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ABSTRACT
L’évaluation de requêtes en logique monadique du second
ordre (MSO) est de faible complexité sur les arbres et les
instances quasi-arborescentes (c’est-à-dire de largeur d’arbre
bornée), alors qu’elle est difficile sur les instances arbitraires.
Ce résultat a été étendu à certaines tâches liées à l’évaluation
de requêtes, comme compter les résultats d’une requête [3] ou
évaluer des requêtes sur des arbres probabilistes [11]. Nous
voyons le comptage et l’évaluation probabiliste comme deux
cas particuliers du problème plus général consistant à calculer
des résultats de requête enrichis avec des informations de
provenance.

Cet article présente une construction de provenance pour
les arbres et les instances quasi-arborescentes, en expliquant
comment calculer en temps linéaire une représentation de
la provenance sous forme de circuit pour les requêtes MSO.
Nous montrons comment cette provenance se rattache aux
definitions habituelles des semianneaux de provenance sur
les instances relationnelles [21], quand bien même nous la
calculons d’une manière inhabituelle, en passant par des
automates d’arbres : nous établissons cette connexion au
travers de définitions intrinsèques de la provenance pour des
semianneaux généraux, qui ne dépendent pas des détails
opérationnels de l’évaluation de la requête. Nous montrons
comment cette provenance permet de capturer des résultats
existants pour le comptage et l’évaluation probabiliste sur
les arbres et les instances quasi-arborescentes, et nous en
déduisons de nouvelles conséquences pour l’évaluation de
requêtes sur diverses représentations probabilistes.

Cet article a été accepté à ICALP 2015 [2]. Cette version
intègre certains changements mineurs. Par ailleurs, son ap-
pendice est inédite et contient du contenu technique et des
preuves supplémentaires.

1. INTRODUCTION
A celebrated result by Courcelle [12] has shown that evalu-

ating a fixed monadic second-order (MSO) query on relational
instances, while generally hard in the input instance, can
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be performed in linear time on input instances of bounded
treewidth (or treelike instances), by encoding the query to an
automaton on tree encodings of instances. This idea has been
extended more recently to monadic Datalog [18]. In addition
to query evaluation, it is also possible to count in linear time
the number of query answers over treelike instances [3, 27].

However, query evaluation and counting are special cases of
the more general problem of capturing provenance informa-
tion [10,21] of query results, which describes the link between
input and output tuples. Provenance information can be
expressed through various formalisms, such as provenance
semirings [21] or Boolean formulae [31]. Besides counting,
provenance can be exploited for practically important tasks
such as answering queries in incomplete databases, main-
taining access rights, or computing query probability [31].
To our knowledge, no previous work has looked at the gen-
eral question of efficient evaluation of expressive queries on
treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries
evaluated via tree automata has been put forward. The first
contribution of this work (Section 3) is thus to introduce a
general notion of provenance circuit [14] for tree automata,
which provides an efficiently computable representation of all
possible results of an automaton over a tree with uncertain
annotations. Of course, we are interested in the provenance
of queries rather than automata; however, in this setting, the
provenance that we compute has an intrinsic definition, so
it does not depend on which automaton we use to compute
the query.

We then extend these results in Section 4 to the provenance
of queries on treelike relational instances. We propose again
an intrinsic definition of provenance capturing the subin-
stances that satisfy the query. We then show that, in the
same way that queries can be evaluated by compiling them
to an automaton on tree encodings, we can compute a prove-
nance circuit for the query by compiling it to an automaton,
computing a tree decomposition of the instance, and per-
forming the previous construction, in linear time overall in
the input instance. Our intrinsic definition of provenance
ensures the provenance only depends on the logical query,
not on the choice of query plan, of automaton, or of tree
decomposition.

Our next contribution in Section 5 is to extend such def-
initions of provenance from Boolean formulae to N[X], the
universal provenance semiring [21]. This poses several chal-
lenges. First, as semirings cannot deal satisfactorily with
negation [1, 17], we must restrict to monotone queries, to
obtain monotone provenance circuits. Second, we must keep



track of the multiplicity of facts, as well as the multiplicity of
matches. For this reason, we restrict to unions of conjunctive
queries (UCQ) in that section, as richer languages do not
directly provide notions of multiplicity for matched facts.
We generalize our notion of provenance circuits for automata
to instances with unknown multiplicity annotations, using
arithmetic circuits. We show that, for UCQs, the standard
provenance for the universal semiring [21] matches the one
defined via the automaton, and that a provenance circuit for
it can be computed in linear time for treelike instances.

Returning to the non-monotone Boolean provenance, we
show in Section 6 how the tractability of provenance com-
putation on treelike instances implies that of two important
problems: determining the probability of a query, and count-
ing query matches. We show that probability evaluation of
fixed MSO queries is tractable on probabilistic XML models
with local uncertainty, a result already known in [11], and
extend it to trees with event annotations that satisfy a con-
dition of having bounded scopes. We also show that MSO
query evaluation is tractable on treelike block-independent-
disjoint (BID) relational instances [31]. These tractability
results for provenance are achieved by applying message
passing [24] on our provenance circuits. Last, we show the
tractability of counting query matches, using a reduction to
the probabilistic setting, capturing a result of [3].

2. PRELIMINARIES
We introduce basic notions related to trees, tree automata,

and Boolean circuits.
Given a fixed alphabet Γ, we define a Γ-tree T = (V, L,R, λ)

as a set of nodes V , two partial mappings L,R : V → V that
associate an internal node with its left and right child, and
a labeling function λ : V → Γ. Unless stated otherwise, the
trees that we consider are rooted, directed, ordered, binary,
and full (each node has either zero or two children). We
write n ∈ T to mean n ∈ V . We say that two trees T1 and T2

are isomorphic if there is a bijection between their node sets
preserving children and labels (we simply write it T1 = T2);
they have same skeleton if they are isomorphic except for
labels.

A bottom-up nondeterministic tree automaton on Γ-trees,
or Γ-bNTA, is a tuple A = (Q,F, ι, δ) of a set Q of states, a
subset F ⊆ Q of accepting states, an initial relation ι : Γ→
2Q giving possible states for leaves from their label, and a
transition relation δ : Q2 × Γ → 2Q determining possible
states for internal nodes from their label and the states of
their children. A run of A on a Γ-tree T = (V,L,R, λ) is
a function ρ : V → Q such that for each leaf n we have
ρ(n) ∈ ι(λ(n)), and for every internal node n we have ρ(n) ∈
δ(ρ(L(n)), ρ(R(n)), λ(n)). A run is accepting if, for the root
nr of T , ρ(nr) ∈ F ; and A accepts T (written T |= A) if there
is some accepting run of A on T . Tree automata capture
usual query languages on trees, such as MSO [32].

A Boolean circuit C = (G,W, g0, µ) is a directed acyclic
graph where G is a set of gates, W ⊆ G × G is a set of
wires (edges), g0 ∈ G is a distinguished output gate, and
µ associates each gate g ∈ G with a type µ(g) that can be
inp (input gate, with no incoming wire in W ), ¬ (NOT-gate,
with exactly one incoming wire in W ), ∧ (AND-gate) or ∨
(OR-gate). A valuation of the input gates Cinp of C is a
function ν : Cinp → {0, 1}; it defines inductively a unique
evaluation ν′ : C → {0, 1} as follows: ν′(g) is ν(g) if g ∈ Cinp

(i.e., µ(g) = inp); it is ¬ν′(g′) if µ(g) = ¬ (with (g′, g) ∈W );

otherwise it is
⊙

(g′,g)∈W ν′(g′) where � is µ(g) (hence, ∧ or

∨). Note that this implies that AND- and OR-gates with no
inputs always evaluate to 1 and 0 respectively; we call them
respectively 0-gates and 1-gates. We will abuse notation and
use valuations and evaluations interchangeably, and we write
ν(C) to mean ν(g0). The function captured by C is the one
that maps any valuation ν of Cinp to ν(C).

3. AUTOMATA PROVENANCE CIRCUITS
We start by studying a notion of provenance of bNTAs on

trees, defined in an uncertain tree framework.

Basic definitions. Fixing a finite alphabet Γ throughout
this section, we view a Γ-tree T as an uncertain tree, where
each node carries an unknown Boolean annotation in {0, 1},
and consider all possible valuations that choose an annotation
for each node of T , calling Γ the alphabet of annotated trees:

Definition 3.1. We write Γ ··= Γ× {0, 1}. For any Γ-tree
T = (V,L,R, λ) and valuation ν : V → {0, 1}, ν(T ) is the
Γ-tree with same skeleton where each node n is given the
label (λ(n), ν(n)).

We consider automata on annotated trees, namely, Γ-
bNTAs, and define their provenance on a Γ-tree T as a
Boolean function that describes which valuations of T are
accepted by the automaton. Intuitively, provenance keeps
track of the dependence between Boolean annotations and
acceptance or rejection of the tree.

Definition 3.2. The provenance of a Γ-bNTA A on a Γ-
tree T = (V, L,R, λ) is the function Prov(A, T ) mapping any
valuation ν : V → {0, 1} to 1 or 0 depending on whether
ν(T ) |= A.

We now define a provenance circuit of A on a Γ-tree T as
a circuit that captures the provenance of A on T , Prov(A, T ).
Formally:

Definition 3.3. Let A be a Γ-bNTA and T = (V,L,R, λ)
be a Γ-tree. A provenance circuit of A on T is a Boolean
circuit C with Cinp = V that captures the function Prov(A, T ).

Monotone provenance circuits. Our goal in this section
is to show that that provenance circuits for bNTAs can
be tractably constructed. Following our intended goal of
connecting our results to general semirings, we will first prove
this result in the case of monotone Γ-bNTAs. Intuitively,
monotonicity implies that if a Γ-tree is accepted by the
automaton, it will not be rejected when changing annotations
from 0 to 1. Formally:

Definition 3.4. We consider the partial order < on Γ de-
fined by (τ, 0) < (τ, 1) for all τ ∈ Γ. We say that a Γ-bNTA
A = (Q,F, ι, δ) is monotone if for every τ 6 τ ′ in Γ, we
have ι(τ) ⊆ ι(τ ′) and δ(q1, q2, τ) ⊆ δ(q1, q2, τ

′) for every
q1, q2 ∈ Q.

It is easy to see that the provenance of a monotone Γ-
bNTA A on any tree T is a monotone function in the following
sense: for any valuations ν and ν′, if ν(g) = 1 implies
ν′(g) = 1 for all g ∈ Cinp (which we write ν 6 ν′), then
(Prov(A,T ))(ν) = 1 implies (Prov(A,T ))(ν′) = 1. Indeed,
for any monotone Γ-tree T and valuations ν 6 ν′, ν(T ) |= A
implies ν′(T ) |= A.

We prove that, in the monotone context, provenance cir-
cuits for automata can be tractably constructed, and that



they are monotone, i.e., they do not feature NOT-gates:

Proposition 3.5. A monotone provenance circuit C of a
monotone Γ-bNTA A on a Γ-tree T can be constructed in
time O(|A| · |T |).

Proof. Fix T = (V,L,R, λ), A = (Q,F, ι, δ), and con-
struct the provenance circuit C = (G,W, g0, µ). For each
node n of T , create one input gate gi

n in C (which we identify
to n, so that we have Cinp = V ), and create one gate gqn for
every q ∈ Q. If n is a leaf node, for q ∈ Q, set gqn to be:
• if q ∈ ι(λ(n), 0), a 1-gate;
• if q ∈ ι(λ(n), 1) but q /∈ ι(λ(n), 0), an OR-gate with

sole input gi
n;

• if q /∈ ι(λ(n), 1), a 0-gate.
If n is an internal node, create gates gqL,qRn and gqL,qR,in

for every pair qL, qR ∈ Q (that appears as input states of a
transition of δ), the first one being an AND-gate of gqLL(n)

and gqRR(n), the second one being an AND-gate of gqL,qRn and

of gi
n. Now, for q ∈ Q, set gqn to be an OR-gate of all the

gqL,qRn such that q ∈ δ(qL, qR, (λ(n), 0)) and of all the gqL,qR,in

such that q ∈ δ(qL, qR, (λ(n), 1)).
Add gate g0 to be an OR-gate of all the gqr such that q ∈ F ,

where r is the root of T .
This construction is in time O(|A| · |T |): more precisely,

for every node of the tree T , we create a number of states
that is linear in the number of states in Q and in the number
of transitions of δ.

Now we show that C is indeed a provenance circuit of A
on T . Let ν : V → {0, 1} be a valuation that we extend
to an evaluation of C. We show by induction on n ∈ T
that, for any q ∈ Q, we have ν(gqn) = 1 iff, letting Tn be the
subtree of T rooted at n, there is a run ρ of A on Tn such
that ρ(n) = q.

For a leaf node n, choosing q ∈ Q, if ν(n) = 0 then
ν(gqn) = 1 iff q ∈ ι(λ(n), 0), and if ν(n) = 1 then ν(gqn) = 1
iff q ∈ ι(λ(n), 1), so in both cases we can define a run ρ as
ρ(n) ··= q. Conversely, the existence of a run clearly ensures
that ν(gqn) = 1.

For an internal node n, choosing q ∈ Q, if ν(n) = 0
then ν(gqn) = 1 iff there are some qL, qR ∈ Q such that
q ∈ δ(qL, qR, (λ(n), 0)), ν(gqLL(n)) = 1, and ν(gqRR(n)) = 1. By

induction hypothesis this implies the existence of a run ρL

of A on TL(n) such that ρL(L(n)) = qL and a run ρR of A
on TR(n) such that ρR(R(n)) = qR, from which we construct
a run ρ of A on Tn such that ρ(n) = q, by setting ρ(n) ··= q
and setting ρ(n′) either to ρL(n′) or to ρR(n′) depending on
whether n′ ∈ TL(n) or n′ ∈ TR(n). Conversely, the existence
of such a run ρ implies the existence of two such runs ρL

and ρR, from which we deduce that ν(gqn) = 1.
If ν(n) = 1 then ν(gqn) = 1 iff there are some qL, qR ∈ Q

such that ν(gqLL(n)) = 1, ν(gqRR(n)) = 1, and either q ∈
δ(qL, qR, (λ(n), 0)) or q ∈ δ(qL, qR, (λ(n), 1)). By monotonic-
ity of A, this is equivalent to q ∈ δ(qL, qR, (λ(n), 1)). The
rest is analogous to the previous case.

The claim proven by induction clearly justifies that C is
a provenance circuit, as, applying it to the root of T , we
deduce that, for any valuation ν, we have ν(C) = 1 iff there
is an accepting run of A on ν(T ).

General provenance circuits. It is straightforward to ex-
tend Proposition 3.5 to the case of non-monotone Γ-bNTAs,
yielding provenance circuits which are also non-monotone

(i.e., may include NOT-gates). Formally, we show:

Proposition 3.6. A provenance circuit of a Γ-bNTA A on
a Γ-tree T can be constructed in time O(|A| · |T |).

Proof. We adapt the construction of Proposition 3.5.
The only difference is that we add, for every node n ∈ T ,
a gate g¬i

n which is a NOT-gate of gi, and we modify the
definition of the following nodes:
• for leaf nodes n, for any state q, we set gqn to be an

OR-gate of gi if q ∈ ι(λ(n), 1) (and a 0-gate otherwise),
and g¬i if q ∈ ι(λ(n), 0) (and a 0-gate otherwise).
• for internal nodes n, for every pair qL, qR ∈ Q that

appears as input states of a transition of δ, create a
gate gqL,qR,¬i

n which is an AND-gate of gqL,qRn and of
g¬i
n . Now, for any state q, we set gqn as before except

that we use gqL,qR,¬i
n instead of gqL,qRn .

We show correctness as before, showing by induction on
n ∈ T that for any q ∈ Q, ν(gqn) = 1 iff Aq accepts Tn,
where Aq is obtained from A by letting q be the only final
state. The property is clearly true on leaf nodes, and at
internal nodes, if ν(n) = 0 we have ν(gqn) = 1 iff there exist
qL, qR ∈ Q such that q ∈ δ(qL, qR, (λ(n), 0)), ν(gqLL(n)) = 1,

which by induction hypothesis implies the existence of sub-
runs on TL(n) and TR(n) that we combine as before. If
ν(n) = 0 we have ν(gqn) = 1 iff there exist qL, qR ∈ Q
such that q ∈ δ(qL, qR, (λ(n), 1)) (this time we cannot have
q ∈ δ(qL, qR, (λ(n), 0))) so we conclude in the same way. We
conclude by justifying that g0 is correctly defined, as before.

Provenance for queries. Our previous construction gives
us a way to capture the provenance of any query on trees
that can be expressed as an automaton, no matter the choice
of automaton. A query q is any logical sentence on Γ-trees
which a Γ-tree T can satisfy (written T |= q) or violate
(T 6|= q). An automaton Aq tests query q if for any Γ-tree T ,
we have T |= Aq iff T |= q. We define Prov(q, T ) for a Γ-
tree T as in Definition 3.2, and run circuits for queries as in
Definition 3.3. It is immediate that Proposition 3.6 implies:

Proposition 3.7. For any fixed query q on Γ-trees for which
we can compute an automaton Aq that tests it, a provenance
circuit of q on a Γ-tree T can be constructed in time O(|T |).

Note that provenance does not depend on the automaton
used to test the query.

4. PROVENANCE ON TREE ENCODINGS
We lift the previous results to the setting of relational

instances.

Preliminaries. A signature σ is a finite set of relation names
(e.g., R) with associated arity arity(R) > 1. Fixing a count-
able domain D = {ak | k > 0}, a relational instance I over σ
(or σ-instance) is a finite set I of ground facts of the form
R(a) with R ∈ σ, where a is a tuple of arity(R) elements
of D. The active domain dom(I) ⊆ D of I is the finite set of
elements of D used in I. Two instances I and I ′ are isomor-
phic if there is a bijection ϕ from dom(I) to dom(I ′) such
that ϕ(I) = I ′. We say that an instance I ′ is a subinstance
of I, written I ′ ⊆ I, if it is a subset of the facts of I, which
implies dom(I ′) ⊆ dom(I).

