators
a problematic solution in general (although efficient in some cases).

Continuation-test generator. A run of a continuation-test generator is somewhat more
complex. At every point of generation where there is more than one option, we invoke
a continuation-test to check which of the options are feasible (i.e., for which there is a
continuation that leads to a document satisfying the constraints). Thus we never choose
a transition that takes us to a dead end and document generation always succeeds. The
price we pay for this is performing the continuation-test, which we show is NP-complete.

To compute the best probabilistic model for the continuation-test generator, we have to
assume that choices are binary. (We will explain why.) Again, we type-check the documents
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of the corpus. We count the number of times each transition was chosen, but this time
only in cases where there was more than one option with continuation. We prove that this
gives optimal probabilities.

The present work focuses on establishing formal foundations for probabilistic generators
for XML; practical implementations of the techniques presented here, as well as their
experimental study, will follow as a next step (see Section 7 for future work).

Paper organization In Section 2 we provide definitions and background required for the
rest of the paper. Generators are defined in Section 3. In Sections 4 and 5 we study
the problem of finding the best probabilistic generators without and with constraints
respectively. Related work is considered in Section 6 and we conclude with future work
in Section 7. For ease of reading, the models and results considered in this paper are
summarized in Table 1.

2 Preliminaries
In this section, we first introduce basic definitions for XML document and document
corpora. We then consider schemas and constraints.

2.1 XML Documents and Corpus
An XML document is an unranked, ordered, and labeled tree. Given an XML document d =
(V,E), we use root(d) for the root node of d. Let L = Ll ∪ Li be a finite domain of labels,
where Ll and Li are two disjoint sets of labels for leaves and internal nodes resp. We denote
by label : V →L the labeling function of the nodes, mapping leaf (internal) nodes to leaf
(internal) labels. Given a node v ∈ V , label↓(v) ∈ L∗$ is the sequence of labels of the
children of v, from left to right, with an additional terminating symbol $ 6∈ L. We assume
that (only) the leaves are further assigned values from a countably infinite domain V by
the function val.
Example 2.1. Consider the following XML document d̄.
<Dept>

<Head>Martha B.</Head>
<Seniors >

<Emp>
<Name>Martha B.</Name>
<Tel >123−5234</Tel>
<Tel >123−5357</Tel>

</Emp>
</Seniors >
<Juniors ></Juniors >

</Dept>

This document describes the phone book of a de-
partment containing one senior employee as a mem-
ber (who is also the department head), Martha
B.: The root node v0 is the one labeled with
Dept, i.e., root(d̄) = v0 and label(v0) = Dept.
Let v1 be the node such that label(v1) = Emp.
Then label↓(v1) = Name Tel Tel $. Similarly, if
label(v2) = Name, then label↓(v2) = $ (i.e., this is
a leaf node with no children), but this node has a
value, val(v2) = “Martha B.”.

An XML corpus is then a finite bag of documents. Let D be the universal domain of
all documents over L. To represent a corpus we use a function D : D→N, which maps
each document d to the number of times d appears in the corpus. Let supp(f) be the set
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of all values x in the domain of the function f s.t. f(x) 6= 0. We use |D| to denote the
(necessarily finite) size of the corpus counting duplicates, i.e., ∑d∈supp(D) D(d).

2.2 Schema
We start by recalling the notion of schemas as specifications of valid XML documents. We
consider first schemas with no constraints, and then in Section 2.3 we extend our definition
to the general case where constraints are allowed. Also, to simplify the definitions, our
model follows that of Document Type Definitions (DTDs). However, we stress the model
can be extended in a straightforward manner to a schema defined in the XML Schema
language. Let Q be a finite domain of states.

Definition 2.2. A schema S is a tuple (r,A↓), where r ∈ Li is the root label, and A↓ is a
partial function mapping an internal label l ∈ Li to a deterministic finite-state automaton
(DFA) A↓(l) = Al

1, whose language is L(Al) ⊆ L∗$. An XML document d is said
to be verified by a schema S if label(root(d)) = r and for every internal node v of d,
l = label(v) ∈ Li and label↓(v) ∈ L(Al).

We refer to the DFA Al as the deriving automaton of l, and to the set of all such automata
for the labels of a document d as the deriving automata of d.
Remark 2.3. Note by the definition, every word accepted by the automata must terminate
with a $, and contain no other $’s. We also put a few additional restrictions on the model,
to simplify further definitions. First, we assume the states of each deriving automaton form
a disjoint subset of Q. Second, we assume that the order the automatons are called is fixed,
Breadth-First Left-To-Right (BF-LTR). The order of invocation is irrelevant for verification
but is important for the documents generation that is discussed in the sequel.

q5 q6

Emp

$

Figure 1: The ASeniors / AJuniors DFAs

q7 q8 q9
Name

Tel

$

Figure 2: The AEmp DFA

Example 2.4. Consider the schema S̄ for general documents that describe a department of
employees, like in Example 2.1. In this case, assume that Li = {Dept, Seniors, Juniors,
Emp }, Ll = {Head, Name, Tel }, and r = Dept. ADept is simply composed of a sequence
of states q0 to q4, and L(ADept ) = Head Seniors Juniors $. ASeniors , AJuniors ,2 and AEmp ,
depicted in Figures 1 and 2, are such that L(ASeniors ) = L(AJuniors ) = Emp∗ $ and
L(AEmp ) = Name Tel∗ $. Note that S̄ verifies the document d̄ from Example 2.1.

1It is common to use regular expressions for the allowed sequences of children labels in a schema [20, 18];
the reasons for our choice of automata instead will become apparent when we discuss generators below.

2To simplify the example we use here the same deriving automaton for Seniors and Juniors.
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2.3 Introducing Constraints
We continue by adding global constraints to the model we had so far. Following previous
work on constraints in XML schema languages, we consider three major types of constraints
on the values of the leaves.

Definition 2.5. A schema with constraints is a pair 〈Su, C〉, where Su is a schema (without
constraints) and C is a set of constraints on labels from Ll, of the following three types.

Key constraint Given a label l ∈ Ll, we denote by uniq(l) the constraint that the value of
each l-labeled leaf is unique (among all values of of l-labeled leaves in the document)3.

Inclusion constraint Given two labels l, l′ ∈ Ll, we denote by l ⊆ l′ the constraint that
the values of l-labeled leaves are included in those of l′-labeled leaves.

Domain Constraint Given a label l ∈ Ll, we denote by l ⊆ dom(l) the constraint that in
any document, the values of l-labeled nodes are in dom(l), a subset of V .

We assume, in the sequel, that inclusion constraints l ⊆ l′ are only given when dom(l) =
dom(l′), or when there are no domain constraints on l, l′ (which we consider a practical
scenario). When that is not the case, the combination of domain and inclusion constraints
may change the domain of possible values for some of the labels, e.g. the “actual” domain
of l may become dom(l) ∩ dom(l′) and must be re-computed.

3 Generators
In this section, we consider various generators. First we consider nondeterministic generators,
then probabilistic ones, and finally generators under constraints.

3.1 Nondeterministic Generator
Schemas are typically considered as acceptors for verifying XML documents. A schema
accepts or rejects a given XML document. But it is also possible to see a schema as a
nondeterministic generator (nd-generator). This is in the same sense that a DFA can be also
seen as a word generator. Starting from the start state, one can choose nondeterministically
transitions until reaching an accepting state, mimicking the run of the automaton on a
word in the language, thus generating that word. For each node of label l, we can use the
automaton Al to nondeterministically generate the children of that node. Since a schema
does not perform verification on the leaf values, an nd-generator generates XML document
skeletons, which consist only of the labeled nodes, and into which leaf values can be later
injected (see Section 7).
More precisely, generating a document skeleton d can be described as follows:
1. Generate a new root root(d) with a label r and add it to a todo queue Q.
2. While Q is not empty, pop the node v at the head of the queue. Let l be the label of
v and q the start state of Al.

3We are considering here only unary keys, defined on single values and not combinations thereof.
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3. Choose one transition in Al from q to some state q′.
4. If the transition from q to q′ is annotated with $ (i.e., we have finished generating

children for v) return to step 2.
5. Otherwise the transition is annotated with some label l. Generate v′, a child for v

such that label(v′) = l. If l ∈ Li add v′ to Q. Set q = q′ and return to step 3.
The generation process thus ends when the todo queue at step 2 is empty, i.e., the

deriving automata of all the generated inner nodes reached an accepting state. This means
that the inner nodes generated last have only leaves as children (since we are going in a
BF-LTR order).
Example 3.1. Reconsider the automaton AEmp depicted in Figure 2 as a generator. Assume
that we have already generated an Emp-labeled node v, and now we are generating its
children. We start from state q7 and when v has no children. We have only one option for
the next transition, moving to q8. Since the transition is annotated with Name, we generate
the first child node and label it with Name. From q8 we have two options: a transition to
itself, in which case we generate an additional child, labeled Tel, and a transition to q9, in
which case no more children are generated for v.
Remark 3.2. Given such a nondeterministic generator, one can easily construct an Active
XML document that generates the same documents. Active XML is much more general
and allows specifying generators that will be introduced further in this paper, including
the generators for handling schemas with constraints. For each label, a particular function
is used for generating the children of nodes with that label. The functions use a choose
function that introduces the nondeterminism. To introduce probabilistic choices, the random
function can be used; random takes a rational number between 0 and 1 and generates
T or F with a probability determined by that number. (The function choose is simply
random(0.5)). Finally, guards (i.e., conditions controlling the firing of the functions), can
be used to guarantee that BF-LTR order is followed. It also allows describing different
strategies for generating the document (notably different orders).

Next, we define the notion of a generation trace, which describes the process of document
generation in terms of the nondeterministic choices taken by the generator.

Definition 3.3. A generation trace of a node v, whose deriving automaton is A and where
label↓(v) = a1...an$, is a sequence 〈q0, a1〉, 〈q1, a2〉, ..., 〈qn, $〉 where q0, ..., qn ∈ Q and the
transition function δ of A is such that δ(qi−1, ai) = qi for all 1 6 i 6 n and δ(qn, $) is an
accepting state. A generation trace of a document is then the concatenation of all the
generation traces of all its inner nodes, in the order they were performed.

We next show that using an nd-generator indeed generates the documents verified by
the corresponding schema.

Proposition 3.4. For a schema S, the set D ⊆ D of all documents that S generates as
an nd-generator is exactly the set of all documents S verifies.