A query q is a logical formula in (function-free) first- or
second-order logic on σ, without free second-order variables;
a σ-instance I can satisfy it (I |= q) or violate it (I 6|= q).



For simplicity, unless stated otherwise, we restrict to Boolean
queries, that is, queries with no free variables, that are
constant-free. This limitation is inessential for data com-
plexity, namely complexity for a fixed query: we can handle
non-Boolean queries by building a provenance circuit for each
possible output result (there are polynomially many), and
we encode constants by extending the signature with fresh
unary predicates for them.

As before, we consider unknown Boolean annotations on
the facts of an instance. However, rather than annotating
the facts, it is more natural to say that a fact annotated
by 1 is kept, and a fact annotated by 0 is deleted. Formally,
given an instance σ, a valuation ν is a function from the
facts of I to {0, 1}, and we define ν(I) as the subinstance
{F ∈ I | ν(F ) = 1} of I. We then define:

Definition 4.1. The provenance of a query q on a σ-instance
I is the function Prov(q, I) mapping any valuation ν : I →
{0, 1} to 1 or 0 depending on whether ν(I) |= q. A prove-
nance circuit of q on I is a Boolean circuit C with Cinp = I
that captures Prov(q, I).

Tree decompositions and encodings. We study prove-
nance for instances which are treelike (or bounded-treewidth),
and encode queries to automata on tree encodings. Let us
first define these notions.

Definition 4.2. A tree decomposition of an instance I is a
T -tree T = (B,L,R,dom) where T is the set of subsets of
dom(I). The nodes of T are called bags and their label is
written dom(b). We require:

1. for every a ∈ dom(I), letting Ba ··= {b ∈ B | a ∈
dom(b)}, for every two bags b1, b2 ∈ Ba, all bags on the
(unique) undirected path from b1 to b2 are also in Ba;

2. for every fact R(a) of I, there exists a bag ba ∈ B such
that a ⊆ dom(ba).

The width of T is w(T ) ··= k−1 where k ··= maxb∈T |dom(b)|.
The treewidth (or width) of an instance I, written w(I), is
the minimal width w(T ) of a tree decomposition T of I.

It is NP-hard, given an instance I, to determine w(I).
However, given a fixed width k, one can compute in linear
time in I a tree decomposition of width 6 k of I if one
exists [6].

To represent bounded-treewidth instances as trees on a
finite alphabet, we introduce the notion of tree encodings.
The representation is up to isomorphism, i.e., it loses the
identity of constants. Our finite alphabet Γkσ is the set of
possible facts on an instance of width fixed to k; following the
definition of proof trees in [9] we use element co-occurrences
between one node and its parent in the tree as a way to
encode element reuse. Formally, we take Γkσ to be the set
defined as follows:

Definition 4.3. The set of k-facts of the signature σ, writ-
ten Γkσ, is the set of pairs τ = (d, s) where:
• the domain d is a subset of size at most k + 1 of

the first 2k + 2 elements of the countable domain D,
a1, . . . , a2k+2;
• the structure s is a zero- or single-fact structure over σ

such that dom(s) ⊆ d.

A tree encoding is just a Γkσ-tree. We first explain how
such a tree encoding E can be decoded to a structure I = 〈E〉
(defined up to isomorphism) and a tree decomposition T of

width k of I. Process E top-down. At each (d, s)-labeled
node of E that is child of a (d′, s′)-labeled node, pick fresh
elements in D for the elements of d\d′ (at the root, pick
all fresh elements), add the fact of s to I (replacing the
elements in d by the fresh elements, and by the old elements
of dom(I) for d ∩ d′), and add a bag to T with the elements
of I matching those in d. If we ever attempt to create a fact
that already exists, we abort and set 〈E〉 ··= ⊥ (we say that
E is invalid).

We can now define tree encodings in terms of decoding:

Definition 4.4. We call a Γkσ-tree T a tree encoding of
width k of a σ-structure I if 〈T 〉 is isomorphic to I.

We note that clearly if a structure I has a tree encoding
of width k, then w(I) 6 k. Further, observe that there is
a clear injective function from 〈T 〉 to T , which maps each
fact of 〈T 〉 to the node of T which encoded this fact. This
function is not total, because some nodes in T contain no
fact (their s is a zero-fact structure).

We now justify that one can efficiently compute a tree
encoding of width k of I from a tree decomposition of width k
of I (this result is implicit in [9]).

Lemma 4.5. From a tree decomposition T of width k of a σ-
structure I, one can compute in linear time a tree encoding E
of width k of I with a bijection from the facts of I to the
non-empty nodes of E.

Hence, when restricting to instances whose width is bounded
by a constant k, one can equivalently work with Γkσ-trees
which are encoding of these instances, instead of working
with the instances themselves.

Compiling queries to automata. The point of working
with tree encodings is that queries in monadic second-order
logic (MSO), the extension of first-order logic with second-
order quantification on sets, can be translated to automata
which are then evaluated on tree encodings. Let us formally
define the notion of an automaton testing a query:

Definition 4.6. A Γkσ-bNTA A tests a Boolean query q for
treewidth k if for any Γkσ-tree E, we have E |= A iff 〈E〉 |= q.
(In particular, if 〈E〉 = ⊥ then A rejects E.)

We can now state the theorem that says that MSO sen-
tences can be tested by automata for any treewidth:

Theorem 4.7 [12]. For any k ∈ N, for any MSO query q,
one can compute a Γkσ-bNTA Akq that tests q for treewidth
6 k.

Our results apply to any query language that can be rewrit-
ten to tree automata under a bound on instance treewidth.
Beyond MSO, this is also the case of guarded second-order
logic (GSO). GSO extends first-order logic with second-order
quantification on arbitrary-arity relations, with a semantic
restriction to guarded tuples (already co-occurring in some
instance fact); it captures MSO (it has the same expressive
power on treelike instances [20]) and many common database
query languages, e.g., frontier-guarded Datalog [4]. We use
GSO in the sequel as our choice of query language that can
be rewritten to automata.

Provenance circuits on treelike instances. Combining
Theorem 4.7 with the results of the previous section, we
claim that provenance for GSO queries on treelike instances
can be tractably computed. Further, we can show that the



resulting provenance circuit has treewidth independent of
the instance, defining the treewidth of circuits in a natural
way as that of their “moralized” graph representation, where
all inputs to a gate are connected. We will use this to justify
the tractability of probabilistic query evaluation tasks in
Section 6. Formally, we claim:

Theorem 4.8. For any fixed k ∈ N and GSO query q, for
any σ-instance I such that w(I) 6 k, one can construct a
provenance circuit C of q on I in time O(|I|). Further, the
treewidth of C only depends on k and q (not on I).

To prove the theorem, we first take care of a technical issue.
Given an instance I and its tree encoding EI , we want to
construct provenance circuits on EI , meaning that we wish
to consider Boolean-annotated versions of EI . However, a
tree encoding of a subinstance I ′ of I is not an annotated
version of EI , because I ′ is not an annotated version of I;
rather, it is a non-annotated subset of its facts. We need to
justify that Boolean annotations of EI can be understood as
tree encodings of subinstances of I, if we change the label of
nodes annotated by 0 to remove the fact that they contain.
Let us formalize this.

Definition 4.9. For any k-fact τ = (d, s) ∈ Γkσ, we define
the neutered k-fact τ as (d, ∅). In particular, if s = ∅ then
τ = τ . For τ ∈ Γkσ and b ∈ {0, 1}, we write τ[b] to be τ if b
is 1 and τ if b is 0.

Given a Γkσ-tree E, we define its evaluation ε(E) as the
Γkσ-tree that has same skeleton, where for every node n ∈ E
with corresponding node n′ in ε(E), letting λ(n) = (τ, b) ∈
Γkσ × {0, 1}, we have λ(n′) = τ[b].

This definition allows us to lift Γkσ-bNTAs, intuitively
testing a query, to Γkσ-bNTAs that test the same query on
Boolean-annotated tree encodings, seen via ε as the tree
encoding of a subinstance. Formally:

Lemma 4.10. For any Γkσ-bNTA A, one can compute in
linear time a Γkσ-bNTA A′ on such that E |= A′ iff ε(E) |= A.

Proof. Let A = (Q,F, ι, δ). We construct the bNTA A′ =
(Q,F, ι′, δ′) according to the following definition: ι′((τ, b)) ··=
ι(τ[b]) and δ′((τ, b), q1, q2) ··= δ(τ[b], q1, q2) for all b ∈ {0, 1},
τ ∈ Γkσ, and q1, q2 ∈ Q. The process is clearly in linear time
in |A|. Now, it is immediate that E |= A′ iff ε(E) |= A,
because a run of A′ on E is a run of A on ε(E), and vice-
versa.

We are now ready to prove Theorem 4.8:

Proof. Fix k ∈ N and the GSO query q. Using Theo-
rem 4.7, let A be a Γkσ-bNTA Akq that tests q for treewidth k
(remember that Theorem 4.7 extends from MSO to GSO
because both collapse on treelike instances [20]). We lift A

to a bNTA A′ on Γkσ using Lemma 4.10. This is performed
in constant time in the instance.

Now, given the input instance I such that w(I) 6 k,
compute in linear time [6] a tree decomposition of I, and,
from this, compute in linear time a tree encoding EI of I
using Lemma 4.5. We now use Proposition 3.6 to construct a
provenance circuit C of A′ on EI . Consider now the injective
function f that maps the facts of I to the nodes of EI where
those facts are encoded. We modify C to replace the input
gate gi

n for any n ∈ EI not in the image of f , setting it to
be a 1-gate; and renaming the input gates gi

n for any n ∈ EI
to be F , for F the fact such that f(F ) = n. Let C′ be the
result of this process. C′ is thus a Boolean circuit such that
C′inp = I, and it was computed in linear time from I. We

claim that it captures Prov(q, I).

To check that it does, let ν : I → {0, 1} be a valuation of I.
We show that ν(C′) = 1 iff ν(I) |= q. To do so, the key point
is to observe that, letting ν′ be the valuation of EI defined
by ν′(n) = ν(F ) if there is F ∈ I such that f(F ) = n, and
ν′(n) = 1 otherwise, we have that ε(ν′(EI)) is a tree encoding
of ν(I). Indeed, ε(ν′(EI)) and EI have same skeleton, the
elements that constitute the domains of node labels are the
same, and a fact F ∈ I is encoded in ε(ν′(EI)) iff f(F ) is
annotated by 1 in ν′(EI) iff we have F ∈ ν(I). (Note that
our choice to extend ν′ by setting it to be 1 on nodes that
encode no facts makes no difference, as the annotation of
such nodes is projected to the same label by ε, i.e., for such
labels τ in EI , we have τ[0] = τ[1].)

Having observed this, we know that, because A tests q,
ν(I) |= q iff ν′(EI) |= A. Now, by definition of Lemma 4.10,
we have ε(ν′(EI)) |= A iff ν′(EI) |= A′, which by definition
of the provenance circuit C is the case iff ν′(C) = 1, which
by definition of C′ is the case iff ν(C′) = 1. Hence, C′ is
indeed a provenance circuit of q on I.

The only point left to justify is that the treewidth of the
circuit C is indeed bounded. Indeed, the number of gates
that we create in C for each node n of EI only depends on
the automaton A that tests q, and wires in C only go from
gates for one node n to gates for nodes L(n) and R(n), so
that the tree decomposition T for C is obtained by putting,
in each bag of the tree decomposition corresponding to node
n of EI , the gates for node n, and L(n) and R(n) if they
exist. The additional distinguished gate g0 is added to the
bag of the root node of EI . Hence, we have constructed a
tree decomposition of C whose treewidth does not depend
on I.

As in Section 3, note that our definition of provenance is
intrinsic to the query and does not depend on its formulation,
on the choice of tree decomposition, or on the choice of
automaton to evaluate the query on tree encodings.

Restricted query classes. Note that tractability holds only
in data complexity. For combined complexity, we incur
the cost of compiling the query to an automaton, which is
nonelementary in general [25]. However, for some restricted
query classes, such as unions of conjunctive queries (UCQs),
the compilation phase has lower cost:

Proposition 4.11 [9]. For any UCQ q and k ∈ N, a Γkσ-
bNTA that tests q for treewidth 6 k can be computed in
EXPTIME in q and k.

5. GENERAL SEMIRINGS
In this section we connect our previous results to the exist-

ing definitions of semiring provenance on arbitrary relational
instances [21]:

Definition 5.1. A commutative semiring (K,⊕,⊗, 0K , 1K)
is a set K with binary operations ⊕ and ⊗ and distinguished
elements 0K and 1K , such that (K,⊕) and (K,⊗) are commu-
tative monoids with identity element 0K and 1K , ⊗ distributes
over ⊕, and 0K ⊗ a = 0K for all a ∈ K.

Provenance for semiring K is defined on instances where
each fact is annotated with an element of K. The provenance
of a query on such an instance is an element of K obtained
by combining fact annotations following the semantics of the
query, intuitively describing how the query output depends



on the annotations. We give the formal definitions for the
language of Datalog, which we now define:

Definition 5.2. A Datalog query P over the signature σ
consists of a signature σint of intensional predicates with a
special 0-ary relation Goal and a finite set of rules of the form
R(x) ← R1(y1), . . . , Rk(yk) where R ∈ σint, Ri ∈ σ t σint

for 1 6 i 6 k, and each variable in the tuple x also occurs
in some tuple yi. The left-hand (resp., right-hand) side of a
Datalog rule is called the head (resp., body) of the rule.

A proof tree T of a Datalog query P over an instance I is a
(non-binary) ordered tree with nodes annotated by facts over
σ ∪ σint on elements of dom(I) and internal nodes annotated
by rules, such that the fact of the root of T is Goal, and,
for every internal node n in T with children n1, . . . , nm, the
indicated rule R(x) ← Ψ(y) on n in P is such that there
is a homomorphism h mapping R(x) to the fact of n and
mapping Ψ(y) to the facts of the ni. (Note that this definition
implies that internal nodes are necessarily annotated by a
fact of σint.) We write I |= P if P has a proof tree on I.

The semiring provenance of a Datalog query on an instance
is defined as follows:

Definition 5.3. Given a semiring K and an instance I
where each fact F carries an annotation α(F ) ∈ K, the
provenance of a Datalog query P on I is the following [21]:⊕

T proof tree of P

⊗
n leaf of T

α(n).

Note that this expression may not always be defined depending
on the query, instance, and semiring. In particular, the
number of terms in the sum may be infinite, so that the result
cannot necessarily be represented in the semiring.

The general setting of provenance has many applications:

Example 5.4. For any variable set X, the monotone Boolean
functions over X form a semiring (PosBool[X],∨,∧, 0, 1).
On instances where each fact is annotated by its own variable
in X, the PosBool[X]-provenance of a query q is a mono-
tone Boolean function on X describing which subinstances
satisfy q. As we will see, this is what we defined in Section 4,
using circuits as compact representations.

The natural numbers N with the usual + and × form
a semiring. On instances where facts are annotated with
an element of N representing a multiplicity, the provenance
of a query describes its number of matches under the bag
semantics.

The tropical semiring [14] is (Nt{∞},min,+,∞, 0). Fact
annotations are costs, and the tropical provenance of a query
is the minimal cost of the facts required to satisfy it, with
multiple uses of a fact being charged multiple times.

For any set of variables X, the polynomial semiring N[X]
is the semiring of polynomials with variables in X and coeffi-
cients in N, with the usual sum and product over polynomials,
and with 0, 1 ∈ N.

Monotonicity. Semiring provenance does not support nega-
tion well [1, 17] and is therefore only defined for monotone
queries: a query q is monotone if, for any instances I ⊆ I ′,
if I |= q then I ′ |= q. Provenance circuits for semiring
provenance are monotone circuits [14]: they do not feature
NOT-gates. In Section 3, we already showed that monotone
bNTAs (Definition 3.4) have monotone provenance circuits
(Proposition 3.5). This allows us to show the following ana-

logue of Theorem 4.8 in the case of monotone queries, yielding
monotone provenance circuits:

Theorem 5.5. For any fixed k ∈ N and monotone GSO
query q, for any σ-instance I such that w(I) 6 k, one can
construct in time O(|I|) a monotone provenance circuit of q
on I whose treewidth only depends on k and q (not on I).

This result is proven in the same way as Theorem 4.8, but
using Proposition 3.5 instead of Proposition 3.6 to construct
the provenance circuits on tree encodings. The only missing
piece is to show that monotone queries can be tested by mono-
tone bNTAs. We talk of Γkσ-bNTAs testing queries like in
Definition 4.6, but via the ε map (according to Lemma 4.10).
We can then show that an automaton that tests monotone
query can be rewritten to a monotone bNTA that still tests
it:

Lemma 5.6. Let k ∈ N, q be a monotone query, and A be a
Γkσ-bNTA that tests q for treewidth k. One can compute in
linear time from A a Γkσ-bNTA A′ that tests q for treewidth
k and is monotone for the partial order on Γkσ.

Proof. Fix k, q, and A = (Q,F, ι, δ) the Γkσ-bNTA. We
build the bNTA A′ = (Q,F, ι′, δ′) by setting, for all (τ, i) ∈
Γkσ, ι′((τ, i)) ··=

⋃
06j6i ι((τ, j)) and, for all q1, q2 ∈ Q, we

pose: δ′(q1, q2, (τ, i)) ··=
⋃

06j6i δ(q1, q2, (τ, j)).

Clearly A′ is monotone by construction for Γkσ. Besides,
for any Γkσ-tree T , if A accepts T then A′ accepts T , so to
prove the correctness of A′ it suffices to prove the converse
implication.

Let us consider such a T , and consider an accepting run ρ
of A′ on T . We build a new tree T ′ whose skeleton is that
of T and where for any leaf (resp. internal node) n′ ∈ T ′ with
corresponding node n ∈ T with λ(n) = (τ, j), we set λ(n′)
in T ′ to be (τ, i) for some i such that ρ(n) ∈ ι((τ, i)) (resp.
ρ(n) ∈ δ(ρ(L(n)), ρ(R(n)), (τ, i))), the existence of such an i
being guaranteed by the definition of ι′ (resp. δ′).