Proof (sketch). Assume that some document d is verified by S. For each internal node v
in d there is an automaton Al = A↓(label(v)); Al performs a sequence of state transitions on
label↓(v) and reaches an accepting state (since S verifies d). Take the sequence of pairs of
state and transition label to be the generation trace for v. Concatenating all the generation
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traces of the inner nodes according to our BF-LTR order will give a valid generation trace
of S for d. The other direction is also simple – it is easy to see that if an automaton
generates nondeterministically a sequence of child labels, it also accepts this sequence of
labels; hence if a finite d is generated by S it is also verified by it.

3.2 Probabilistic Generator
For practical purposes, we are not only interested in generating all possible finite documents
that match some XML schema, but rather want to generate them according to some
probability distribution. For that we introduce the notion of probabilistic generator, where
the nondeterministic choices are associated with probabilities.

Definition 3.5. A probabilistic generator (p-generator) S is a pair 〈Su, t-prob〉, where Su

is a schema, and t-prob is a function Q×L→ [0, 1] mapping the transitions of the deriving
automata of d to probabilities, such that for every q ∈ Q, ∑l∈L t-prob(q, l) = 1, and for
every transition (q, l) which is not a part of any automaton, t-prob(q, l) is 0.

The probabilistic generation process is then very similar to the nondeterministic one,
except that from each automaton state q, the generator randomly draws the next transition
(q, l), according to t-prob.

Document probability. Let d be a document skeleton. For each internal node v in d, the
probability of label↓(v) is the product of probabilities of all the transitions in its generation
trace; the probability of d is then the product of all such probabilities over all its nodes. It
is implied that we assume here independence of the probabilistic events associated with
transitions (and naturally, independence in generation of different documents).
Example 3.6. Let us assign probabilities to the transitions in the schema described in
Example 2.4. Assume that t-prob(q5,Emp) = 0.3, t-prob(q5, $) = 0.7, t-prob(q8,Tel) = 0.6
and t-prob(q8, $) = 0.4 (all other transitions have probability 1). We can now compute the
probability of generating the document skeleton d̄ in Example 2.1. The following table
shows for each node its generation trace and the computation of generation probability.
Since all internal nodes in d̄ have unique labels, we use them here as node identifiers.

Node Generation trace Probability
Dept 〈q0,Head〉, 〈q1, Seniors〉, 〈q2, Juniors〉, 〈q3, $〉 1 · 1 · 1 · 1 = 1
Seniors 〈q5,Emp〉, 〈q5, $〉 0.3 · 0.7 = 0.21
Juniors 〈q5, $〉 0.7
Emp 〈q7,Name〉, 〈q8,Tel〉, 〈q8,Tel〉, 〈q8, $〉 1 · 0.6 · 0.6 · 0.4 = 0.144

Total 0.21·0.7·0.144 ≈ 0.021
The last row shows the total probability to generate d̄ with the p-generator, which is the
product of the probabilities of the inner nodes.
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3.3 Generators with Constraints
As before, we would like to define a model for the generation of XML documents that are
verified by a given schema with constraints on the values. However, in the presence of
constraints, a generator that only makes independent choices may be unsuitable, as shown
by the next example.
Example 3.7. Let us now consider a schema based on S̄ from Example 2.4, but with the
following additional constraints on the values:
• uniq(Name): the employee names are unique.
• Tel ∈ 123-5{0,..,9}3: the department phone numbers always start with 123-5, and

then some 3 digits.
• Head ⊆ Name: the name of the department head must be a name of an employee in

the department.
Note that a document generated according to our schema may list a head but no member

employees, in violation of constraint 3. We can try to enforce that there is at least one
employee, by setting t-prob(q5,Emp) to 1 (either in ASeniors or AJuniors ). However, such
a generator will never halt. Another possibility could be modifying the automaton itself
to enforce, e.g., that there is at least one junior / senior employee; but the resulting
generator will no longer correspond to the schema and particularly will not generate d̄ from
Example 2.1 (or a similar document, where Martha B. is a junior employee).

We suggest two kinds of generation models which deal with the problem described in the
above example: restart generators which try to generate a document, check if it is invalid,
and if so start the process over again; and continuation-test generators, which may perform
a test for the existence of a continuation that leads to a valid document. As we explain
later, the generator can use this test to avoid generating invalid documents.

Restart generators. We start by defining more formally the notion of a restart generator
(r-generator). An r-generator G is a pair 〈Gp, C〉, where Gp is a p-generator, and C is a
set of constraints (as in a constrained schema). The operation of G is composed of two
main steps which may be repeated.

1. Generating, probabilistically, a document skeleton d matching the schema of Gp. This
step can be done simply by invoking Gp.

2. Checking, given d and C whether there exists a valid value assignment to the leaves
of d. If not, d is discarded and we start over.

Some important questions which arise here are whether the test of the second step is
decidable, and if so whether it can be computed efficiently. We show that the answer is
“yes” to both questions and how to compute the answer in Section 5.2. An r-generator is
very simple, but may generate many invalid documents before generating a valid one, if at
all. This is a major pitfall, which leads us to consider the next kind of generators.