We now observe that, by construction, ρ is a run of A
on T ′, and it is still accepting, so that T ′ is accepted by A.
Hence, 〈T ′〉 |= q. But now we observe that, once again by
construction, for every node n′ of T ′ with label τ ′ and with
corresponding node n in T with label τ , it holds that τ ′ 6 τ .
Hence we have T ′ 6 T , for which we can easily prove that
〈T ′〉 ⊆ 〈T 〉, and thus, by monotonicity of q, we must have
〈T 〉 |= P . Thus, A accepts T , proving the desired result.

Hence, for monotone GSO queries for which [21] defines
a notion of semiring provenance (e.g., those that can be
encoded to Datalog), our provenance Prov(q, I) is easily seen
to match the provenance of [21], specialized to the semiring
PosBool[X] of monotone Boolean functions. Indeed, both
provenances obey the same intrinsic definition: they are
the function that maps to 1 exactly the valuations corre-
sponding to subinstances accepted by the query. Hence,
we can understand Theorem 5.5 as a tractability result for
PosBool[X]-provenance (represented as a circuit) on treelike
instances.

Of course, the definitions of [21] go beyond PosBool[X]
and extend to arbitrary commutative semirings. We now
turn to this more general question.

N[X]-provenance for UCQs. First, we note that, as shown
by [21], the provenance of Datalog queries for any semiring K
can be computed in the semiring N[X], on instances where
each fact is annotated by its own variable in X. Indeed, the



provenance can then be specialized to K, and the actual fact
annotations in K, once known, can be used to replace the
variables in the result, thanks to a commutation with homo-
morphisms property. Hence, we restrict to N[X]-provenance
and to instances of this form, which covers all the examples
above.

Second, in our setting of treelike instances, we evaluate
queries using tree automata, which are compiled from logical
formulae with no prescribed execution plan. For the semiring
N[X], this is hard to connect to the general definitions of
provenance in [21], which are mainly designed for positive
relational algebra operators or Datalog queries. Hence, to
generalize our constructions to N[X]-provenance, we now
restrict our query language to UCQs, assuming without loss of
generality that they contain no equality atoms, We comment
at the end of this section on the difficulties arising for richer
query languages.

We formally define the N[X]-provenance of UCQs on re-
lational instances by encoding them straightforwardly to
Datalog and using the Datalog provenance definition of [21].
Formally, here is the encoding that we use:

Definition 5.7. The Datalog query Pq associated to a con-
junctive query (CQ) q has only one rule, Goal ← q. The
Datalog query Pq associated to a UCQ q =

∨
i qi has rules

Goal← q1, ..., Goal← qn.
Observe that in this case the provenance of Pq in the sense

of Definition 5.3 is always defined, no matter the semiring,
as the number of possible derivation trees is clearly finite.

We define provenance for a UCQ q as the provenance
of their associated Datalog program Pq in this sense. The
resulting provenance can be rephrased as follows:

Definition 5.8. The N[X]-provenance of a UCQ q of the
form

∨n
i=1 ∃xi qi(xi) (with qi a conjunction of atoms with

free variables xi) on an instance I is defined as:

ProvN[X](q, I) ··=
n⊕
i=1

⊕
f :xi→dom(I)

such that I|=qi(f(xi))

⊗
A(xi)∈qi

A(f(xi)).

In other words, we sum over each disjunct, and over each
match of the disjunct; for each match, we take the product,
over the atoms of the disjunct, of their image fact in I,
identifying each fact to the one variable in X that annotates
it.

We know that ProvN[X](q, I) enjoys all the usual properties
of provenance: it can be specialized to PosBool[X], yielding
back the previous definition; it can be evaluated in the N
semiring to count the number of matches of a query; etc.

Example 5.9. Consider the instance I = {F1 ··= R(a, a),
F2 ··= R(b, c), F3 ··= R(c, b)} and consider the following
CQ q: ∃xy R(x, y)R(y, x). We have ProvN[X](q, I) = F 2

1 +
2F2F3 and Prov(q, I) = F1 ∨ (F2 ∧ F3). Unlike PosBool[X]-
provenance, N[X]-provenance can describe that multiple atoms
of the query map to the same fact, and that the same subin-
stance is obtained with two different query matches. Eval-
uating in the semiring N with facts annotated by 1, q has
12 + 2× 1× 1 = 3 matches.

N[X]-provenance for automata. Guided by this definition
of N[X]-provenance, we generalize the construction of Sec-
tion 3 of provenance on trees to a more expressive provenance
construction, before we extend it to treelike instances as in

Section 4.
Instead of considering Γ-trees, we consider Γ

p
-trees for

p ∈ N, whose label set is Γ × {0, . . . , p} rather than Γ ×
{0, 1}. Intuitively, rather than uncertainty about whether
facts are present or missing, we represent uncertainty about
the number of available copies of facts, as UCQ matches
may include the same fact multiple times. We impose on Γ
the partial order < defined by (τ, i) < (τ, j) for all τ ∈ Γ
and i < j in {0, . . . , p}, and call a Γ

p
-bNTA A = (Q,F, ι, δ)

monotone if it is monotone for this partial order in the sense
of Definition 3.4: for every τ < τ ′ in Γ

p
, we have ι(τ) ⊆ ι(τ ′)

and δ(q1, q2, τ) ⊆ δ(q1, q2, τ ′) for every q1, q2 ∈ Q. We write
Valp(T ) for the set of all p-valuations ν : V → {0, . . . , p}
of a Γ-tree T . We write |aruns(A, T )| for a Γ

p
-tree T and

Γ
p
-bNTA A to denote the number of accepting runs of A

on T . We can now define:

Definition 5.10. The N[X]-provenance of a Γ
p
-bNTA A

on a Γ-tree T is

ProvN[X](A, T ) ··=
⊕

ν∈Valp(T )

|aruns(A, ν(T ))|
⊗
n∈T

nν(n)

where each node n ∈ T is identified with its own variable in X.
Intuitively, we sum over all valuations ν of T to {0, . . . , p},
and take the product of the tree nodes to the power of their
valuation in ν, with the number of accepting runs of A on ν(T )
as coefficient; in particular, the term for ν is 0 if A rejects
ν(T ).

This definition specializes in PosBool[X] to our earlier
definition of Prov(A,T ), but extends it with the two fea-
tures of N[X]: multiple copies of the same nodes (repre-

sented as nν(n)) and multiple derivations (represented as
|aruns(A, ν(T ))|). To construct provenance circuits for this
general definition, we need arithmetic circuits:

Definition 5.11. A K-circuit for semiring (K,⊕,⊗, 0K , 1K)
is a circuit with ⊕- and ⊗-gates instead of OR- and AND-
gates (and no analogue of NOT-gates), whose input gates
stand for elements of K. As before, the constants 0K and
1K can be written as ⊕- and ⊗-gates with no inputs. The
element of K captured by a K-circuit is the element captured
by its distinguished gate, under the recursive definition that
⊕- and ⊗-gates capture the sum and product of the elements
captured by their operands, and input gates capture their own
value.

We can show an efficient construction for such provenance
circuits, generalizing Proposition 3.5.

Theorem 5.12. For any fixed p ∈ N, for a Γ
p
-bNTA A and

a Γ-tree T , a N[X]-circuit capturing ProvN[X](A,T ) can be
constructed in time O(|A| · |T |).

However, while Definition 5.10 is natural for trees, using
it to define the provenance of queries on treelike instances
would lead to a subtle problem. The reason is that this
provenance describes all valuations of the tree for which the
automaton accepts (up to the maximal multiplicity p), and
not the minimal ones. For UCQs, this would intuitively
mean that the resulting N[X]-provenance would reflect all
subinstances satisfying the query, not the minimal ones. This
does not match Definition 5.8 and is undesirable: for instance,
the specialization of such a provenance to N would have
nothing to do with the number of query matches. The
reason why this problem did not occur before is because both
choices of definition collapse in the PosBool[X] setting of the



previous sections; so this problem is specific to the setting
of general semirings such as N[X], which are not necessarily
absorptive [14].

Fortunately, in the case of UCQs, we can introduce a
generalization of Definition 5.10, for which we can show the
analogue of Theorem 5.12, and that will give us the right
provenance once lifted to treelike instances as in Section 4.
For a Γ-tree T and p, l ∈ N, we introduce for l ∈ N the set
of p-valuations that sum to l: Valpl (T ) ··= {ν ∈ Valp(T ) |∑
n∈T ν(n) = l}. We take Valpall(T ) to be Valp(T ). We can

now generalize Definition 5.10 as follows:

Definition 5.13. Let l ∈ N ∪ {all}. The N[X]-l-provenance
of a Γ

p
-bNTA A on a Γ-tree T is:

ProvN[X](A, T, l) ··=
⊕

ν∈Val
p
l
(T )

|aruns(A, ν(T ))|
⊗
n∈T

nν(n).

Note that ProvN[X](A,T ) = ProvN[X](A,T, all), so this
definition indeed generalizes Definition 5.10.

We prove the following generalization of Theorem 5.12:

Theorem 5.14. For any fixed p ∈ N and l ∈ N∪{all}, a N[X]-
l-provenance circuit for a Γ

p
-bNTA A and a Γ-tree T (i.e., a

N[X]-circuit capturing ProvN[X](A, T, l)) can be constructed
in time O(|A| · |T |).

The overall proof technique is to replace AND- and OR-
gates by ⊗- and ⊕-gates, to consider possible node annota-
tions in {0, . . . , p} instead of {0, 1}, and to create multiple
copies of nodes to keep track of the current sum of the
valuation (to capture N[X]-l-provenance).

The harder part is to prove the correctness of the con-
struction, which relies on the following key lemma about the
propagation of provenance throughout encodings:

Lemma 5.15. For any l, p ∈ N, l 6 p, for any non-singleton
Γ-tree T = (V,L,R, λ), letting TL and TR be its left and
right subtrees and nr be its root node, for any Γ

p
-bNTA

A = (Q,F, ι, δ), writing Aq for all q ∈ Q the bNTA obtained
from A by making q the only final state, we have:

ProvN[X](A, T, l) =
⊕

l1+l2+l′=l
qL,qR∈Q

q∈δ(qL,qR,(λ(nr),l
′))

ProvN[X](AqL , TL, l1)

⊗ ProvN[X](AqR , TR, l2)⊗ nl
′

r

We can now give the full proof of Theorem 5.14:

Proof. We modify the proof of Proposition 3.5.
We fix l0 to be the l provided as input. We will first assume

l0 ∈ N, we explain at the end of the proof how to handle the
(simpler) case l0 = all.

For every node n of the tree T , we create one input gate gi
n

in C (identified to n), and for j ∈ {0, . . . , p}, we create a
gate gi,j

n which is a ⊗-gate of j copies of the input gate gi
n.

(By “copies” we mean ⊗- or ⊕-gates whose sole input is gi
n,

this being a technical necessity as K-circuits are defined as
graphs and not multigraphs.) In particular, gi,0

n is always a
1-gate.

We create one gate gq,ln for n ∈ T , q ∈ Q, and 0 6 l 6 l0.
For leaf nodes n, for q ∈ Q, we set gq,ln to be gi,l

n if q ∈
ι(λ(n), l) and a 0-gate otherwise.

For internal nodes n, for every pair qL, qR ∈ Q (that
appears as input states of a transition of δ) and 0 6 l1, l2 6 l0
such that l1 + l2 6 l0, we create the gate gqL,l1,qR,l2n as an
⊗-gate of gqL,l1L(n) and gqR,l2R(n) , and, for 0 6 l′ 6 l0 such that

l1 + l2 + l′ 6 l0, we create one gate gqL,l1,qR,l2,l
′

n as the ⊗-gate

of gqL,l1,qR,l2n and gi,l′ . For 0 6 l 6 l0, we set gq,ln to be a ⊕-

gate of all the gqL,l1,qR,l2,l
′

n such that q ∈ δ(qL, qR, (λ(n), l′))
and l1 + l2 + l′ = l.

We define the distinguished gate g0 as an ⊗-gate of the
gq,l0nr

where nr is the root of T . The construction is again in
O(|A| · |T |) for fixed l and p.

To prove correctness, we show by induction that the ele-
ment captured by gq,ln is ProvN[X](Aq, Tn, l) where Aq is A
with q as the only final state, and Tn is T rooted at n.

As a general property, note that for any node n, the value
captured by gi,j

n for 0 6 j 6 p is nj .
For a leaf node n, ProvN[X](Aq, Tn, l) = nl if q ∈ ι(λ(n), l)

and 0 otherwise, which is the value captured by gq,ln .
For an internal node n, the claim follows immediately by

Lemma 5.15, applying the induction hypothesis to gqL,l1L(n) and

gqR,l2R(n) .

We conclude because clearly we have ProvN[X](A, T, l0) =⊕
q∈F ProvN[X](Aq, T, l0), so the value captured by g0 is

indeed correct.

Now, if l0 = all, we do the same construction, but we only
need a single node gqn for n ∈ T and q ∈ Q instead of l0 + 1
nodes gq,ln . For leaf nodes, gqn is the ⊕-node of the gi,l

n ; for
internal nodes, gqn is simply the ⊕-gate of all gqL,qR,ln gates
with q ∈ δ(qL, qR, (λ(n), l)), each of them being an ⊗-gate
of the gqL,qRn gate and the gi,l gate. Finally, gqL,qRn is the
⊗-gate of gqLL(n) and gqRR(n). Correctness is shown using a

variant of Lemma 5.15 on ProvN[X](A, T, all) which replaces
l1 + l2 + l′ = l in the sum subscript by 0 6 l′ 6 p.

Provenance circuit for instances. We now move back
back to provenance for UCQs on bounded-treewidth in-
stances. Our results on N[X]-provenance for automata allow
us to obtain a linear-time provenance construction for UCQs
on such instances:

Theorem 5.16. For any fixed k ∈ N and UCQ q, for any
σ-instance I such that w(I) 6 k, one can construct a N[X]-
circuit that captures ProvN[X](q, I) in time O(|I|).

To prove this result, we first need to give some preliminary
definitions. We need to introduce bag-instances, to materi-
alize the possibility that a fact is used multiple times in a
UCQ:

Definition 5.17. A multiset is a function M from a finite
support supp(M) to N. We define the relation M ⊆ M ′

if supp(M) ⊆ supp(M ′) and for all s ∈ supp(M) we have
M(s) 6 M ′(s). We write x ∈ M to mean that M(x) > 0.
Given a set S and multiset M , we write M v S to mean that
supp(M) ⊆ S, and for p ∈ N we write M vp S to mean that
M v S and M(a) 6 p for all a ∈ supp(M).

A bag-instance J is a multiset of facts on dom(J). Where
necessary to avoid confusion, we call the ordinary instances
set-instances. For two bag-instances J and J ′, we say that J
is a bag-subinstance of J ′ if J ⊆ J ′ holds (as multisets). We
say that J is a bag-subinstance of a set-instance I if J v I,
and a p-bag-subinstance of I if J vp I. In other words,
set-instances are understood as bag-instances where facts
have an arbitrarily large multiplicity (and not multiplicity
equal to 1). The truncation to p of a bag-instance J is
J6p(F ) ··= min(J(F ), p) for all F ∈ supp(J).

A bag-homomorphism h from a bag-instance J to a bag-



instance J ′ is a mapping from supp(J) to supp(J ′) with the
following condition: for each F ∈ supp(J ′), letting F1, . . . , Fn
be the facts of supp(J) such that h(Fi) = F for 1 6 i 6 n,
we have

∑n
i=1 J(Fi) 6 J ′(F ).

We accordingly define bag-queries as queries on such bag-
instances. Intuitively, bag-queries are like regular Boolean
queries on instances, except that they can “see” the multi-
plicity of facts. This is crucial to talk about the required
multiplicity of facts in matches, which we need to talk about
the N[X]-provenance of UCQs.

Definition 5.18. A bag-query q is a query on bag-instances.
The bag-query q′ associated to a CQ ∃x q(x) is defined as fol-
lows. A match of q in a bag-instance J is a bag-homomorphism
from q (seen as a bag-instance of facts over x) to J . We say
that J |= q′ if q has a match in J .

The bag-query associated to a UCQ q =
∨n
i=1 ∃xi qi(xi) is

the disjunction of the bag-queries for each CQ in the disjunc-
tion.

Alternatively it is easily seen that J |= q′, for q′ the bag-
query associated to a UCQ q, iff J contains a bag of facts
that can be used as the leaves of a derivation tree for the
Datalog query Pq associated to q.

We notice that the bag-query associated to a UCQ q is
bounded, namely, the fact that it holds or not cannot depend
on the multiplicity of facts beyond a certain maximal value
(the maximal number of atoms in a disjunct of the UCQ):

Definition 5.19. A bag-query q is bounded by p ∈ N if, for
any bag-instance J , if J |= q, then the truncation J6p of J is
such that J6p |= q. A bag-query is bounded if it is bounded
by some p ∈ N.

We now extend our definitions of tree encodings and au-
tomaton compilation to bag-queries. First, tree encodings
simply generalize to bag-instances as tree encodings anno-

tated with the multiplicities of facts, that is, Γkσ
p
-trees:

Definition 5.20. Let k, p ∈ N and let J be a bag-instance
such that J(F ) 6 p for all F ∈ J. Let I ··= supp(J) be the
underlying instance of J, and let TI be its tree encoding (a
Γkσ-tree). We define the (k, p)-tree-encoding TJ of J as the
tree with same skeleton as TI where any node n encoding a
fact F of I is given the label (λ(n), J(F )) and other nodes
are given the label (λ(n), 1). We accordingly define 〈·〉 on

Γkσ
p
-trees to yield bag-instances in the expected way, again

returning ⊥ whenever two nodes code the same fact (rather
than summing up their multiplicity).

We then define what it means for a Γkσ
p
-bNTA to test a bag-

query q. Note that the definition implies that the automaton
cannot “see” multiplicities beyond p, so we require that the
query be p-bounded so that the limitation does not matter.

Definition 5.21. For q a bag-query and k, p ∈ N, a Γkσ
p
-

bNTA A tests q for treewidth k if q is bounded by p and for

every Γkσ
p
-tree E, we have E |= A iff 〈E〉 |= q.

The key technical result is to show that every bag-query
corresponding to a UCQ can be encoded to an automaton
that tests it.

Proposition 5.22. Let q be a UCQ. There is p ∈ N such

that, for any k ∈ N, we can compute a Γkσ
p
-bNTA A that

tests q for treewidth k.

Intuitively, this result is proven by enumerating all possible
self-homomorphisms of q′, changing σ to make the multiplic-

ity of atoms part of the relation name, encoding the resulting
queries to automata as usual [12] and going back to the
original σ.

This proposition makes it possible to prove Theorem 5.16,
that we claimed earlier, to tractably construct provenance cir-
cuits for UCQs on a treelike instance I. The proof technique

is to compile each disjunct q′ of q to Γkσ
p
-bNTA Aq′ that tests

it, using Proposition 5.22, where p is the maximal number of
atoms in in a disjunct of q. We then apply Theorem 5.14 to
construct a N[X]-circuit capturing the provenance of Aq′ on
a tree encoding of I, for valuations that sum to the number
of atoms of q′; this restricts to the bag-subinstances corre-
sponding exactly to matches of q′. We obtain a N[X]-circuit
that captures ProvN[X](q, I) by combining the circuits for
each disjunct, the distinguished gate of the overall circuit
being a ⊕-gate of that of each circuit.

Remember that an N[X]-circuit can then be specialized to a
circuit for an arbitrary semiring (in particular, if the semiring
has no variable, the circuit can be used for evaluation);
thus, our results extend to provide a tractable provenance
construction for UCQs on treelike instances, for any semiring.

Going beyond UCQs. To compute N[X]-provenance be-
yond UCQs (e.g., for monotone GSO queries or their inter-
section with Datalog), the main issue is fact multiplicity:
multiple uses of facts are easy to describe for UCQs (Def-
inition 5.8 and Definition 5.18), but for more expressive
languages we do not know how to define them and connect
them to automata.

In fact, we can build a query P , in guarded Datalog [19],
such that the smallest number of occurrences of a fact in a
derivation tree for P cannot be bounded independently from
the instance (in the sense of Definition 5.19).

Proposition 5.23. There is a guarded monadic Datalog
query P whose associated bag-query qP is not bounded.

Proof. Consider the Datalog query P consisting of the
rules S(y)← S(x), R(x, a, y), A(a), Goal← S(x), T (x). For
all n ∈ N, let us consider the instance In = {R(a1, a, a2),
R(a2, a, a3), . . . , R(an−1, a, an), S(a1), T (an), A(a)}. It is eas-
ily verified that the only proof tree of P on In has n − 1
leaves with the fact A(a). Hence, assuming that the bag-
query qP captured by P is bounded by p, considering the
bag-instance J formed of the leaves of the sole proof tree of
P on Ip+2, it is not the case that J6p |= qP , contradicting
boundedness.

However, as guarded Datalog is both monotone and GSO-
expressible, we can compute the PosBool[X]-provenance of P
with Theorem 4.8, hinting at a difference between PosBool[X]
and N[X]-provenance computation for queries beyond UCQs.

6. APPLICATIONS
In Section 5 we have shown a N[X]-provenance circuit con-

struction for UCQs on treelike instances. This construction
can be specialized to any provenance semiring, yielding vari-
ous applications: counting query results by evaluating in N,
computing the cost of a query in the tropical semiring, etc.
By contrast, Section 4 presented a provenance construction
for arbitrary GSO queries, but only for a Boolean represen-
tation of provenance, which does not capture multiplicities
of facts or derivations. The results of both sections are thus
incomparable. In this section we show applications of our
constructions to two important problems: probability eval-



uation, determining the probability that a query holds on
an uncertain instance, and counting, counting the number of
answers to a given query. These results are consequences of
the construction of Section 4.

Probabilistic XML. We start with the problem of proba-
bilistic query evaluation, beginning with the setting of trees.
We use the framework of probabilistic XML [23], denoted
PrXML, to represent probabilistic trees as trees annotated by
propositional formulas over independent probabilistic events.

Definition 6.1. An XML document with label set Λ (or
Λ-document) is an unranked Λ-tree. We always assume that
the label set Λ is fixed (not provided as input).

For fixed Λ, a PrXML-tree T is an unranked Λ-tree, aug-
mented with a set of Boolean events E where each event ex
has a probability 0 6 px 6 1, and where each edge of the tree
is labeled by a propositional formula over E.

We see T as defining a probability distribution over Λ-trees
in the following fashion: for every valuation ν over E, the
possible world ν(T ) is obtained by removing all edges whose
annotation evaluates to false under ν, and all their descendent
nodes and edges. The probability of a Λ-tree T ′ according
to T is the sum of the probability of all valuations ν such that
ν(T ) = T ′, where the probability of a valuation is defined
assuming that the events in E are drawn independently with
their indicated probability.

To perform query evaluation on a PrXML document is
to determine, for a fixed query over Λ-trees, given an input
PrXML document T , what is the total probability of its possible
worlds that satisfy q; we study its data complexity, i.e., its
complexity as a function of T .

We will work with the language of MSO queries [26], which
we now define formally:

Definition 6.2. An MSO query on XML documents is a
MSO formula where first-order variables refer to nodes and
where atoms are λ(x) (x has label λ), x→ y (x is the parent
of y), and x < y (x and y are siblings and x comes before y).

MSO query evaluation is intractable in general, which is
not surprising: it is harder than determining the probability
of a single propositional annotation. However, we can restrict
PrXML to the weaker model of PrXMLmux,ind:

Definition 6.3. A PrXMLmux,ind probabilistic document is an
XML document D over Λt {ind,mux}, where edges from ind
and mux nodes to their children are labeled with a probability
in [0, 1], the annotations of outgoing edges of every mux node
summing to 6 1.

The semantics JDK of D is obtained as follows: for every
ind node, decide to keep or discard each child according to the
indicated probability, and replace the node by the (possibly
empty) collection of its kept children; for every mux node,
choose one child node to keep according to the indicated
probabilities (possibly keep no node if they sum to < 1), and
replace the mux node by the chosen child (or remove it if no
child was chosen). All probabilistic choices are performed
independently. When a node is not kept, its descendants are
also discarded. We require the root to have label in Λ (not in
{ind,mux}).

Observe that in PrXMLmux,ind all probabilistic choices are
“local”. We can use the provenance circuits of Section 4 to
justify that query evaluation is tractable for PrXMLmux,ind

and capture the data complexity tractability result of [11].

We say that an algorithm runs in ra-linear time if it runs
in linear time assuming that arithmetic operations over ra-
tional numbers take constant time and rationals are stored
in constant space, and runs in polynomial time without this
assumption. We can show:

Theorem 6.4 [11]. MSO query evaluation on PrXMLmux,ind

has ra-linear data complexity.

We can also show extensions of this result. For instance,
on PrXML, defining the scope of event e in a document D as
the smallest subtree in the left-child-right-sibling encoding
of D covering nodes whose parent edge mentions e, and the
scope size of a node n as the number of events with n in their
scope, we show:

Proposition 6.5. For any fixed k ∈ N, MSO query evalua-
tion on PrXML documents with scopes assumed to have size
6 k has ra-linear data complexity.

BID instances. We move from trees to relational instances,
and show another bounded-width tractability result for block-
independent disjoint (BID) instances [5, 28]:

Definition 6.6. A BID instance I is a relational instance
with each relation partitioned into key and value positions.
For each valuation of the key positions, all matching facts
(that form a block) are mutually exclusive, each has a proba-
bility > 0 and the probabilities of the block sum to 6 1. The
semantics is to keep, independently between blocks, one fact at
random in each block, according to the indicated probabilities
(or possibly no fact if probabilities sum to < 1).

To ensure ra-linear time complexity, we assume that BID
instances are given with facts regrouped per blocks; otherwise
our bounds will be PTIME as we first need to sort the facts.

We define the treewidth of a BID instance as that of its
underlying relational instance, and claim the following (re-
member that query evaluation on a probabilistic instance
means determining the probability that the query holds):

Theorem 6.7. For any fixed k ∈ N, MSO query evaluation
on an input BID instance of treewidth 6 k has ra-linear data
complexity.

All these probabilistic results are proven by rewriting to
a formalism of relational instances with a circuit annota-
tion, such that instance and circuit have a bounded-width
joint decomposition. We compute a treelike provenance cir-
cuit for the instance using Theorem 4.8, combine it with
the annotation circuit, and apply existing message passing
techniques [24] to compute the probability of the circuit.

Counting. We turn to the problem of counting query results,
and reduce it in ra-linear time to query evaluation on treelike
BID instances, capturing a result of [3]:

Theorem 6.8 [3]. For any fixed MSO query q(x) with free
first-order variables and k ∈ N, the number of matching
assignments to x on an input instance I of width 6 k can be
computed in ra-linear data complexity.

Proof. Let k ∈ N. Let q(x) be the MSO query. We
rewrite it to the following query: q′ : ∃x

∧
x∈x Px(x) ∧ q(x),

where the Px are fresh unary predicates. Consider an input
instance I of width 6 k, and expand it to a BID instance I ′

by setting existing relations to be trivial BID tables (i.e.,
all attributes of the relation are keys, and all facts have
probability 1) and adding tables Px for every x ∈ x with



one attribute, with the empty set as key, and with facts
Px(a) for all a ∈ dom(I), with probability 1/ |dom(I)|. This
rewriting can clearly be performed in ra-linear time, and if I
has treewidth 6 k then so does I ′. Intuitively, the possible
worlds of I ′ are all the possible ways of extending I with facts
Px(a) for x ∈ x and a ∈ dom(I), with only one fact Px(a)
for every x ∈ x, and each possible world has probability

1/ |dom(I)||x|.
We now make the immediate observation that for every

such possible world I ′a of I ′ indexed by the ax ∈ dom(I) for
x ∈ x, where we add the facts Px(ax) for x ∈ x, we have
I ′a |= q′ iff I |= q(a). Hence, the number of matches of q in I
is the number of possible worlds of I ′ where q′ holds, that is,

the probability of q′ on I ′ multiplied by M ··= |dom(I)||x|.
We conclude by Theorem 6.7 that we can compute this

probability in ra-linear time in I ′, that is, in I, and we
compute the count from the probability by multiplying by M
in ra-linear time, proving the result.

7. RELATED WORK

Bounded treewidth. From the original results [12, 15] on
the linear-time data complexity of MSO evaluation on tree-
like structures, works such as [3] have investigated counting
problems, including applications to probability computation
(on graphs). A recent paper [7] also shows the linear-time
data complexity of evaluating an MSO query on a treelike
probabilistic network (analogous to a circuit). Such works,
however, do not decouple the computation of a treelike prove-
nance of the query and the application of probabilistic in-
ference on this provenance, as we do. We also note results
from another approach [27] on treelike structures, based on
monadic Datalog (and not on MSO as the other works), that
are limited to counting.

Probabilistic databases. The intensional approach [31] to
query evaluation on probabilistic databases is to compute a
lineage of the query and evaluate its probability via general
purpose methods; tree-like lineages allow for tractable proba-
bilistic query evaluation [22]. Many works in this field provide
sufficient conditions for lineage tractability, only a few based
on the data [29,30] but most based on the query [13,22]. For
treelike instances, as we show, we can always compute tree-
like lineages, and we can do so for expressive queries (beyond
UCQs considered in these works), or alternatively general-
ize Boolean lineages to connect them to more expressive
semirings.

Provenance. Our provenance study is inspired by the usual
definitions of semiring provenance for the relational algebra
and Datalog [21]. Another notion of provenance, for XQuery
queries on trees, has been introduced in [16]. Both [21]
and [16] provide operational definitions of provenance, which
cannot be directly connected to tree automata. A differ-
ent relevant work on provenance is [14], which introduces
provenance circuits, but uses them for Datalog and only on
absorptive semirings. Last, other works study provenance for
transducers [8], but with no clear connections to semiring
provenance or provenance for Boolean queries.

8. CONCLUSION
We have shown that two provenance constructions can be

computed in linear time on trees and treelike instances: one
for UCQs on arbitrary semirings, the other for arbitrary GSO
queries as non-monotone Boolean expressions. A drawback
of our results is their high combined complexity, as they rely
on non-elementary encoding of the query to an automaton.
One approach to fix this is monadic Datalog [18, 27]; this
requires defining and computing provenance in this setting.
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APPENDIX
A. PROOFS FOR SECTION 4 (PROVENANCE ON TREE ENCODINGS)

A.1 Tree decompositions and encodings
Lemma 4.5. From a tree decomposition T of width k of a σ-structure I, one can compute in linear time a tree encoding E of
width k of I with a bijection from the facts of I to the non-empty nodes of E.

Proof. The intuition is that we assign each fact R(a) of I to a bag b ∈ T such that a ⊆ dom(b), which can be done in
linear time [FFG02]. We then encode each node of T as a chain of nodes in E, one for each fact assigned to T .

Fix the σ-structure I and its tree decomposition T of width k. Informally, we build E by walking through the decomposition T
and copying it by enumerating the new facts in the domain of each bag of T as a chain of nodes in E, picking the labels in Γkσ
so that the elements shared between a bag and its parent in T are retained, and the new elements are chosen so as not to
overlap with the parent node. Overlaps between one node and a non-parent or non-child node are irrelevant.

Formally, we proceed as follows. We start by precomputing a mapping that indicates, for every tuple a of I such that some
fact R(a) holds in I, the topmost bag node(a) of T such that a ⊆ dom(node(a)). This can be performed in linear time by
Lemma 3.1 of [FFG02]. Then, we label the tree decomposition T with the facts of I as follows: for each fact F = R(a) of I, we
add F to the label of node(a).

Now, to encode a bag b of T , consider bp the parent of b in T and partition dom(b) = do t dn where do are the old elements
already present in dom(bp), and dn are the new elements that did not appear in dom(bp). (If b is the root, then do = ∅ and
dn = dom(b).) Under a specific node (dp, np) in E, with a bijection fp from dom(bp) to dp, choose a domain d of size |dom(b)|
over the fixed a1, . . . , a2k+2 whose intersection with fp(dom(bp)) is exactly fp(do) (this is possible, as there are 2k+ 2 elements
to choose from and |dom(bp)| 6 k + 1) and extend the bijection fp to f so that it maps dom(b) to d. At the root, choose an
arbitrary bijection. Now, encode b as a chain of nodes in E labeled with (d, si) where each si encodes one of the facts in the
label of b (thus defining the bijection from I to the non-empty nodes of E). If there are zero such facts, create a (d, ∅) zero-fact
node instead, rather than creating no node. Recursively encode the children of b (if any) in T , under this chain of nodes in E.
Add zero-fact (∅, ∅) child nodes so that each non-leaf node has exactly two children. We assume that all arbitrary choices are
done in a consistent manner so that the process is deterministic.

A.2 Compiling queries to automata
Theorem 4.7 [Cou90]. For any k ∈ N, for any MSO query q, one can compute a Γkσ-bNTA Akq that tests q for treewidth 6 k.

Proof. The main problem in proving this result is to justify that MSO sentences can be rewritten to MSO sentences on our
definition of tree encodings, as we can then use [TW68] to compile them to a bNTA. We rely on [FFG02] for that result, but
we must translate between our tree encodings and theirs. We do so by a general technique of justifying that certain product
trees annotated with both encodings can be recognized by a bNTA.

In the context of this proof, we define a bDTA (bottom-up deterministic tree automaton) as a bNTA but where ι and δ,
rather than returning sets of reachable states, return a single state. This implies that the automaton has a unique run on any
tree.

Let us fix k ∈ N∗. We denote by [m] the set {1, . . . ,m} and by nσ the number of relations in σ. Lemma 4.10 of [FFG02]
shows that for a certain finite alphabet Γ(σ, k), for any MSO formula ϕ over the signature σ, there exists an MSO formula
ϕ∗ such that for any Γ(σ, k)-tree t representing an instance I, t satisfies ϕ∗ iff I satisfies ϕ. More precisely, one can define a
partial 〈·〉′ function on Γ(σ, k)-trees such that for every instance I of treewidth 6 k there is a Γ(σ, k)-tree t such that 〈T 〉′ is
well-defined and isomorphic to I and for every Γ(σ, k)-tree T , we have T |= ϕ∗ iff 〈T 〉′ is well-defined and 〈T 〉′ |= ϕ.

We first describe the alphabet Γ(σ, k). A letter of Γ(σ, k) is of the form (γ1, γ2, . . . , γnσ+2). The element γ1 belongs to 2[k]2

and describes the equalities between the elements inside a bag; the element γ2 belongs to 2[k]2 and describes the equalities

between the elements from this bag and its parents; For i > 3, γi belongs to 2k
arity(Ri)

and describes the tuples belonging
to the relation Ri. In the Γ(σ, k)-trees, the encoding of equalities between values of the bags and its parents are described
explicitly (by γ2) rather than implicitly (by element reuse between parent and child, as in our encoding).

We next describe for which Γ(σ, k) trees T is their encoding operation 〈T 〉′ well-defined, and how it is then computed. We
say that T is well-formed if 〈T 〉′ is well-defined. We accordingly say that a Γkσ-tree T is well-formed if 〈T 〉 is well-defined,
namely, different from ⊥.

For a Γ(σ, k)-tree T , 〈T 〉′ is well-defined iff for each node n with γ ··= λ(n) and each child n′ ∈ {L(n), R(n)} with γ′ ··= λ(n′):

• γ1 is closed by transitive closure, i.e., if (i, j) and (j, e) belong to γ1 then (i, e) belongs to γ1

• γ2 is closed by transitive closure (to check this, we need to consider paths, rather than the mere pair n and n′) γ2 is
closed by transitive closure.