Continuation-test generators. A continuation-test generator (ct-generator) G makes
calls to a continuation test after probabilistically choosing the next step, and before actually
taking it. The continuation-test takes as input (1) a schema S, (2) a generation trace ξ
of the partial document generated so far, and (3) a ∈ L ∪ {$}, the choice G considers.
The continuation test returns as output false if and only if there exists no document d
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verified by S such that ξ, 〈q, a〉 is a prefix of the generation trace for d. In such a case, the
generator chooses one of the other transitions going out of q; the generator may further
record the output of the test to avoid performing it twice on the same transition.
Intuitively, the continuation test guides the generator by testing if a possible next step

can lead (eventually) to a valid document; if not, then the generator will not make this
step. In a sense, the continuation test is the only reasonable Boolean test to perform
here: if the test returns true when there is no continuation, an invalid document will be
generated; in contrast, if the test returns false when there is a continuation, there are some
valid documents (that may be in the corpus) that will never be generated, regardless of the
probabilities assigned to transitions.
Note that, in the absence of constraints (when C = ∅), there are no invalid document

skeletons and both r-generators and ct-generators are the same as p-generators.

3.4 Quality and Optimality Measures
For a given XML schema, there are many possible generator instances (for each model
described above). In order to compare different generators we define measures of generator
quality and optimality, as follows.

Fitting a corpus. The main goal of this paper, besides defining the models for different
kinds of generators, is to describe how to learn the probability distributions from a corpus of
XML documents. Thus, the quality of a generator depends on the probability of generating
the corpus documents. Formally,

Definition 3.8. Given a generator G and for every document d ∈ D, let Pr(d |G) be the
probability for G to generate d. Let D : D→N be a document corpus. Then the quality of
G with respect to D, denoted quality(G,D), is ∏d∈supp(D) Pr(d |G)D(d) (recall that D(d) is
the number of occurrences of d in D).

Note that if we multiply quality(G,D) by cD, the multinomial coefficient of D as a bag,4
the result is exactly the probability for G to generate D.

Optimal generator. We say that a probabilistic generator G conforms to a schema S if
their structure is identical (as for instance in the extension of a schema to an r-generator or
ct-generator). Given a schema S, a class G of generators conforming to S, and a document
corpus D, we say that a generator G ∈ G is optimal for S, G, D if for each generator G′ ∈ G,
quality(G,D) > quality(G′, D). When G is understood, we say that it is optimal for S, D.
We call the problem of finding the optimal generator (for a given S and D) OPT-GEN.

4 The Unconstrained Case
In this section, we first show quality bounds for generators, then study optimal generators
for schemas without constraints. We will consider constraints in Section 5.

4cD is the number of distinct permutations of the bags elements (in particular, if D is a set, cD = |D|!).
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4.1 An Upper Bound for Quality
We start by considering an upper bound of quality for a corpus. We will later discuss
whether this boundary can be achieved by the types of generators we defined, or by others.

Given a corpus D, consider a generator that would generate each document d in D with
probability D(d)

|D| , i.e., according to its relative frequency. The quality of this generator

would be qD = ∏
d∈supp(D)

(
D(d)
|D|

)D(d)
. We can show that this is indeed the maximal possible

quality of a generator for D, independently from the XML schema the generator conforms
to, and even the type of generator, as the following propositions holds.

Proposition 4.1. Let D be a corpus and G a generator. Then quality(G,D) 6 qD.

The proof is based on the following lemma (which follows from results in [10]).

Lemma 4.2. Let α1 . . . αn be n positive integers. We define the function fn : Rn
+ → R+

as: (p1, . . . , pn) 7→ fn(p1, . . . , pn) = ∏n
i=1 p

αi
i Then the maximum of fn under the constraint∑n

i=1 pi 6 1 is obtained when pi = αi∑n

j=1 αk
for 1 6 i 6 n and only then.

It is easy to obtain a generator that achieves this optimal quality. The generator ignores
any schema information, and simply randomly draws documents from the corpus, according
to their relative frequency. We argue that this is not a good generator. First, if the corpus
is very large, this generator will be much less compact than the ones we study, so not
appropriate for explanation or query evaluation. Furthermore, this generator suffers from
over-fitting: it cannot generate any documents other than those already in the corpus,
and thus it is not appropriate for, e.g., testing. We want generators that also generate
documents that are similar to, yet different than, those in the corpus.

4.2 An Optimal Generator
We next consider the problem of finding the optimal probabilistic generator out of those
conforming to a given schema, in the unconstrained case.

Theorem 4.3. We can solve OPT-GEN (without constraints) in time O(|S|+ |D|) where |S|
is the size of the schema S and |D| is the total size of the corpus D (i.e., the sum of the
size of all distinct elements in D, plus a binary encoding of their multiplicity).

Proof. Consider Algorithm 1, which gets a schema as input and computes a probability
for each transition. In lines 2–3 the schema is used for verifying the input corpus documents,
and in the process the number of times each transition (q, a) was chosen is recorded in
freq(q, a) (also considering the frequency of each document in the corpus). Then in lines 4–6
we assign each transition (q, a) as probability the relative number of times it was chosen
after reaching q. If there is no data for a certain state (i.e., it was not reached during the
verification), we give equal probabilities to its outgoing transitions.

By construction, Algorithm 1 outputs a generator which has the same structure as S. It
is easy to check that the transition probabilities from each node in an automaton of the
generator sum up to 1 (this is enforced by the normalization in line 6).