• for each (i, j) in γ1 and (j, e) in γ′2 then (i, e) belongs to γ′2 (and symmetrically, reversing the roles of n and n′)

• for each pair (j1, . . . , jl) in γ′m and if for each b (ib, jb) in γ′2, then (i1, . . . , il) is in γm (and vice-versa, reversing the roles
of n and n′); a similar condition holds with γ1

Note that these conditions are clearly expressible in MSO. While [FFG02] does not precisely describe the behavior of ϕ∗ on
Γ(σ, k)-trees which are not well-formed, the above justifies our assumption that ϕ∗ tests well-formedness and rejects the trees
which are not well-formed.



We now define 〈T 〉′ as follows, if T is well-formed. Process E top-down. At each node n ∈ E with γ ··= λ(n) with parent
node n′ ∈ E with γ′ ··= λ(n′), pick fresh elements in D for the positions j such that there is no pair (i, j) in γ′2 (at the root,
pick all fresh elements) and if (j1, j2) belongs to γ′1 then the same fresh element is assigned for the elements at both positions;
if there is such a pair, pick the existing elements used when decoding n′. These choices define a mapping ν from the positions
to the fresh elements and to existing elements. Now, for each (j1, . . . , jm) in γi, then the fact Ri(ν(j1), . . . , ν(jm)) is added to
I. If we ever attempt to create a fact that already exists, we ignore it.

We have reviewed the alphabet Γ(σ, k) of [FFG02], the conditions for the well-definedness of 〈T 〉′ and the semantics of this
operation. Now, following [TW68,FFG02], with an additional step to determinize the resulting automaton to a bDTA, the
formula ϕ∗ from [FFG02] can be translated into a bDTA Atheirs on Γ(σ, k)-trees such that for any Γ(σ, k)-tree T , Atheirs accepts
T iff T |= ϕ∗, that is, iff 〈T 〉′ is well-defined and satisfies ϕ. Note that this implies that Atheirs is encoding-invariant. We now
explain how to translate Atheirs to our desired bDTA Aours over Γkσ such that for every Γkσ-tree T , Aours accepts T iff 〈T 〉 |= ϕ.

We consider the alphabet Σ = Γkσ × Γ(σ, k), and call π1 and π2 the operations on Σ-trees that map them respectively to
Γkσ and Γ(σ, k) trees with same skeleton by keeping the first or second component of the labels. Given a Γkσ-tree T1 and a
Γ(σ, k)-tree T2 with same skeleton, we will write T1 × T2 the Σ-tree obtained from them.

We will do this by building a Σ-bDTA At with the following properties:

1. If At accepts T then 〈π1(T )〉 and 〈π2(T )〉′ are well-defined and isomorphic.

2. For every Γkσ-tree T1 such that 〈T1〉 is well-defined, there exists a Γ(σ, k)-tree T2 such that At accepts T1 × T2.

Then, we can notice that from Atheirs, we can build an Σ-bDTA A′theirs such that T is recognized by A′theirs iff π2(T ) is accepted
by A′theirs, and build Aours as the conjunction of At and A′theirs, projected to the first component (accept a Γkσ-tree T1 iff there
is some Γ(σ, k)-tree T2 such that T1 × T2 is accepted, which is possible using non-determinism, and then determinizing). It is
now clear that Aours thus defined accepts a Γkσ-tree T1 iff the Σ-tree T1 × T2 is accepted, for some Γ(σ, k)-tree T2, by A′theirs

and At: if this happens then T2 is accepted by Atheirs and 〈T1〉 is isomorphic to 〈T2〉′ so 〈T2〉 |= ϕ; and conversely, if 〈T1〉
models ϕ, there is some Γ(σ, k)-tree T2 such that At accepts T1 × T2, and this implies that 〈T2〉′ is isomorphic to 〈T1〉 so (as ϕ,
being a constant-free MSO query, is invariant under isomorphisms) 〈T2〉 satisfies ϕ∗ and A′theirs accepts T1 × T2. So it suffices
to build the Σ-bDTA At with the desired properties.

We now define a simple encoding from Γkσ to Γ(σ, k) describing what is the tree T2, given a well-formed tree T1, such that At

accepts T1 × T2. It will then suffice to see that it is possible, with a MSO formula ψ, to check on a Σ-tree T whether π2(T ) is
the encoding of π1(T ) in this sense. Indeed, we can then compile ψ to a Γ-bDTA using [TW68].

Consider a node n1 ∈ T1 and let (d, s) ··= dom(n). We define the label of the corresponding node n2 ∈ T2. We define γ1 so
that the k + 1− dom(d) last elements are all equal to the dom(d)-th element (i.e., we complete dom(d) to always have k + 1
elements, by “repeating” the last element, where “last” is according to an arbitrary order on domain elements). We define γ2

to indicate which elements of n1 were shared with its parent node, completing it to be consistent with respect to γ1. Last,
we define γ3, . . . , γnσ+2 to be the tuples of elements in the various relations of σ in 〈T1〉, with repetitions to be consistent
according to γ1.

It is clear that this encoding maps every tree T1 such that 〈T1〉 is well-defined to a tree T2 such that 〈T2〉 is well-defined and
isomorphic to 〈T1〉. Now, to justify the existence of ψ, observe that the only non-local condition to check on T is the definition
of the γ3, . . . , γnσ+2; but we can clearly define by an MSO formula, for a node n ∈ T with (d, s) ··= λ(n), the exact set of facts
stated by T for the elements represented by d (there are only a finite number of such “types”): they are defined to check, for
all facts of the putative type, whether a node with the right fact is reachable following an undirected path where the same
elements are kept along the path. So we can define an MSO formula checking for each node n ∈ T whether the type of π1(n)
in π1(T ) in this sense matches the graph stated in π2(n).

A.3 Provenance circuits on treelike instances
We first give the formal definition of the treewidth of a circuit, which we omitted. To do so, we must first give a normal

form for circuits:

Definition A.1. Let C = (G,W, g0, µ) be a Boolean circuit. The fan-in of a gate g ∈ G is the number of gates g′ ∈ G, such
that (g′, g) ∈ W . Note that our definitions of circuits impose that the fan-in of input gates is always 0 and the fan-in of
NOT-gates is always 1. We say C is arity-two if the fan-in of AND- and OR-gates is always 2, where we allow constant 0-
and 1-gates as gate types of their own (but require that such gates have fan-in of 0).

Clearly this restriction is inessential as circuits can be rewritten in linear-time to an arity-two circuit by merging AND- and
OR-gates with fan-in of 1 with their one input, replacing those with fan-in of 0 by a 0- or 1-gate, and rewriting those with
fan-in > 2 to a chain of gates of the same type with fan-in 2.

We now define tree decompositions of circuits, and their relational encoding:

Definition A.2. The relational signature σCircuit features one unary relation Ri which applies to input gates, two unary
relations R0 and R1 which apply to constant 0- and 1-gates, one binary relation R¬(go, gi) which applies to NOT-gates (the
first element is the output and the second is the input), and two ternary relations R∧(go, gi, g

′
i) and R∨(go, gi, g

′
i) which apply

respectively to AND- and OR-gates, with the first element being the input and the second and third being the inputs. The
relational encoding of an (arity-two non-monotone) Boolean circuit C is the σCircuit-instance IC obtained in the expected way;
we can clearly construct IC from C in linear time. The treewidth w(C) of C is w(IC) (but we talk of tree decompositions of C
as shorthand).



Theorem 4.8. For any fixed k ∈ N and GSO query q, for any σ-instance I such that w(I) 6 k, one can construct a provenance
circuit C of q on I in time O(|I|). Further, the treewidth of C only depends on k and q (not on I).

A.4 Restricted query classes
Proposition 4.11 [CV92]. For any UCQ q and k ∈ N, a Γkσ-bNTA that tests q for treewidth 6 k can be computed in
EXPTIME in q and k.

Proof. Let q be a UCQ and k be an integer.
This proof relies on the notion of proof trees introduced in [CV92]. The proof trees are intuitively tree encodings of an

unfolding, or expansion tree, of a Datalog query P (refer to Definition 5.2 for the definition of Datalog). An expansion tree of P
is a ranked tree (not binary in general) defined as follows: the node labels are pairs of a fact F from an intentional predicate of
σint and an instantiation of the body of a rule r ∈ P (i.e., the variables are mapped to elements of the instance in a way that
satisfies the body of r) such that the corresponding instantiation of the head of r is F .

Such a tree is well-formed if for any node n labeled by (F, x) there is a bijection f between the children of n and the
intensional facts of the instantiation x such that for any node n, f(n) is exactly the head fact of n. (In particular, if the same
intensional fact is used multiple times in the rule, then there are as many children as there are occurrences of this fact). We
will require that in the rules of the query P , every body contains either 0 or 2 intensional facts, so that expansion trees are full
binary trees.

From an expansion tree, it is possible to derive a proof tree, which is a Σ(P )-tree for some finite set Σ(P ) (for fixed P ), as
follows: the alphabet Σ(P ) is the set of pairs of tuples over some fixed set of 2 |P | values and of a rule of P , and the intuition
of a Σ(P )-tree, just like for our notion of k-facts, is that sharing an element between one node and its parent encodes that it is
the same element, but elements shared between, e.g., siblings, are not necessarily the same element. Note that proof trees, as
expansion trees, are full binary trees. In this proof we use proof trees to mean this, as [CV92], and we do not mean the notion
of proof tree used for Datalog provenance in Definition 5.2.

Having described how to encode an expansion tree to a proof tree, we describe the decoding 〈T 〉′ of a Σ(P )-tree T : first,
apply a process analogous to our own notion of decoding, to obtain an expansion tree T ′; second, consider the extensional facts
that appear in the instantiation of the bodies in the labels of T ′, and define 〈T 〉′ to be the instance formed of those facts. Of
course, if any of these processes fails, or if the intermediate expansion tree is not well-formed, we abort and set 〈T 〉′ = ⊥.

Our goal is now to define a Datalog query P such that there is a surjective homomorphism from Σ(P ) to Γkσ. Fix σint

to have intensional relations P0, . . . , Pk+1 of arity1 0, . . . , k + 1. For every tuples of variables x, y, z1, z2 taken from a set
of 3k + aσ variables denoted by SX (where aσ is the arity of σ), with the condition y ⊆ x, for every relation R of σ, and
0 6 i, j1, j2 6 k + 1, create the rules in P :

Pi(x)← R(y)Pj1(z1)Pj2(z2)

and

P (x)← R(y)

Finally, we create the rules

Pi(x)← Pj1(z1)Pj2(z2)

In terms of size, each rule of the query P contains a number of variables polynomial in k and σ, and the overall size of the

query is exponential in a polynomial of k and σ. Last, the size of Σ(P ) is in O(|P | · |P |a(P )), where a(P ) is the maximal
arity of the intentional relations. Let β be a set of values of cardinality equal to 2k + 2. Then, Σ(P ) is equal to the pairs
P (a), r where r is a rule. We define the following homomorphism h from Σ(P ) to Γkσ. Let (Pi(a), r) be a element of Σ(P ). If r
does not have an extensional fact then h(Pi(a), r) is equal to (a, ∅). Otherwise, the atom R(y) occurs in the body of r, let ν
be the valuation from the variables of r defined according to the head atom Pi(a) (as we imposed y ⊆ x above) such that
ν(x) is equal to a: h(P (a), r) is equal to (a, R(ν(y)). h is thus defined from Σ(P )-trees to the Γkσ, and it is clearly surjective.
Furthermore, it is clear that this application extends to a surjective mapping h′ from Σ(P )-trees to Γkσ-trees, with the property
that whenever 〈h′(T )〉 is defined then T is well-formed and 〈h′(T )〉 and 〈T 〉′ are isomorphic.

We now explain how we construct our automaton for the query q. Let us first assume that q is a conjunctive query (CQ). We
consider the Datalog query P that we constructed above. From the proof of Proposition 5.10 of [CV92], we deduce that we can

construct, in time polynomial in its size, a bNTA AP on Σ(P ) whose number of states is in is in O(|Σ(P )| · 2|q|+Vq∗VP ). where
VP (resp., Vq) is the maximal number of variables in a rule of P (resp., in q) such that AP recognizes the language of the
well-formed Σ(P )-trees T such that 〈T 〉′ satisfies q. For our query P , the size of AP is therefore exponential in a polynomial of
k, σ and |q|.

Because h′ is an surjective homomorphism from Σ(P )-trees to Γkσ-trees and AP is on Σ(P ) with the Property 1.4.3 of
[CDG+07] that shows that bNTA are closed by homomorphism, we compute in polynomial time in AP a bNTA A′P on Γkσ that
has size exponential in a polynomial of σ, |q| and k. We intersect it with a bNTA (clearly constructible in EXPTIME) that
checks whether a Γkσ-tree is a valid encoding, and rejects otherwise. This yields the final automaton A.

We now check that A tests the query q. Let T be a Γkσ-tree. If 〈T 〉 satisfies q, then it is well-defined, Let T ′ be a preimage
of T by h′. By our condition on h′, 〈T ′〉′ is well-defined and isomorphic to 〈T 〉, so (as q features no constants and is thus

1While we technically disallowed predicates of arity 0 in our definition of instances, there is clearly no problem in this context.



preserved by isomorphisms) it satisfies q, and therefore T ′ was accepted by AP , so T is accepted by A. Conversely, if A accepts
T , then let T ′ be a preimage of T by h such that A′ accepts T ′. As 〈T 〉 is well-defined, T ′ is well-defined and 〈T ′〉′ and 〈T 〉 are
isomorphic; but as T ′ is accepted by AP , we must have 〈T ′〉′ |= q, so 〈T 〉 |= q.

The result can be extended to an UCQ q by applying the result to every CQ and taking the union of the resulting automata
(whose size is the sum of the input automata).

B. PROOFS FOR SECTION 5 (GENERAL SEMIRINGS)

B.1 Monotonicity
Theorem 5.5. For any fixed k ∈ N and monotone GSO query q, for any σ-instance I such that w(I) 6 k, one can construct in
time O(|I|) a monotone provenance circuit of q on I whose treewidth only depends on k and q (not on I).

The end of the proof of Lemma 5.6 relies on the following lemma:

Lemma B.1. For every Γkσ-trees E and E′, if E 6 E′ then 〈ε(E)〉 ⊆ 〈ε(E′)〉.
Proof. We follow the decoding process and notice that, as the domains of the Γkσ node labels in E and E′ are the same,

the same fresh elements are used throughout, so the only difference between 〈ε(E)〉 and 〈ε(E′)〉 is about the annotation of the
created facts; and we notice that whenever E 6 E′ then every fact created in E is also created in E′.

From our earlier explanations, this proves Theorem 5.5.

B.2 N[X]-provenance for UCQs
Proposition B.2. For any UCQ q, ProvN[X](q, I), is the N[X]-provenance in the sense of [GKT07] of the associated Datalog
query Pq on I.

Proof. The proof trees of each CQ within q have a fixed structure, the only unspecified part being the assignment of
variables. It is then clear that each variable assignment gives a proof tree, and this mapping is injective because all variables in
the assignment occur in the proof tree. So for each CQ, we are summing on the same thing, and each term of the sum is the
leaves of the proof tree, which is what we imposed. Further, the set of proof trees of q is the union of the set of proof trees of
each CQ, which means we can separate the sum for each CQ.

B.3 N[X]-provenance for automata
Lemma 5.15. For any l, p ∈ N, l 6 p, for any non-singleton Γ-tree T = (V,L,R, λ), letting TL and TR be its left and right
subtrees and nr be its root node, for any Γ

p
-bNTA A = (Q,F, ι, δ), writing Aq for all q ∈ Q the bNTA obtained from A by

making q the only final state, we have:

ProvN[X](A, T, l) =
⊕

l1+l2+l′=l
qL,qR∈Q

q∈δ(qL,qR,(λ(nr),l
′))

ProvN[X](AqL , TL, l1)

⊗ ProvN[X](AqR , TR, l2)⊗ nl
′

r

Proof. We first observe the following identity, for any ν ∈ Valpl (T ) and any q ∈ Q, by definition of automaton runs:

|aruns(Aq, ν(T ))| =
∑

qL,qR∈Q
q∈δ(qL,qR,(λ(nr),ν(nr)))

|aruns(AqL , ν(TL))| · |aruns(AqR , ν(TR))|

We then observe that Valpl (T ) can be decomposed as⊔
l1+l2+l′=l

Valpl1(TL)×Valpl2(TR)× {nr 7→ l′}

as a valuation of T summing to l can be chosen as a valuation of its left and right subtree and of nr by assigning the possible
weights. We also observe that the product over n ∈ T can be split in a product on nr, on n ∈ TL and on n ∈ TR. We can thus
rewrite as follows:

ProvN[X](A, T, l) =
⊕

νL∈Val
p
l1

(TL)

νR∈Val
p
l2

(TR)

l1+l2+l′=l

⊕
qL,qR∈Q
q∈∆

mL ·mR

⊗
n∈TL

nνL(n)

⊗
n∈TR

nνR(n)

nl
′

r

where we abbreviated mL ··= |aruns(AqL , ν(TL))|, mR ··= |aruns(AqR , ν(TR))|, and ∆ ··= δ(qL, qR, (λ(nr), l
′)).

Reordering sums and performing factorizations, we obtain:

ProvN[X](A, T, l) =
⊕

qL,qR∈Q
l1+l2+l′=l

q∈∆

 ⊕
νL∈Val

p
l1

(TL)

mL

⊗
n∈TL

nνL(n)


 ⊕
νR∈Val

p
l2

(TR)

mR

⊗
n∈TR

nνR(n)

nl
′

r .



Plugging back the definition of provenance yields the desired claim.

B.4 Provenance circuit for instances
Theorem 5.16. For any fixed k ∈ N and UCQ q, for any σ-instance I such that w(I) 6 k, one can construct a N[X]-circuit
that captures ProvN[X](q, I) in time O(|I|).

We need to provide a general definition and prove a lemma about constructing the union of bNTAs:

Definition B.3. Let Γ be a finite label set and let Ai = (Qi, Fi, ιi, δi) be a family of Γ-bNTAs. Assume without loss of generality
that the Qi have been renamed so that they are pairwise disjoint. The union bNTA is the Γ-bNTA At = (Qt, Ft, ιt, δt)
defined by Qt ··=

⊔
iQi, Ft ··=

⊔
i Fi, for every τ ∈ Γ ιt(τ) ··=

⊔
i ιt(τ), and δt is only defined for q1, q2 ∈ Qi for some Qi, in

which case it is defined as δt(q1, q2, τ) ··= δi(q1, q2, τ).