Lines 1, 4–5, and 6 require a time linear in S. The loop in lines 2–3 consists in running
the schema on each d ∈ D and therefore require a time linear in the size of D.
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Input: schema S, corpus D of documents verified by S
Output: p-generator G conforming to S

1 foreach transition (q, a) in an automaton of S do freq(q, a)←− 0;
2 foreach d ∈ supp(D) do

ξ ←− the generation trace of d by S;
foreach 〈q, a〉 in ξ do

3 freq(q, a)←− freq(q, a) +D(d);

4 foreach state q in an automaton of S do
total(q)←− 0;
out(q)←− 0;
foreach transition (q, a) in an automaton of S do

out(q)←− out(q) + 1;
5 total(q)←− total(q) + freq(q, a);

6 G← 〈S, t-prob〉 s.t. ∀q ∈ Q, a ∈ L ∪ {$} t-prob(q, a) = 1
out(q) if total(q) = 0, otherwise

t-prob(q, a) = freq(q,a)
total(q) ;

return G;
Algorithm 1: Algorithm for OPT-GEN (no constraints)

It is still to be shown that the output G of Algorithm 1 has maximum quality among all
generators that conform to S. The quality of G is:

quality(G,D) =
∏

d∈supp(D)
Pr(d |G)D(d) =

∏
d∈supp(D)

∏
q in S

∏
(q,a) in S

(
freq(q, a)
total(q)

)D(d)·#〈q,a〉 in
d’s trace by S

=
∏
q in S

∏
(q,a) in S

(
freq(q, a)∑

(q,a′) in S freq(q, a′)

)freq(q,a)

whereas, similarly, every probabilistic generator G′ conforming to S has quality:

quality(G′, D) =
∏
q in S

∏
(q, a) in S

p(q, a)freq(q,a)

for some assignment p(q, a) verifying, for each state q of S, ∑
(q, a) in S

p(q, a) = 1. Observe
that there is no constraint between the p(q, a)’s for transitions of different origins (q, a)
and (q′, a′). We can then look independently for each state q which assignment of p(q, a)
maximizes the term ∏

(q, a) in S
p(q, a)freq(q,a) under the summing constraint. Lemma 4.2

shows that this is exactly the assignment made by G.5

To be of practical use, the generator returned by Algorithm 1 needs to have a guarantee of
almost always termination, which is not a consequence of Theorem 4.3. Even the maximal
probability of generating the corpus documents (for which the generator halts) may still be
far from 1, and thus the probability of not halting may not be negligible. However, we can

5When total(q) = 0, the value of this term is 1 for any assignment of p(q, a), and in particular for the
uniform distribution in Algorithm 1.
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show that our construction guarantees termination. (The proof is by an adaptation of a
corresponding result in [10].)

Theorem 4.4. The generator returned by Algorithm 1 has a termination probability of 1.

5 The Case with Constraints
We now allow constraints, as defined in Section 3.3. We consider the computation of an
optimal probabilistic generator given a constrained schema. Recall that we study two
interesting classes of generators: continuation-test generators (ct-generators) and restart
generators (r-generators). We start with continuation-test generators.

5.1 Continuation-Test Generators
We first study the complexity of continuation tests. To do that, we need to adapt some
known result:

Lemma 5.1 (adapted from [12, 14]). The satisfiability of an XML schema with unary key,
inclusion and domain constraints is NP-complete w.r.t. the size of the schema.

Proof (sketch). A similar claim is proved in [12], which follows, in turn, the proof
in [14]. Both models in [12, 14] are more expressive than ours (which means that NP
membership carries over), but the hardness results are given even for a very simple model,
a deterministic restriction of DTDs (which is less expressive than ours). One last required
adaptation follows from the fact that their results are for key and inclusion constraints
but not for domain constraints. To account for domain constraints, we briefly review
the proof used in [12]. The proof there is by encoding the schema with constraints as a
Presburger formula, and showing that the formula is satisfiable if and only if the schema
with constraints is satisfiable. To extend the proof to also account for domain constraints
in our settings, we first observe that a domain constraint on l restricts the set of valid
document skeletons only if the domain is finite and there is a key constraint on l; in this
case the domain constraint is expressible as an inequality specifying that the number of
occurrences of l is smaller than the domain size. So, we add the relevant inequalities to the
Presburger formula, and the proof technique of [12] can still be used.

We call a partial generation trace valid for a generator G if it is a prefix of a generation
trace of a valid document skeleton by G. We now have:

Proposition 5.2. Let S = 〈Su, C〉 be a schema with constraints and G a generator
conforming to Su. Let ξ be a partial generation trace valid for G, and let (q, a) be a possible
next transition for G after ξ. Whether ξ, 〈q, a〉 is a valid (partial) generation trace for G is
NP-complete.

Proof (sketch). NP-hardness follows from Lemma 5.1. To prove inclusion in NP, we
construct in polynomial time a schema that is satisfiable if and only if the continuation
test succeeds, and then use the NP algorithm of [12] to decide.
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Input: constrained schema S, corpus D of documents verified by S
Output: ct-generator G conforming to S

1 foreach transition (q, a) in an automaton of S do freq(q, a)←− 0;
2 foreach d ∈ supp(D) do

ξ ←− the generation trace of d by S;
foreach 〈q, a〉 in ξ do

if ∃a′ ∈ L ∪ {$} s.t. (q, a′) is a transition in S then
ξ′ ←− the prefix of ξ before 〈q, a〉 (exclusive);

3 if cont(S, ξ′, a′) = T then
4 freq(q, a)←− freq(q, a) +D(d);

5 Compute total and out as in Algorithm 1 lines 4-5;
6 G← ct-generator based on S and where ∀q ∈ Q, a ∈ L ∪ {$} t-prob(q, a) = 1

out(q) if
total(q) = 0, otherwise t-prob(q, a) = freq(q,a)

total(q) ;
return G;

Algorithm 2: Algorithm for OPT-GEN (constraints, ct-generators)

Finding an optimal binary ct-generator. To solve OPT-GEN for ct-generators, we assume
that the schema has a particular property, namely that it is “binary”. A schema is binary if
for each state of each automaton in the schema, there are at most two possible transitions.
We will discuss the case of non-binary schemas afterwards. Recall that FPNP is the class of
problems solvable by polynomial-time computation algorithms that are allowed calls to an
NP oracle. Formally, we show:

Theorem 5.3. Given a binary schema with constraints S and a corpus, we can find an
optimal ct-generator in time FPNP.

Proof. Algorithm 2 computes the optimal ct-generator in time polynomial in the size
of S, while making calls to an oracle cont that performs continuation tests. Generally,
Algorithm 2 is very similar to Algorithm 1, except that the frequency of taking a transition is
only recorded in situations where there exists a second optional transition, which according
to the oracle does not lead to a dead end. The time complexity of the algorithm follows
from the complexity of Algorithm 1, and the calls for cont in line 3.

It is still to be shown that the output G of Algorithm 1 has maximum quality among all
the ct-generators that conform to S. This proof is very similar to the proof of Proposition
4.1, only that this time when we maximize the term quality(G′, D) = ∏

(q, a) in S p(q, a)freq(q,a),
freq(q, a) refers to the number of times the transition (q, a) was taken when there was a
second choice with continuation. In other cases every ct-generator must have chosen the
only possibility with probability 1.

Generation time. Without constraints, it was trivially the case that a document was
generated in time linear in its size. However, for continuation-test generators it is no longer
the case, because of the complexity of continuation-tests:
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Proposition 5.4. The generator produced by Algorithm 2 generates a document in time
exponential in the size of the document (assuming P 6= NP).

Termination probability. The question of whether the generator returned by Algorithm 2
stops with probability 1 is more complicated than its counterpart for the unconstrained case.
In particular, the result in [10] cannot be used here, because it relies on the probability
of termination from each given label being fixed; however, in presence of constraints, this
probability may vary according to the context in which the label appears in the partial
XML tree. The following example gives intuition for the difficulty.
Example 5.5. Let Li = {r, c, d}, Ll = {a, b}, and S a schema with constraints, s.t. L(r) =
a+b+(c | ε)$, L(c) = ad, L(d) = {ddd, ε} and the only constraints are b ⊆ a, uniq(b).
Let the corpus D contains a single document, <r><a/><b/></r>. Then during the
verification of D, we never get c or d, and so assign uniform probability distributions to the
transitions of their automatons (we could use any other arbitrary probability assignment).
specifically, this gives a probability of 1

2 for deriving ddd from d. Then, during generation,
we could start by generating one a and two b’s; as a result of the inclusion constraint, the
generator must then generate a c, to have another a as its child; but then the termination
probability from d is less than 1, as shown in a similar example of [10].

This particular example of termination with probability < 1 uses transitions that are not
used in the validation phase; it is still open whether eliminating such transitions with no
evidence in the corpus would ensure almost certain termination, or whether there is a way
of assigning probabilities to these transitions that gives the same guarantee.
We conclude the discussion on ct-generators by a remark on non-binary choices.

Non-binary choices. We have assumed so far in this section that the schemas were binary.
When this is not the case, finding the optimal generator is still open. We study here two
options for handling the non-binary case via slight variations of the model: (1) turning
the choices into binary choices, and (2) keeping probabilities for all combinations of valid
choices. We present these options by example.

Consider the following constrained schema. The deriving automaton A3 of the root label
r ∈ Li is shown in Figure 3 with a, b ∈ Ll. (A3 accepts (a | b)∗$.) Observe it has a ternary
choice. We also assume that b has a key constraint and domain cardinality 1.

Consider (1). We show two ways of turning the ternary choice into a binary one. A third
possibility is not considered here.
First, one decides whether a is produced or not and then (if an a is not produced)

whether b is produced or whether we are done with the children of r. We use a probability
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assignment t-prob: we choose to produce a with probability t-prob(q0, a) and to produce b
(given that we have not produced a) with probability t-prob(q0, b). Of course, as before, we
use continuation tests to avoid reaching dead ends during generation, and in the probability
learning, as in Algorithm 2. Alternatively, one can choose whether we are done with r first,
and, if we are not done, whether we produce a or b. This yields t-prob′.
Consider the single document corpus <r><a/><b/></r>. We can compute the

transition probabilities:
{

t-prob(q0, a) = 1
3 t-prob′(q0, $) = 1

3
t-prob(q0, b) = 1 t-prob′(q0, a) = 1

2
This yields, for the probability of generating the corpus: 1

3 ×
2
3 ×1× 2

3 = 4
27 using the first

alternative, and 2
3 ×

1
2 ×

2
3 ×

1
2 ×

1
3 = 1

27 using the second one: the quality of the generator
depends of the way the choice has been made binary.