Lemma B.4. For any family of Γ-bNTAs Ai, letting At be the union bNTA of the Ai, for any Γ-tree T , we have T |= At iff
T |= Ai for some Ai, and more precisely we have |aruns(At, T )| =

∑
i |aruns(Ai, T )|.

Proof. The claim about acceptance and the number of runs is straightforward by noticing that the runs of At on T are
exactly the disjoint union of the runs of the Ai on T .

Proposition 5.22. Let q be a UCQ. There is p ∈ N such that, for any k ∈ N, we can compute a Γkσ
p
-bNTA A that tests q for

treewidth k.

Proof. We introduce some notation. We call CQ6= the language of CQs which can feature atoms of the form x 6= y, and
UCQ6= the language of UCQs except the disjuncts are in CQ6=. We write Vars(q) for the variables of a query q of CQ6=. The
bag-query associated to a query in CQ6= or UCQ6= is defined as for the corresponding query with no inequalities, but imposing
the inequalities on matches. Formally, a match of a CQ6= query q′ is a match h of q′ such that h(x) 6= h(y) for any two variables
x and y such that x 6= y occurs in q. (Note that the multiplicity of inequality atoms is irrelevant.)

We first note that, writing the UCQ q as the disjunction of CQs qi, if we can show the claim for each qi, then the result
clearly follows from q by computing one bNTA Ai for each qi that tests qi for treewidth k and uses p = maxi pi, where pi is
the multiplicity for which the result was shown for each qi (clearly if the claim holds for a value of p then it must hold for
larger values by ignoring larger multiplicities). We then construct the union bNTA At of these bNTAs to obtain a bNTA that
tests q (Lemma B.4).

We see a CQ q as an existentially quantified multiset of atoms (the same atom, i.e., the same relation name applied to the
same variables in the same order, can occur multiple times; in other words we distinguish, e.g., ∃xR(x) and ∃xR(x)R(x)).
Let Vars(q) be the set of the variables of q (which are all existentially quantified as q is Boolean). We call Eq the set of all
equivalence classes on Vars(q) (which is of course finite), and for ∼ ∈ Eq we let q/∼ be the query in CQ6= obtained by choosing
one representative variable in Vars(q) for each equivalence class of ∼ and mapping every x ∈ Vars(q) to the representative
variable for the class of x (dropping in the result the useless existential quantifications on variables that do not occur anymore),
and adding disequalities x 6= y between each pair of the remaining variables.

We rewrite a CQ q to the UCQ q′ ··=
∨
∼∈Eq q/∼. We claim that for every bag-instance I, if I |= q then I |= q′, which

justifies that for an instance I ′′, considering the subinstances of I ′′, WK(q, I ′′) = WK(q′, I ′′). For the forward implication,
assuming that I |= q, letting m be the witnessing match, we consider the ∼m relation defined by x ∼m y iff m(x) = m(y), and
it is easily seen that I |= q/∼m. For the backward implication, if I |= q/∼ for some ∼∈ Eq, it is immediate that I |= q with
the straightforward match. Hence, using again Lemma B.4, it suffices to show the result for queries in CQ6= which include
inequality axioms between all their variables. We call those forced queries.

We now show that the claim holds for forced queries. To see this, considering such a query q on signature σ, letting p be the
sum of the multiplicities of all atoms in q (i.e., the number of atoms in the original CQ q), let σp be the signature obtained
from σ by creating a relation Ri for 1 6 i 6 p, with arity arity(R), for every relation R of σ, and let q′ be the rewriting of q
obtained by replacing every atom R(a) with multiplicity m by the disjunction

∨
m6j6pR

j(a) (and keeping the inequalities),

rewritten to a UCQ6=. We now see q′ as a UCQ6= in the usual sense (without multiplicities). We now claim that for any
bag-instance I on σ where facts have multiplicity 6 p, letting I ′ be the set-instance obtained by replacing every fact F = R(a)
of I with multiplicity m = I(F ) by the fact Rm(a), I |= q iff I ′ |= q′. To see why, observe that, as q is a forced query, if q has a
match m then every atom A of q must be mapped by m to a fact of I (written m(A)) and this mapping must be injective
(because m is), so that the necessary and sufficient condition is that I(m(A)) > pA (where pA is the multiplicity of A in q) for
every atom A of q; and this is equivalent to I ′ |= q′.

Now, q′ is a UCQ 6= so it can be tested in the sense of Definition 4.6 (as it is expressible in GSO, so we can apply Theorem 4.7);

fix k ∈ N∗ and let Aq′ = (Q,F, ι, δ) be a Γkσp -bNTA that tests q′ for width k. We build a Γkσ
p
-bNTA Aq = (Q,F, ι′, δ′) by

relabeling Aq′ in the following way. Recall the definition of Γkσ (Definition 4.3). For every ((d, f), i) ∈ Γkσ
p
, set f ′ to be either f

if f = ∅ and f ′ = Ri(a) if f = R(a), and set ι′(((d, f), i)) to be ι((d, f ′)) and δ′(qL, qR, ((d, f), i)) to be δ(qL, qR, (d, f
′)) for

every qL, qR ∈ Q.

We now claim that Aq tests q for treewidth k. To see why, it suffices to observe that for any Γkσ
p
-tree T , letting T ′ be the

Γkσp -tree obtained in the straightforward manner, then Aq accepts T iff Aq′ accepts T ′, which is immediate by construction.

Now indeed, as we know that Aq′ accepts T ′ iff 〈T ′〉 |= q′ (as Aq′ tests q′), and (as immediately 〈T ′〉 is the σp-instance
corresponding to 〈T 〉 as I ′ corresponds to I above) that 〈T ′〉 |= q′ iff 〈T 〉 |= q, we have the desired equivalence.

The only thing left is to observe that Aq does not only correctly test q on instances where each fact has multiplicity 6 p, but



correctly tests q on all bag-instances. But this is straightforward: as q matches at most p fact occurrences in the instance I, we
have I |= q iff I6p |= q. This concludes the proof.

We are now ready to prove Theorem 5.16:

Proof. We show the proof for CQs, and then extend to UCQs.
Let k ∈ N, q : ∃x q′(x) be the CQ. We rewrite q to q′′ : ∃x q′(x) ∧

∧
x∈x Px(x) for fresh unary predicates Px. We apply

Proposition 5.22 to compile q′′ to a Γkσ
p
-bNTA A, where p is the number of atoms of q′′, such that A tests q′′ for treewidth k.

We can clearly design a Γkσ
p
-bNTA A′ that checks on a Γkσ

p
-tree whether, for all x ∈ x, the input tree contains exactly one

Px-fact: this can be done with state space 2x. We intersect A and A′ to obtain a bNTA that recognizes all Γkσ
p
-trees that

satisfy the bag-query associated to q′′ and have exactly one Px-fact for all x ∈ x, and determinize this bNTA to obtain an
equivalent automaton A′′ which is deterministic: if it has an accepting run then it has exactly one accepting run.

Let I be the input instance, and I ′ be the instance where we added one fact Px(a) for all x ∈ x and a ∈ dom(I): we call
those the additional facts. We can clearly compute I ′ from I in linear time, and the treewidth is unchanged. Let TI′ be a tree
encoding of I ′, that is, a Γkσ-tree.

We claim that we can construct, from A′′, a bNTA A′′′ such that, for any valuation ν of TI′ that gives multiplicity 1 to the
additional facts, the number of accepting runs of A′′′ on ν(TI′) is the number of valuations ν′ from the additional facts to {0, 1}
such that A′′ accepts ν′′(TI′), where ν′′ follows ν′ on nodes encoding additional facts and follows ν otherwise. We proceed as
follows: first, duplicate the states of A′′ so that every state q is replicated to two states q and q′, q and q′ being treated exactly
the same way in terms of transitions in δ and in terms of being final (this preserves determinism). Now, ensure that for any

two states q1 and q2 and labels (τ, 0) and (τ, 1) in Γkσ
p

that encode a present or absent additional fact, δ(q1, q2, (τ, 0)) and
δ(q1, q2, (τ, 1)) are disjoint (as A′′ is deterministic, those are single facts, so if they are the same fact, replace one of them by its
equivalent copy). Now, modify the transitions of the automaton so that, for any states q1 and q2 and τ encoding an additional
fact, δ(q1, q2, (τ, 1)) is δ(q1, q2, (τ, 0)) ∪ δ(q1, q2, (τ, 1)). It is now clear that the resulting automaton A′′′ satisfies the desired
property: for any valuation ν as above, there is a bijection between the accepting runs of A′′′ and the valuations ν′ as above
such that ν′′(TI′) is accepted by A′′.

We now apply Theorem 5.14 with l the number of facts in the CQ q′′ to obtain a N[X]-circuit that captures the N[X]-l-
provenance of A′′′ on TI′ ; and fix to 1 all inputs except those coding a fact of I (i.e., nodes coding additional facts are set to 1)
and rename the remaining inputs to match the facts of I. Let l′ be the number of facts in the original CQ q. Then the circuit
captures: ⊕

JvI
J|=q∑

F∈supp(J) J(F )=l′

∣∣{ f : x→ dom(I) | J |= q′(f(x)) }
∣∣⊗
F∈J

F J(F ).

Now, J |= q′(f(x)) just means q′(f(x)) ⊆ J (as bag-instances), and as q′(f(x)) and J have same total multiplicity, this
actually means J = q′(f(x)). Hence, the above is equal to:⊕

f :x→dom(I)

I|=q′(f(x))

⊗
A(x)∈q′

A(f(x)).

and this is exactly ProvN[X](q, I).
For UCQs, observe that the provenance we need to compute (Definition 5.8) is simply the sum of the provenance for each

CQ. So we can just independently build a circuit for each CQ and combine the circuits into one (merging the input gates),
while choosing as distinguished gate a ⊕-gate of each distinguished gate.

C. PROOFS FOR SECTION 6 (APPLICATIONS)

C.1 Preliminaries
All proofs about probability evaluation in this section will use the notion of cc-instances, which we now introduce.
In this appendix, all Boolean circuits are non-monotone (i.e., they allow NOT-gates) and arity-two (Definition A.1), unless

stated otherwise. We will first define the formalism of cc-instances, then state a result about the construction of circuits (the
analogue of provenance circuits) for them, using Theorem 4.8, and finally explain how probability evaluation is performed using
that result using message-passing. We conclude by presenting the similar formalism of pc-instances, and stating tractability
results for them implied by the results on pcc-instances.

cc-instances. We define the formalism of cc-instances:

Definition C.1. A cc-instance is a triple J = (I, C, ϕ) of a relational σ-instance I, a (non-monotone arity-two) Boolean
circuit C, and a mapping ϕ from the facts of I to gates of C. The inputs Jinp of J are Cinp. For every valuation ν of Jinp, the
possible world ν(J) is the subinstance of I that contains the facts F of I such that ν(C)(ϕ(F )) = 1, and, as for c-instances,
JJK is the set of possible worlds of J .

A pcc-instance is a 4-tuple J = (I, C, ϕ, π) such that J ′ = (I, C, ϕ) is a cc-instance (and Jinp ··= J ′inp) and π : Jinp → [0, 1]
gives a probability to each input. As for pc-instances, the probability distribution JJK has universe JJ ′K and probability measure



PrJ(I ′) =
∑
ν|ν(J)=I′ PrJ(ν) with the product distribution:

PrJ(ν) =
∏
g∈Jinp

ν(g)=1

π(g)
∏
g∈Jinp

ν(g)=0

(1− π(g)).

We define relational encodings and treewidth for cc-instances:

Definition C.2. Let σCircuit be the signature of the relational encoding of Boolean circuits (Definition A.2). Let σ be a
signature and σ+ be the signature with one relation R+ of arity arity(R) + 1 for every relation R of σ. The relational encoding
IJ of a cc-instance J = (I, C, ϕ) over signature σ, is the (σCircuit t σ+)-instance containing both the σCircuit-instance IC
encoding C and one fact R+(a, ϕ(F )) for every fact F = R(a) in I.

A tree decomposition of a cc-instance J is a tree decomposition of IJ . Tree decompositions of pcc-instances are defined as a
tree decomposition of the corresponding cc-instance (the probabilities are ignored).

Circuits for cc-instances. We claim the following result about cc-instances, intuitively corresponding to the provenance
circuits of Section 4 for them (combined with their circuit annotation):

Theorem C.3. For any fixed integer k and GSO sentence q, one can compute in linear time, from a cc-instance J with
w(J) 6 k, a Boolean circuit C on Jinp such that for every valuation ν of Jinp, ν(C) = 1 iff ν(J) |= q, with w(C) depending only
on k and q.

We now prove this result, explaining later what it implies in terms of probability evaluation. We first introduce the notion of
cc-encoding. Recall the definition of tree decompositions of circuits (Definition A.2):

Definition C.4. A cc-encoding of width k is a tuple E′ = (E,C, T, χ) of a Γkσ-tree E of width k, a Boolean circuit C, a tree
decomposition T of C of width k with same skeleton as E, and a mapping χ : T → C selecting a selected gate such that
χ(b) ∈ dom(b) for all b ∈ T . The inputs E′inp of E′ are Cinp.

Given a valuation ν of Cinp, we extend it to an evaluation of C, and see it as a Boolean valuation of E by setting

ν(n) ··= ν(χ(b)) for the bag b of T corresponding to n in E, and write ν(E′) the resulting Γkσ-tree.

First, we explain how we can compute a cc-encoding of our cc-instance J = (I, C, ϕ) by “splitting” its tree decomposition T
in a tree decomposition of C and a Γkσ-tree E of I with same skeleton, with χ keeping track of the gate of C to which each
node n ∈ E was mapped by ϕ. Formally:

Lemma C.5. Recall the definition of ε (Definition 4.9). Given a cc-instance J = (I, C, ϕ) and a tree decomposition T of J of
width k, one can compute a cc-encoding E′ = (E,C′, T ′, χ) of width k, with C = C′, such that for any valuation ν of Cinp,
ε(ν(E′)) is an encoding of ν(J). The computation is in O(|T |+ |C|).

Proof. We process the tree decomposition T of J to construct E and T ′. We adapt the encoding construction described in
Lemma 4.5.

Whenever we process a bag b ∈ T , the mapping precomputed with J (see Lemma 4.5) is used to obtain all facts F of I for
which b is the topmost node where domain dom(F ) ⊆ dom(b) and ϕ(F ) ∈ dom(b).

For every such fact F , we create one bag b′ in T ′ labeled with all elements of dom(b) that are gates of G, and one node n in
E which is the encoding of F (considering only the domain dom(b) ∩ dom(I)) as for a normal relational instance. Set the
selected gate χ(b′) ··= ϕ(F ) (which is in dom(b′) by the condition according to which we chose to consider fact F ).

Because T was a tree decomposition of J , it is immediate that the resulting tree T ′ is indeed a tree decomposition of width
k of C and that E is a tree encoding of width k of I. By construction T ′ and E have same skeleton, and clearly the process is
in linear time in |T |+ |J |. We let E′ = (E,C′, T ′, χ).

It remains to check the last condition. Consider a Boolean valuation ν of the inputs of C. Consider the instance ν(J) and
its tree decomposition derived from T . It is clear that when one computes a tree encoding of ν(J) following T , one obtains an
encoding E′′ which is exactly E except that the facts have been removed from the nodes which used to encode in E a fact that
was removed from ν(J). Hence, E′′ is exactly ε(ν(E′)). This concludes the proof.

Second, we show the lemmas that will allow us to “glue together” the circuit C of the cc-instance, which annotates the
cc-encoding, with a provenance circuit for an automaton on the tree encoding.

Definition C.6. Let C = (G,W, g0, µ) and C′ = (G′,W ′, g′0, µ
′) be circuits such that G ∩G′ = C′inp (we say that C and C′

are stitchable). The stitching of C and C′, denoted C ◦ C′, is the circuit (G ∪G′,W ∪W ′, g′0, µ′′) where µ′′(g) is defined
according to µ for g ∈ G and according to µ′ otherwise. In particular, (C ◦ C′)inp = Cinp.

In the following lemmas about stitching, for clarity, we distinguish valuations ν to the inputs of a circuit and the evaluation
on all circuit gates, which we write ν(C) where C is the circuit.

The fundamental property of stitching is:

Lemma C.7. For any stitchable circuits C and C′, for any gate g of C′ and valuation ν of Cinp, letting ν′ be the restriction of
ν(C) to C′inp, we have: ν′(C′)(g) = ν(C ◦ C′)(g).

Proof. Fix C, C′, g, and ν. As C and C ◦C′ share the same inputs, ν is a valuation for both of them. Now, first note that
for any gate g of C, ν(C)(g) = ν(C ◦ C′)(g). Hence, in particular, for any input gate g of C′, as it is a gate of C because C
and C′ are stitchable, we have ν(C ◦ C′)(g) = ν(C)(g) = ν′(g). As this equality holds for any input gate g of C′, it inductively
holds for any gate of C′, which proves the result.



We show that a tree decomposition for C ◦ C′′ can be obtained from two tree decompositions T and T ′′ for C and C′′ that
have same skeleton, as the sum T + T ′′ with same skeleton where each bag b′′ of T + T ′ is the union of the corresponding bags
b and b′ in T and T ′. Namely:

Definition C.8. Given two tree decompositions T and T ′ with same skeleton, the sum of T and T ′ (written T + T ′) is the
tree decomposition T with same skeleton where every bag b′′ is the union of the corresponding bags b and b′ in T and T ′.

The following is immediate:

Lemma C.9. Given two tree decompositions with same skeleton T and T ′ of fixed width k and k′ for a Boolean circuit C and a
Boolean circuit C′, T + T ′ can be computed in linear time in T and T ′ and has width 6 k + k′ + 1.