Now consider (2). We keep the ternary choices but assign a probability to each possible
subset of the transitions of size more than 1. For the example, this yields:

a, b, $ are all available only a, $ are available
t-prob(q0, a) = 1

2 t-prob′(q0, a) = 0
t-prob(q0, b) = 1

2
t-prob(q0, $) = 0 t-prob′(q0, $) = 1

which gives a probability of generating the corpus of 1
2 ×

1
2 × 1 = 1

4 .
In both cases, we can obtain an optimal generator for this particular class of generators.

For (1), this suffers from the inelegance of the arbitrary ordering of the transitions that is
chosen and affects the outcome. For (2), this may result in a large number of parameters.

5.2 Restart Generators
We next consider restart generators. First, we show that given a generated document
skeleton, we can check its validity efficiently (and if invalid, restart). Then, however, we
show that the number of restarts may be unboundedly large; and this can hold particulary
for generators that are optimal (i.e. best fit to the corpus).

Proposition 5.6. Given a schema with constraints 〈Su, C〉, and a document skeleton d
valid for Su, verifying the validity of d with respect to 〈Su, C〉 can be done in PTIME.

Proof. We consider again the schema satisfiability test from [12], which is tested through
the satisfiability of the formula ϕ ∧ ψ. The variables x1, ..., xn in the formula represent the
numbers of occurrences of nodes labeled with l1, ..., ln. In this case, if d = (V,E), we will
take the assignment of each xi to be adi = |{v ∈ V | label(v) = li}|. Since d is valid for Su,
we know that this assignment for x1, ..., xn satisfies ϕ, which is the part of the formula that
expresses the validity of the document for the schema Su.

It is left to find a satisfying assignment for ψ, that expresses validity with respect to the
constraints in C. For that we must also find an assignment for the variables v1, ..., vn that
represent the number of unique values for each label. We can ignore here inner node labels,
since we only have values on the leaves (unlike [12]). Once we find values for v1, ..., vn
we can be sure that there exists a valid assignment for the leaf values, for the generated
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document skeleton. Let us initialize a directed graph G = (V,E), such that there is a node
n(vi) for every variable, node n(0) and n(adi ) for 1 6 i 6 n, and add the edges (n(0), n(vi)),
(n(vi), n(adi )) for each i. In G a directed edge (a, b) expresses that a 6 b. ψ connects, using
∧, sub-formulas of the 4 following types:

(1) vi 6 xi (2) vi = 0↔ xi = 0 (3) vi = xi (4) vi 6 vj

In addition, for each domain constraint li ∈ dom(li) we add vi 6 |dom(li)| (recall that we
only need to verify validity w.r.t. constraints of finite domains).

We will generate the sub-formulas according to the constraints in the schema, while using
the value assigned to each xi instead of a variable, and also updating G in the process,
as follows. We can ignore sub-formulas of the first kind, as they were already embedded
in the initialization of G; for sub-formulas of the second kind, if indeed xi = 0, we will
add the edge (n(vi), n(0)); otherwise we will add (n(1), n(vi)), adding a new node n(1) if
necessary; for vi = xi we will add (n(adi ), n(vi)); for vi 6 vj we will add (n(vi), n(vj)); and
finally for vi 6 k we will add (n(vi), n(k)), adding the node n(k) if necessary. Then we will
take G∗ = (V,E∗), the transitive closure of G.
We claim that ψ is satisfiable iff in G∗ there exists no edge (n(k), n(k′)) s.t. k′ < k.
For the one direction, assume that there exists no such edge (n(k), n(k′)), and let us

assign to each vi the minimal k such that (n(vi), n(k)) ∈ E∗ (i.e., the lowest upper bound
for vi). By the initialization there must exist such a k. It is straightforward to verify
that every sub-formula of ψ is satisfied. E.g., assume that vi = xi. By the construction,
(n(vi), n(adi )) and (n(adi ), n(vi)) are in E,E∗. Assume by contradiction that vi is assigned a
value k < adi ; then (n(vi), n(k)) ∈ E∗ and thus also (n(adi ), k), which gives a contradiction.
Assigning vi a value k > adi contradicts the choice of minimal upper bounds as values.

For the other direction, assume that there exists such edge (n(k), n(k′)). This edge is
in E∗, thus by the definition of transitive closure there is a path from n(k) to n(k′) in E;
this path represents a sequence of inequalities k 6 y1, y1 6 y2, ..., yt 6 k′, and clearly, those
inequalities cannot all be satisfied together. Thus ψ is not satisfiable.
Finally, the complexity of generating G, generating G∗, and checking for an edge

(n(k), n(k′)) s.t. k′ < k is polynomial in n (the number of labels) and C, and loga-
rithmic in the size of the document skeleton (as we also need to save a representation for
the number of nodes in the skeleton). Thus the skeleton validity test is in PTIME.

The quality of an r-generator vs. the restart overhead. We next examine how many
times we will restart (i.e., what is the expected the number of generated invalid documents).
In particular, we show that there is a tradeoff between the optimality of an r-generator in
terms of quality, and its restart overhead.
Example 5.7. Consider a simple schema Stradeoff , which consists of a root label r, whose
automaton is depicted in Figure 4. The regular language of this automaton is a∗$. Let
Ll = {a} and let the set of constraints C = {uniq(a), a ∈ {0} } (a can have only one value,
0).6 Consider a document corpus which consists only of the document d, whose root has a
single child a with the value 0.

6We could also construct more complicated examples, where the value domains are infinite.
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Now, the only probabilistic parameter that can be varied in an r-generator is the
probability to choose the transition from q0 to itself. Denote this parameter by α. In
this case, maximizing the quality of the generator means maximizing the probability for
generating d. Since this is an r-generator, generating d means (perhaps) generating some
finite number of invalid document skeletons, restarting after each time, and then generating
d in the last invocation of the generator. The probability of generating an invalid document
skeleton in a single invocation of the generator is the probability of choosing (q0, a) twice
or more, i.e., α2. The probability of generating d in a single invocation is the probability
of choosing (q0, a) once and (q0, $) once, i.e., α · (1 − α). Then the total probability of
generating d is the probability of generating d in the first invocation, in the second one,
etc., that is: ∑+∞

k=0 α(1 − α)(α2)k =(∗) α(1 − α) 1
1−α2 = α

1+α . Since we use the formula for
converging infinite geometric series, the transition (∗) requires that α < 1 (if α = 1, Pr(d)
is obviously 0). We would like to find the maximum of probability of generating d, and
as the function is monotonically increasing in [0, 1), the closer α gets to 1 the higher the
quality of the generator is. Let us choose α to be 1− ε, for some arbitrarily small ε > 0.

What is the expectation for the number of times our “nearly-optimal” generator restarts?
The probability of generating a valid document in one invocation is 1−α2. Define a random
variable X that measures the number of times the r-generator restarts. Since the different
invocations of the r-generator are independent, X has a geometric distribution, and we get
the following (let ε′ = 2ε − ε2): E[X] = 1−(1−α2)

1−α2 = (1−ε)2

1−(1−ε)2 = 1−ε′

ε′ . This shows that the
expected number of restarts tends towards +∞ as ε→ 0.
Remark 5.8. A conclusion from the example is that maximizing the likelihood of the corpus
may not be the best measure for the quality of r-generators, and finding different quality
measures for such generators will be considered in future research.
Remark 5.9. An additional conclusion from this example is that Algorithm 1 does not return
the optimal r-generator. Intuitively, unlike in a p-generator, in an r-generator we only need
to maximize the relative probability of the corpus w.r.t. the set of valid documents.

6 Related Work
Various models for probabilistic XML documents exist in the literature (e.g. [11, 3]); see
[4] for a review of such models and a comparison of their expressiveness. The model that
we consider here is not of a probabilistic document but rather of a probabilistic schema; in
particular our model allows to define infinitely many documents, in contrast to the finitely
many documents (worlds) in the models above. Probabilistic schemas were also considered
in a recent work [6] that suggested the use of recursive Markov chains [13] for modeling and
querying probabilistic XML. The model of [6] can be seen as a straightforward extension of
p-generator where global states and labels are uncoupled.

As noted in Remark 3.2, the different models presented in this paper, including nondeter-
ministic, probabilistic and constrained generators, can also be captured by Active XML [2]
and tree rewriting. This suggests a variety of new interesting research questions that can
be further studied in future work.
The starting point of this work assumes that we are given a schema; there are many

works on schema inference from a corpus of documents (e.g. [21, 7, 9, 19, 16]). These works
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complement our work in two senses: first, we can use the inferred schemas as inputs; second,
our results can be used to measure quality of inferred schemas, based on the quality of the
optimal generator conforming to them. There are other measurements for schemas quality
(see [5] for a recent work), and combining them with our measurement is an intriguing
future research task.
Our work also has strong connections with the recent work of [12, 14]. They consider

satisfiability tests for XML schemas with constraints, and prove that these tests are NP-
complete; we used an adaptation of this result to show NP-completeness of the continuation
tests. Note that in contrast to our work, the work of [12, 14] focuses on satisfiability, and
thus the model that is used there is not probabilistic.

On the technical level, our work is also related to other (non-XML) probabilistic models.
In particular, Probabilistic Context-Free Grammars (PCFGs) [17, 10] are a common model
for the probabilistic generation of strings, used heavily in natural language processing,
bioinformatics, and more. We have noted that our algorithm for the non-constrained case
is inspired by [10]; we are not aware of an equivalent result in the presence of constraints
on strings. Applying our results to this area is an intriguing future research task.

7 Conclusion
We have studied the problem of finding an optimal probabilistic model for a given corpus and
type of XML documents. We have shown how to view the model as a probabilistic generator.
We have provided elegant solutions both for the case without and with constraints. For
the latter, we have studied two kinds of generators, ct-generators and r-generators, studied
algorithms for finding optimal generators, and analyzed the advantages and disadvantages
of both kinds.

We have focused in this paper on generators for XML document skeletons, i.e., without
data values. As future work we will further explore the generation of data values. Another
challenging research direction follows from the two different kinds of generators that we
have introduced in presence of constraints. Recall that a ct-generator always generates valid
documents (but generation is costly), while an r-generator avoids the cost of continuation
test but may restart often. This suggests combining both approaches to obtain better
performing generators, that generate faster large numbers of valid documents. In particular,
one would like to estimate how likely is a restart and use a continuation test only when it
pays to avoid costly restarts. This is left for future research. More possibilities for future
research lie in, e.g., considering other kinds of constraints such as non-unary keys (in a
limited manner, as [14] proves that satisfiability in this case is undecidable), different or
random orders of generation, parallelism, and more. Some of these directions may be
studied by further extending our model to Active XML. Last but not least, it would be
interesting to experiment with the generators that were formally introduced here.
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