We now show:

Lemma C.10. Let C and C′ be stitchable circuits with tree decompositions T and T ′ with same skeleton (with witnessing
bijection ψ). Assume that for any g ∈ C′inp and bag b of T ′ with g ∈ dom(b), we have g ∈ dom(ψ−1(b)). Then T + T ′ is a tree
decomposition of C ◦ C′.

Proof. We consider IC◦C′ and show that T + T ′ is a tree decomposition of it:

• Let g be a gate of C ◦ C′. If g is not a gate of C ∩ C′, then its occurrences in T + T ′ are only its occurrences in T or in
T ′, so that they form a connected subtree of T + T ′ as they did in T or T ′. If it is a gate of C ∩ C′, then it is an input
gate of C′ because C and C′ are stitchable, and by the hypothesis, its occurrences in T ′ are a subset of its occurrences in
T , so its occurrences in T + T ′ are its occurrences in T , and they also form a connected subtree.

• Let g be a tuple occurring in a fact of IC◦C′ . Clearly g occurs either in IC or in IC′ , so that it is covered by the bag bg
that covers all elements of g in T or in T ′.

Last, we conclude the proof of Theorem C.3:

Proof. Let k ∈ N, q be the GSO sentence, and let A be a Γkσ-bNTA that tests q for treewidth k according to Theorem 4.7,
which we lift to a Γkσ in the same way as in the proof of Theorem 4.8.

Construct in linear time in the input cc-instance J = (I, C, ϕ) a tree decomposition of J of width 6 k, and a cc-encoding
E′ = (E,C, T, χ) of width k of J , according to Lemma C.5, satisfying the conditions of that lemma. Now, use Theorem 4.8 to
compute an arity-two provenance circuit C′ of A on E and with a tree decomposition T ′ whose width is constant in I. We
further observe from the proof of the proposition that T ′ that has same skeleton as E (and T ), and that for any node n ∈ E,
the input gate for this node is in the bag corresponding to n in T ′.

We then observe that C′ and C are stitchable circuits, and that their tree decompositions T ′ and T have same skeleton and
satisfy the conditions of Lemma C.10. We deduce from this lemma and Lemma C.9 that we can construct in linear time the
stitching C′′ ··= C ◦ C′ and a tree decomposition of it, whose width does not depend on J . We now show that C′′ satisfies the
desired property, namely, ν(C′′) is 1 iff ν(J) |= q. For any valuation ν of Jinp, we have ν(C ◦ C′) = ν′(C′), by Lemma C.7,
where ν′ is the valuation of C′inp obtained from ν(C). It is clear by definition of ν(J) that a fact F is present in ν(J) iff ϕ(F ) is
true in ν(C). We conclude using the fact that ν′ is a provenance circuit: ν′(C′) holds iff {F ∈ I | ϕ(F ) true in ν(C)} |= q.

Probability evaluation. We now describe the consequences of Theorem C.3 in terms of probability evaluation. Here is what
we want to show:

Corollary C.11. The problem of computing the probability of a fixed GSO sentence on bounded-treewidth pcc-instances can
be solved in ra-linear time data complexity.

To prove this corollary, we need the following definition and key result:

Definition C.12. Let C = (G,W, g0, µ) be an (arity-two non-monotone) Boolean circuit and π be a probabilistic valuation
of C associating each g ∈ Cinp to a probability distribution πg on {0, 1}, that is, one rational v0 = πg(0) and one rational
v1 = πg(1) such that v0 + v1 = 1. The probability evaluation problem for C and π is to compute the probability distribution of
g0 under the product distribution for the inputs (i.e., assuming independence), that is, Prg0 mapping v ∈ {0, 1} to∑

ν∈Val(Cinp)

ν(g0)=v

∏
g∈Cinp

πg(ν(g))

where Val(Cinp) denotes the set of Boolean valuations of Cinp.

Theorem C.13. Given a tree decomposition T of width k of an arity-two Boolean circuit C, and given a probabilistic valuation
π of C, the probability evaluation problem for C and π can be solved in time ra-linear in 2k |T |+ |π|+ |C|.

With the above theorem, we can prove Corollary C.11 as follows:

Proof. Let J = (I, C, ϕ, π) be a pcc-instance of treewidth k and q a query. We use Theorem C.3 to construct in linear
time a Boolean circuit C′ of treewidth k′ dependent only on k and q, with distinguished gate g. We build from C′ a tree
decomposition of width k′ in linear time. The probability that q is true in J is Prg(1). We conclude as Theorem C.13 states
that this can be computed in ra-linear time in |C′|+ |π| for fixed k′.

We now prove Theorem C.13.



Proof. Fix T = (B,L,R, dom) a tree decomposition of a Boolean circuit C = (G,W, g0, µ) (so that for any b ∈ B, dom(b)
is a set of gates of G). We define E ··= L ∪ R and, for g ∈ G, V (g) the value set of g. For e = (b1, b2) ∈ E, we define
dom(e) ··= dom(b1) ∩ dom(b2), the shared elements between a bag and its parent. We assume an arbitrary order < over G and
see dom(b) as a tuple by ordering elements of dom(b) with < (this ordering taking constant time as the size of bags is bounded
by a constant). If dom(b) = (g1, . . . , gm), we note V (b) = {0, 1}m (and similarly, for e ∈ E, V (e) is the product over dom(e)).
For every g ∈ G, let β(g) ∈ B be an arbitrary bag containing g and all gates that are inputs of g, that is, all gates g′ such that
(g′, g, i) ∈W for some W : such a bag exists by definition of the tree decomposition of circuits (there is a fact in IC regrouping
g and the g′) and we can precompute such a function in linear time by a traversal of T . In particular, if g is an input gate,
then β(g) is an arbitrary bag containing just g.

We associate to every bag b ∈ B (resp., every edge e ∈ E) a potential function Φb : V (b)→ Q+ (resp., Φe : V (e)→ Q+),
where Q+ denotes the nonnegative rational numbers, initialized to the constant 1 function. We will store for each bag and each
edge the full table of values of Φe, i.e., at most 2k values, each of which has size bounded by |π|.

The functions πg for g ∈ Cinp are mappings from V (g) to R+. For a bag b ∈ B with g ∈ dom(b), we define πbg as the function
that maps every tuple d ∈ V (b) to πg(d

′) where d′ is the value assigned to g in d.
For g a non-input gate, let κ(g) be the tuple formed of g and all gates with a wire to g, ordered by <. Let f ··= µ(g) be the

function of g, in {¬,∨,∧, 0, 1}. We see f as a subrelation Rg of V (κ(t)) (the table of values of the function, with columns
reordered by applying < on g), that is, a set of (arity(f) + 1)-tuples which represents the graph of the function.

We update the potential function by the following steps, where the product of two functions f and f ′ which have same
domain D denotes pointwise multiplication, that is, (f × f ′)(x) = f(x)× f ′(x) for all x ∈ D:

1. For every g ∈ Cinp, we set Φβ(g) ··= Φβ(g) × πβ(g)
g .

2. For every g ∈ G\Cinp, we set Φβ(g)(d) ··= 0 if the projection of d onto κ(g) is not in Rg, we leave Φβ(g)(t) unchanged
otherwise.

Note that we have now initialized the potential functions in a way which exactly corresponds to that of [HD96], for a
straightforward interpretation of our circuit with probabilistic inputs as a special case of a belief network where all non-root
nodes are deterministic (i.e., have a conditional distribution with values in {0, 1}).

We now apply as is the Global Propagation steps described in Section 5.3 of [HD96]: if we choose the root of the tree
decomposition as the root cluster X, this consists in propagating potentials from the leaves of the tree decomposition up to the
root, then from the root down to the leaves of the tree. This process is linear in |T | and, at every bag of T , requires a number
of arithmetic operations linear in 2k.

As shown in [LS88,HD96], at the end of the process, the desired probability distribution Prg for gate g can be obtained by

marginalizing Φβ(g):

Prg(d
′) =

∑
d∈V (β(g))

dk=d′

Φβ(g)(d)

where k is the position of g in dom(β(g)).
The whole process is linear in |T | × 2k + |C|+ |π| under fixed-cost arithmetic; under real-cost arithmetic, belief propagation

requires multiplying and summing linearly many times O(|T | × 2k) probability values, each of with size bounded by |π|, which
is polynomial-time in |T |, 2k, |π|.

Consequences for pc-instances. We define the existing formalism of (p)c-instances [SORK11], which is analogous to
(p)cc-instances, but annotates facts with propositional formulae rather than circuits:

Definition C.14 [HAKO09,GT06]. A c-instance J is a relational instance where each tuple is labeled with a propositional
formula of variables (or events) from a fixed set X. For a valuation ν of X mapping each variable to {0, 1}, the possible world
ν(J) is obtained by retaining exactly the tuples whose annotation evaluates to 1 under ν; JJK is the set2 of all these possible
worlds.

A pc-instance J = (J ′, π) is defined as a c-instance J ′ and a probabilistic valuation3 π : X → [0, 1] for the variables used
in J ′. The probability distribution JJK defined by J has universe JJ ′K and probability measure PrJ (I) ··=

∑
ν|ν(J′)=I PrJ (ν) with

the product distribution on valuations:

PrJ(ν) ··=
∏

x∈X
ν(x)=1

π(x)
∏

x∈X
ν(x)=0

(1− π(x)).

We define a notion of treewidth for them:

Definition C.15. Let σo = σ ∪ {Occ,Cooc}, where Occ and Cooc have arity two. From a pc-instance J, we define the
relational encoding IJ of J as the σo-instance where each event e of J is encoded to a fresh ae ∈ dom(J), and where we add a
fact Occ(a, ae) in IJ whenever a ∈ dom(J) is used in a fact annotated by a formula involving e, and Cooc(ae, af ) whenever
events e and f co-occur in the formula of some fact.

The treewidth w(J) of a (p)c-instance J is w(IJ).

2Different valuations may yield the same possible world.
3Like all probabilities in this paper, the values of π are rationals.



This notion of treewidth, through event (co-)occurrences, can be connected to treewidth for (p)cc-instances, to ensure
tractability of query evaluation on (p)c-instances of bounded treewidth in that sense. A technicality is that we must first
rewrite annotations of the bounded-treewidth (p)c-instance to bound their size by a constant; but we can show:

Proposition C.16. For any fixed k, given a (p)c-instance J of width 6 k, we can compute in linear time a (p)cc-instance J
which is equivalent (has the same possible worlds with the same probabilities) and has treewidth depending only on k.

Proof. We first justify that we can compute in linear time from J (p)c-instance J ′ with the same events such that for any
valuation ν, we have ν(J) = ν(J ′) (and PrJ(ν) = PrJ′(ν)), and the annotations of J ′ have size depending only on k.

Indeed, we observe that by our assumption that w(J) 6 k, for any formula F in an annotation, the number of distinct events
occurring in F is at most k. Indeed, there is a Cooc clique between these events in IJ , so that as w(IJ) 6 k (by Lemma 1
of [Gav74]) there must be less than k of them.

Now, we observe that any formula in J can be rewritten, in linear time in this formula for fixed k, to an equivalent formula
whose size depends only on k. Indeed, for every valuation of the input events, which means at most 2k valuations by the above,
we can evaluate the formula in linear time; then we can rewrite the formula to the disjunction of all valuations that satisfy it,
each valuation being tested as the conjunction of the right events and negation of events. So this overall process produces in
linear time an equivalent (p)c-instance J ′ where the annotation size depends only on k. So we can assume without loss of
generality that the size of the annotations of J is bounded by a constant.

Consider now the (p)c-instance J , its relational encoding IJ , and a tree decomposition T of IJ . We build a tree decomposi-
tion T ′ of a relational encoding IJ of a cc-instance J ′ = (I, C, ϕ) designed to be equivalent to J . Start by adding to C the
input gates, which correspond to the events of J .

Now, consider each fact F = R(a) of J . Let e be the set of events used in the annotation AF of F . Note that every pair of
S = at e co-occurs in some fact of IJ : the elements of a co-occur within F , the elements of e co-occur in a Cooc fact, and any
pair of elements from a and e co-occur in some Occ fact. Hence, by Lemma 1 of [Gav74], there is a bag bF ∈ T such that
S ⊆ dom(b).

Let CF be a circuit representation of the Boolean function AF on E, whose size depends only on k. Add CF to C, add F to
I, and set ϕ(F ) to be the distinguished node of CF . We have thus built J ′, which by construction is equivalent to J .

We now build T ′ by making it a copy of T . Now, for each fact F , considering its bag bF , and b′F the corresponding bag
in T ′, we add all elements of CF to b′F . This decomposition clearly covers all facts of IJ′ , and event occurrences form subtrees
because they do in T and the elements that we added to T ′ are always in a single bag only. Last, it is clear that the bag size
depends only on k, as the size of the CF added to the bags depends only on k, and at most k of them are added to each bag
(because there are at most k elements per bag).

We have not talked about probabilities, but clearly if J is a pc-instance the probabilities of the inputs of the pcc-instance J ′

should be defined analogously.

We can now combine the above with Theorem C.3, and deduce the tractability of query evaluation on bounded-treewidth
pc-instances.

Theorem C.17. For bounded-treewidth pc-instances, the probability query evaluation problem for Boolean MSO queries can be
solved in ra-linear time data complexity.

Proof. The result is an immediate consequence of Proposition C.16 and Theorem C.3 as long as we show that, for any fixed
k ∈ N∗, and for every (p)c-instance J of width 6 k, one can compute in linear time a (p)c-instance J ′ with the same events
such that for any valuation ν, we have ν(J) = ν(J ′) (and PrJ(ν) = PrJ′(ν)), and the annotations of J ′ have size depending
only on k.

Fix k and J . We observe that by our assumption that w(J) 6 k, for any formula Φ in an annotation, the number pΦ of
distinct events occurring in Φ is at most k. Indeed, there is a Cooc clique between these events in IJ and each of them is
connected by the Occ relation to domain elements of the fact F annotated by Φ (there is at least one), so we have in total a
(pΦ + 1)-clique. By Lemma 1 of [Gav74], any tree decomposition must have one node containing all these pΦ + 1 elements, and
therefore pΦ 6 k.

Now, we observe that any formula in J can be rewritten, in linear time in this formula for fixed k, to an equivalent formula
whose size depends only on k. Indeed, for every valuation of the input events, which means at most 2k valuations by the above,
we can evaluate the formula in linear time; then we can rewrite the formula to the disjunction of all valuations that satisfy it,
each valuation being tested as a conjunction of at most k literals. So this overall process produces in linear time an equivalent
(p)c-instance where the annotation size depends only on k.

C.2 Probabilistic XML
We will first prove the result on scopes (Proposition 6.5) and then prove the result on local models (Theorem 6.4).

XML and instances. As XML documents are unranked, it is often more convenient to manipulate their binary left-child-
right-sibling representation:

Definition C.18. The left-child-right-sibling (LCRS) representation of an unranked rooted ordered Λ-tree T is the following
Λ-tree T ′: a node n whose children are the ordered sequence of siblings n1, . . . , nk is encoded as the node n with L(n) = n1,
R(n1) = n2, ..., R(nk−1) = nk; we complete by nodes labeled ⊥ /∈ Λ to make the tree full.

We now define how XML documents can be encoded to the relational setting.



Definition C.19. Given a Λ-document D, let σΛ be the relational signature with two binary predicates FC and NS (for “first
child” and “next sibling”), and unary predicates Pλ for every λ ∈ Λ. The relational encoding ID of D is the-σΛ instance with
dom(ID) = dom(D), such that:

• for any consecutive siblings (n, n′), NS(n, n′) holds;

• for every pair (n, n′) of a node n ∈ D and its first child n′ ∈ D following sibling order, FC (n, n′) holds;

• for every node n ∈ D, the fact Pλ(n)(n) holds.

Lemma C.20. The relational encoding ID of an XML document D has treewidth 1 and can be computed in linear time.

Proof. Immediate: the relational encoding is clearly computable in linear time and there is a width-1 tree decomposition
of the relational encoding that has same skeleton as the LCRS representation of the XML document.

Importantly, the language of MSO queries on XML documents can be easily translated to queries on the relational encoding:

Lemma C.21. For any MSO query q on Λ-documents, one can compute in linear time an MSO query q′ on σΛ such that for
any Λ-document D, D |= q iff ID |= q′.

Proof. We add a constant overhead to q by defining the predicates λ(x) for λ ∈ Λ as Pλ(x), the predicate x < y to be the
transitive closure of NS (¬(x = y) ∧ ∀S(x ∈ S ∧ (∀zz′(z ∈ S ∧NS(z, z′))⇒ z′ ∈ S)⇒ y ∈ S)), and the predicate x→ y to be
∃z,FC (x, z) ∧ (z = y ∨ z < y). It is clear that the semantics of those atoms on ID match that of the corresponding atoms on
D, so that a straightforward structural induction on the formula shows that q′ satisfies the desired properties.

Definition C.22. Given label set Λ, we say that an XML document D on Λ t {⊥,det} is a sparse representation of an XML
document D′ on Λ if the root is labeled with an element of Λ, and the XML document obtained from D by removing every ⊥
node and their descendants, and replacing every det node by the collection of its children, in order, is exactly D′.

We say that a σΛt{det} instance I is a weak relational encoding of an XML document D with label set Λ if there exists a
sparse representation D′ of D such that I is the relational encoding of D′ except that P⊥ facts are not written.

Proposition C.23. For any MSO query q on XML documents with (fixed) label set Λ, one can compute in linear time an
MSO query q′ on σΛ such that for any XML document D on label set Λ, if D |= q then I |= q′ for any weak relational encoding
I of D; and conversely if D 6|= q then I 6|= q′ for any weak relational encoding I of D.

Proof. We show that, for any MSO query q on XML documents with (fixed) label set Λ, one can compute in linear time
an MSO query q′ on documents with label in Λ t {⊥,det} such that for any XML document D on label set Λ, if D |= q then
D′ |= q′ for any sparse representation D′ of D; and conversely if D 6|= q then D′ 6|= q′ for any sparse representation D′ of D.
The result then follows by Lemma C.21.

We call regular the nodes with label in Λ. Consider a document D and sparse representation D′ of D with a mapping f
from D to D′ witnessing that D′ is a sparse representation of D. Let us consider a node n ∈ D with children n1, . . . , nk in
order, and determine what is the relationship between f(n) and the f(ni) in D′.

It is straightforward to observe that f(n) is regular and the f(ni) are topmost regular descendants of f(n) in D′; and for
i < j, there is some node n′ in D′ (intuitively, their lowest common ancestor, which is a descendant of f(n), possibly f(n)
itself) such that n′ is both an ancestor of f(ni) and f(nj), n

′ is a descendant of f(n), and n′ has two children n′1 and n′2 such
that f(ni) is a descendant of n′1 (maybe they are equal), f(nj) is a descendant of n′2 (maybe they are equal), and n′1 < n′2
in D′. Note that n′, n′1 and n′2 are not necessarily regular nodes of D but can be det nodes. In addition, no ⊥ node can be
traversed in any of the ancestor–descendant chains discussed in this paragraph.

It is now clear that we can have MSO predicates →′ and <′ in D′ following these informal definitions (and not depending on
D or D′), defined from predicates →, < and λ(·) on D′, such that for every D and sparse encoding D′ of D, for every nodes
n, n′ ∈ D, we have n→ n′ in D iff f(n)→ f(n′) in D′ (which should only hold between regular nodes, so nodes in the image
of f), and likewise for <. Last, it is clear that the predicates λ(·) of D can be encoded directly to the same predicates in
D′.

Probabilistic XML. We formally introduce probabilistic XML. We start by PrXMLfie, i.e., PrXML with events, which was
just called PrXML in the main text.

Definition C.24. A PrXMLfie probabilistic XML document D = (D′, π) is a (Λt{fie})-document D′ where edges from fie nodes
to their children are labeled with a propositional formula over some set of Boolean events X, and a probabilistic valuation π
mapping each e ∈ X used in D to an independent probability π(e) ∈ [0, 1] of being true.

The semantics JDK of D is obtained by extending π to a probability distribution on valuations ν of X as usual, and defining
ν(D) for ν to be D′ where all fie nodes are replaced by the collection of their children with edge annotation Φ such that ν(Φ) = 1
(the others, and their descendants, are discarded). We require the root to have label in Λ.

We will prove Proposition 6.5 via an encoding of PrXMLfie to pc-instances:

Definition C.25. The pc-encoding of a PrXMLfie document D = (D′, π) in Λt{fie} is the pc-instance JD = (J ′D, π
′) with same

events, π′ = π, and where the c-instance J ′D is the relational encoding of D′ with the following annotations. NS- and FC -facts
are annotated with 1. Pλ(n)-facts are annotated with the annotation Φ of the edge from the parent of n to n, if Φ exists, with 1
otherwise.



Proposition C.26. For any MSO query q on Λ-documents, one can compute in linear time an MSO query q′ on σΛ such that
for any PrXMLfie XML document D, for any valuation ν of D, letting ν′ be the corresponding valuation of JD, we have that
ν(D) |= q iff ν′(JD) |= q′.

Proof. We prove that for any valuation ν of D, letting ν′ be the corresponding valuation of JD, we have that ν′(JD) is a
weak encoding of ν(D) (we see Pfie facts in ν′(JD) as if they were Pdet facts). The result then follows by Proposition C.23.

We first show that for any valuation ν of D and corresponding valuation ν′ of JD, for every λ ∈ Λ, n is a node of ν′(JD)
that is retained in the XML document ν′(JD) is a sparse representation of iff n is a node which is retained in ν(D), with
same labels. Indeed, for the forward implication, observe that any fact Pλ(n) is created for node n with label λ in n, and it
is retained if and only if all its regular ancestors are retained and the annotation of its parent edge in ν(D) evaluates to 1;
conversely, if n has label λ in D then a fact Pλ(n) was created in I and if n is retained in ν(D) then all the conditions on edges
in the chain from n to the root evaluate to 1 so Pλ(n) does hold and n is retained in ν′(JD).

We further know that by construction relations FC and NS correspond to the first-child and next-sibling relations in D no
matter the valuation.

So we deduce that JD is the relational encoding of the XML document obtained from D by replacing all nodes not kept in
ν(D) by ⊥ nodes, and removing all edge annotations.

Observe that in this definition of pc-encoding, it is not the case that the possible worlds of JD are the relational encodings
of the possible worlds of D. For instance, the fie nodes are retained as is, and FC - and NS -facts are always retained even if
the corresponding nodes are dropped. The following example shows that it would not be reasonable to ensure such a strong
property:

Example C.27. Consider an fie node with k children n1, . . . , nk, all annotated with independent events with probability 1/2.
In a straightforward attempt to encode this node and its descendants to a pc-instance J (or even to a pcc-instance J), we would
create one domain element ei for each of the ni. But then we would need to account for the fact that, as any pair ni, nj may be
retained individually, the fact NS(ei, ej) would need to occur in a possible world of J , and thus would also occur in J . So this
näıve attempt to ensure that the possible worlds of J are exactly the relational encodings of the possible worlds of D leads to a
pcc-instance of quadratic size and linear treewidth.

Tractability for PrXMLfie. Of course we cannot hope that the pc-encoding of a PrXMLfie document always has constant
treewidth for it is known that for PrXMLfie, evaluating MSO queries is almost always #P -hard ([KKS08], Theorem 5.2). A
first notion of tractability for a PrXMLfie document D is the treewidth (following Definition C.15) of the pc-encoding of D.
Indeed, Proposition C.26 and Theorem C.17 imply the following:

Corollary C.28. For PrXMLfie documents with bounded-treewidth pc-encoding, the MSO probabilistic query evaluation problem
can be solved in ra-linear time data complexity.

The condition on event scopes is a simpler sufficient condition for tractability. We give its formal definition:

Definition C.29. Consider a PrXMLfie document D with event set X and its LCRS representation D′. We say that an event
e ∈ X occurs in a node n of D′ if e occurs in the annotation of the edge from the parent of n to n. For every e ∈ X, let
D′e be the smallest connected subtree of D′ that covers all nodes where e occurs. The event scope S(n) of a node n ∈ D′ is
{e ∈ X | n ∈ D′e}. The event scope width of D is ws(D) ··= maxn∈D |S(n)|.

We are now ready to prove the result on XML element scopes:

Proposition C.30. For any PrXMLfie document D, we have w(JD) 6 ws(D) + 1.

Proof. We show how to build a tree decomposition of the relational encoding of JD from the event scopes. Consider the
tree decomposition T of ID that is isomorphic to a LCRS encoding D′ of D: the root node of D′ is coded to an empty bag,
and each node n of the LCRS encoding with parent n′ is coded to {n′, n}.

We now add to T , for each bag b corresponding to a node n, the events of S(n). It is clear that T is of the prescribed width
and that the occurrences of all nodes and events are connected subtrees.

We now argue that it is a tree decomposition of the relational encoding of JD, but this is easily seen: it covers all NS - and
FC - facts represented in JD, and covers all occurrences and co-occurrences by construction of the scopes.

This implies Proposition 6.5 because of Corollary C.28.

Tractability of PrXMLmux,ind. We use Corollary C.28 to show the tractability of query evaluation on the PrXMLmux,ind local
model, which was already proven in [CKS09]. We first rewrite input documents to a simpler form:

Definition C.31. Two PrXMLmux,ind documents D1 and D2 are equivalent if for every XML document D, PrD1(D) = PrD2(D).

Definition C.32. We say that a PrXMLmux,ind is in binary form if it is a full binary tree, and the sum of the outgoing
probabilities of every mux node is equal to 1.

The following definition is needed to ensure linear time execution for technical reasons:

Definition C.33. A PrXMLmux,ind document is normalized if for every mux nodes, the rational probabilities that annotate its
child nodes all share the same denominator.

Lemma C.34. From any normalized PrXMLmux,ind document D, we can compute in linear time in D an equivalent PrXMLmux,ind

document D′ which is in binary form.



Proof. In this proof, for brevity, we use det nodes to refer to ind nodes whose child edges are all annotated with probability 1.
First, rewrite mux nodes whose outgoing probabilities sum up to < 1 by adding a det child for them with the remaining

probability. This operation is in linear time because the corresponding number has same denominator as other children of the
mux node (as the document is normalized), and the numerator is smaller than the denominator.

Next, use det nodes to rewrite the children of regular and ind nodes to a chain so that all regular and ind nodes have at most
2 children. This only causes a constant-factor blowup of the document.

Next, rewrite mux nodes with more than two children to a hierarchy of mux nodes in the obvious way: considering a mux
node n with k children n1, . . . , nk and probabilities p1, . . . , pk summing to 1, we replace n by a hierarchy n′1, . . . , n

′
k−1 of mux

nodes: the children of each n′i is ni with probability pi∑
j<i pj

and n′i+1 with probability 1− pi∑
j<i pj

; except for n′k−1 whose

children are nk−1 and nk (with the same probabilities). This operation can be performed in linear time as the denominators of
the fractions simplify (by the assumption that the document is normalized), and the sum operations work on operands and
results which are smaller than the numerator.

Now, replace mux nodes with < 2 children by ind nodes (the probabilities are unchanged).
Last, add det children to nodes so that the degree of every node is either 2 or 0.
This process can be performed in linear time and that the resulting document is in binary form; equivalence has been

maintained through all steps.

Now, we can show:

Proposition C.35. For any PrXMLmux,ind document D in binary form, one can compute in linear time an equivalent PrXMLfie

document whose scopes have size 6 1.

Proof. For every ind node n with two children n1 and n2 with probabilities p1 and p2, introduce two fresh events eind,1
n and

eind,2
n with probabilities p1 and p2, and replace n by a fie node so that its first and second outgoing edges are annotated with
eind,1
n and eind,2

n .
Likewise, for every mux node n with two children n1 and n2 with probabilities p and 1− p, introduce a fresh event emux

n with
probability p and replace n by a fie node so that its first and second outgoing edges are annotated with emux

n and ¬emux
n .

It is immediate that the resulting document D′ is equivalent to D. Now, consider the scope of any node of this document.
Only one event occurs in this node, and the only events that occur more than one time in the document occur exactly twice,
on the edges of two direct sibling nodes, so they never occur in the scope of any other node. Hence all scopes in D have size
6 1.

From this, given that PrXMLmux,ind document can be normalized in ra-linear time, we deduce the tractability of MSO query
evaluation on PrXMLmux,ind, as claimed in the main text:

Theorem 6.4 [CKS09]. MSO query evaluation on PrXMLmux,ind has ra-linear data complexity.

C.3 BID instances
We show the tractability of MSO query evaluation on BID through Theorem C.3 and Corollary C.11, using the following

result:

Lemma C.36. For any fixed k ∈ N∗, given a BID instance J with w(J) 6 k, we can compute in ra-linear time an equivalent
pcc-instance J ′ where w(J ′) depends only on k.

However, the proof of this result is non-trivial. By an encoding to pc-instances, it is straightforward to show the result if we
assume that the size of each block is bounded by a constant. But otherwise, we need to build a decision circuit for which value
to pick for each key; we do so in a tree-like fashion following a decomposition of the BID instance.

Proof. Fix k and J . First, compute in linear time a tree decomposition T of J of width w(J) 6 k.
Without loss of generality, we can assume that probabilities within each block of J are rationals with the same denominator

(if this is not the case, we normalize these probabilities in ra-linear time).
As in the proof of Lemma 4.5, we can assume that every fact of J has been assigned to a bag of T where it is covered (i.e.,

F = R(a) with a ⊆ dom(b) for b the covering bag). Actually, still in the spirit of the proof of Lemma 4.5, we can modify the
decomposition T by copying nodes to create chains, so that we can assume that at most one fact is assigned to each bag. This
preprocessing can be performed in linear time. For every fact F of J we let β(F ) be the bag of T to which fact F was assigned.

We compute the pcc-instance J ′ = (J,C, ϕ) by building C and ϕ and a tree decomposition T ′ for J ′ with same skeleton as
T , which is initialized as a copy of T . We add the gates of C to T ′ to turn it into a tree decomposition of J ′.

Let B be the set of blocks: a key a ∈ B is a pair of a relation symbol and a tuple that is a key in J for that relation. We write
Ja to refer to J restricted to the facts of block a; and |Ia| is the size (not the number of facts!) of this part of the instance (the
size of both the facts and the associated probabilities). It is then clear that

∑
a∈B |Ia| = |J |, the size of the original instance.

Now, for every a ∈ B, consider the subset of bags Ta of T that cover a; it is a connected subtree, as it is the intersection for
every element a ∈ a of the occurrence subtree Tk of this element, which are connected subtrees, and it is not empty because
the elements of a must occur together in some fact of J so they also do in some bag of T . What is more, we can precompute in
linear time the roots of all the Ta (by the same precomputation as in the proof of Lemma 4.5). It is also clear that

∑
a∈B |Ta|

is of size linear in |J |, as, for fixed σ and k, each bag of T can only occur in a constant number of Ta.
So we prove the result in the following way: for each a ∈ B, we compute in time O(|Ia|+ |Ta|) a circuit Ca to annotate the

facts of Ia in J ′, and we add the gates of Ca to T ′ to obtain a tree decomposition of J ′ so far, making sure that we add only a



constant number of gates to each bag, and only to bags that are in Ta. If we can manage this for every a ∈ B, then the result
follows, as we can process the blocks in J in order (as they are provided); our final pcc-instance has width that is still constant
(for each bag of T can only occur in a constant number of Ta); and by the arguments about the sizes of the sums, the overall
running time of the algorithm is linear in J .

So in what follows we fix a ∈ B and describe the construction of Ca and the associated decomposition.
Using our preprocessed table to find the root of Ta, we can label its nodes by going over it top-down, in time linear in Ta.

We now notice that for every fact F = R(a,v) of Ia, the bag β(F ) covers F so it must be in Ta. We write βa for the restriction
of the function β to the facts of Ia.

We now say that a bag b ∈ Ta is an interesting bag either if it is in the image of fa or if it is a lowest common ancestor of
some subset of bags that are in the image of fa. We now observe that the number of interesting bags of Ta is linear in the
number of facts of Ia; indeed, the interesting bags form the internal nodes and leaves of a binary tree whose leaves must all be
in the image of βa, so the number of leaves is at most the number of facts of Ia, so the total number of nodes in the tree is
linear in the number of leaves.

We now define a weight function w on Ta by w(b) = π(F ) (the probability of F ) for F ∈ Ia and βa(F ) = b, if any such F
exists; w(b) = 0 otherwise. We define bottom-up a cumulative weight function w′ on Ta as w(b), plus w′(L(b)) if L(b) ∈ Ta,
plus w′(R(b)) if R(b) ∈ Ta. For notational convenience we also extend w′ to anything by saying that w′(b) = 0 if b /∈ Ta or b
does not exist.

Observe now that for a non-interesting bag b, w(b) and w′(b) can be represented either as 0 or as a pointer to some w(b′)
or w′(b′) for an interesting bag b′. Indeed, if b is non-interesting then we must have w(b) = 0. Now we show that if b has a
topmost interesting descendant b′ then it is unique: indeed, the lowest common ancestor of two interesting descendants of b is
a descendant of b and it is also interesting, so there is a unique topmost one. Now this means that either b′ does not exist and
w′(b) = 0, or it does exist and all descendants of b that are in the image of βa are descendants of b′, so that w′(b) = w′(b′) and
we can just make w′(b) a pointer to w′(b′).

Now this justifies that we can compute w and w′ bottom-up in linear time in |Ta|+ |Ia|: observe that we are working on
rationals with the same denominator, so the sums that we perform are sums of integers, whose size always remains less than
the common denominator; as there is a number of interesting bags which is linear in the number of facts of Ia, and those are
the only nodes for which a value (whose size is that of the probabilities in Ia) actually needs to be computed and written, the
computation is performed in time O(|Ta|+ |Ia|) overall.

We now justify that we can encode Ta to a circuit with the correct probabilities. For each bag b ∈ Ta, we create a gate gi
b;

for the root bag b it is an input gate with probability w′(b); for other bags it is a gate whose value is defined by the parent bag.
Intuitively, gi

b describes whether to choose a fact from Fa within the subtree rooted at b.
For every interesting bag b, writing w′(b) = k′/d and w(b) = k/d with d the common denominator, create one input gate gh

b

with probability 1
w′(b) w(b) = k/k′, and one gate gh∧

b which is the AND of gh
b and gi

b. Intuitively, this gate describes whether

to generate the fact assigned at this node, if any. If there is such a fact, set its image by ϕ to be gh∧
b . Now if w′(b) > w(b)

(intuitively: there is still the possibility to generate fact at child nodes), we create one input gate g↔b which has probability
1

w′(b)−w(b)
w′(L(b)). Once again, this probability simplifies to a rational whose numerator and denominator are < d. We create

a gate gL
b to be gi

b ∧ ¬gh
b ∧ g↔b (creating a constant number of intermediate gates as necessary), and gR

b to be gi
b ∧ ¬gh

b ∧ ¬g↔b ,
setting them to be gi

L(b) and gi
R(b) where applicable (i.e., if L(b) and R(b) exist and are in Ta).

By contrast, non-interesting bags b just set gi
L(b) and gi

R(b) (where applicable) to be gi
b, with no input gates.

We now observe that by construction the resulting circuit has a tree decomposition that is compatible with T , so that we
can add its events to T ′ and only add constant width to the nodes of Ta as required. It is also easy to see that the circuit gives
the correct distribution on the facts of Fa, with the following invariant: for any bag b ∈ Ta, the probability that gi

b is 1 is w′(b),
and gh∧

b , gL
b and gR

b are either all 0 if gi
b is 0 or, if gi

b is 1, exactly one is true and they respectively have marginal probabilities
w(b), w′(L(b)), and w′(R(b)). Now the circuit construction is once again in time O(|Ia|+ |Ta|), noting that interesting nodes
are the only nodes where numbers need to be computed and written; and we have performed the entire computation in time
O(|Ia|+ |Ta|), so the overall result is proven.

Combining Lemma C.36 and Theorem C.3, we can conclude:

Theorem 6.7. For any fixed k ∈ N, MSO query evaluation on an input BID instance of treewidth 6 k has ra-linear data
complexity.
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