Provenance Circuits for Trees and Treelike Instances

Antoine Amarilli ${ }^{1}$, Pierre Bourhis ${ }^{2}$, Pierre Senellart ${ }^{1,3}$

${ }^{1}$ Télécom ParisTech
${ }^{2}$ CNRS-LIFL
${ }^{3}$ National University of Singapore
July 10th, 2015

General idea

- We consider a query and a relational instance
- Often it is not sufficient to merely evaluate the query:
\rightarrow We need quantitative information
\rightarrow We need the link from the output to the input data

General idea

- We consider a query and a relational instance
- Often it is not sufficient to merely evaluate the query:
\rightarrow We need quantitative information
\rightarrow We need the link from the output to the input data
\rightarrow Compute query provenance!

Example 1: security for a conjunctive query

- Consider the conjunctive query: $\exists x y z R(x, y) \wedge R(y, z)$
- Consider the relational instance below:

		R
a	b	
b	c	
d	e	
e	d	
f	f	

Example 1: security for a conjunctive query

- Consider the conjunctive query: $\exists x y z R(x, y) \wedge R(y, z)$
- Consider the relational instance below:

		R
a	b	
b	c	
d	e	
e	d	
f	f	

- Result: true

Example 1: security for a conjunctive query

- Consider the conjunctive query: $\exists x y z R(x, y) \wedge R(y, z)$
- Consider the relational instance below:

		R
a	b	Public
b	c	Secret
d	e	Confidential
e	d	Confidential
f	f	Top secret

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available

Example 1: security for a conjunctive query

- Consider the conjunctive query: $\exists x y z R(x, y) \wedge R(y, z)$
- Consider the relational instance below:

		R
a	b	Public
b	c	Secret
d	e	Confidential
e	d	Confidential
f	f	Top secret

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

Example 1: security for a conjunctive query

- Consider the conjunctive query: $\exists x y z R(x, y) \wedge R(y, z)$
- Consider the relational instance below:

		R
a	b	Public
b	c	Secret
d	e	Confidential
e	d	Confidential
f	f	Top secret

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

Example 1: security for a conjunctive query

- Consider the conjunctive query: $\exists x y z R(x, y) \wedge R(y, z)$
- Consider the relational instance below:

		R
a	b	Public
b	c	Secret
d	e	Confidential
e	d	Confidential
f	f	Top secret

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

Example 1: security for a conjunctive query

- Consider the conjunctive query: $\exists x y z R(x, y) \wedge R(y, z)$
- Consider the relational instance below:

		R
a	b	Public
b	c	Secret
d	e	Confidential
e	d	Confidential
f	f	Top secret

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

Example 1: security for a conjunctive query

- Consider the conjunctive query: $\exists x y z R(x, y) \wedge R(y, z)$
- Consider the relational instance below:

		R
a	b	Public
b	c	Secret
d	e	Confidential
e	d	Confidential
f	f	Top secret

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?
\rightarrow Result: Confidential

Example 2: bag queries

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R
a	b
b	c
d	e
e	d
f	f

Example 2: bag queries

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R
a	b
b	c
d	e
e	d
f	f

- Result: true

Example 2: bag queries

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	1
b	c	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations

Example 2: bag queries

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	1
b	c	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?

Example 2: bag queries

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	1
b	c	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
\rightarrow Result: 1

Example 2: bag queries

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	1
b	c	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
\rightarrow Result: $1+1$

Example 2: bag queries

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	1
b	c	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
\rightarrow Result: $1+1+1$

Example 2: bag queries

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	1
b	c	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
\rightarrow Result: $1+1+1+1$

Example 2: bag queries

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	1
b	c	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
\rightarrow Result: $1+1+1+1=4$

Example 3: uncertain facts

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R
a	b
b	c
d	e
e	d
f	f

Example 3: uncertain facts

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R
a	b
b	c
d	e
e	d
f	f

- Result: true

Example 3: uncertain facts

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

- Result: true
- Assume facts are uncertain, give them atomic annotations

Example 3: uncertain facts

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?

Example 3: uncertain facts

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
\rightarrow Result: $\left(f_{1} \wedge f_{2}\right)$

Example 3: uncertain facts

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
\rightarrow Result: $\left(f_{1} \wedge f_{2}\right) \vee\left(f_{3} \wedge f_{4}\right)$

Example 3: uncertain facts

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
\rightarrow Result: $\left(f_{1} \wedge f_{2}\right) \vee\left(f_{3} \wedge f_{4}\right)$

Example 3: uncertain facts

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

R		
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
\rightarrow Result: $\left(f_{1} \wedge f_{2}\right) \vee\left(f_{3} \wedge f_{4}\right) \vee f_{5}$

Example 3: uncertain facts

Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
\rightarrow Result: $\left(f_{1} \wedge f_{2}\right) \vee\left(f_{3} \wedge f_{4}\right) \vee f_{5}$

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result:

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result:

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result: $\left(f_{1} \otimes f_{2}\right)$

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result: $\left(f_{1} \otimes f_{2}\right)$

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result: $\left(f_{1} \otimes f_{2}\right) \oplus\left(f_{3} \otimes f_{4}\right)$

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result: $\left(f_{1} \otimes f_{2}\right) \oplus\left(f_{3} \otimes f_{4}\right)$

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result: $\left(f_{1} \otimes f_{2}\right) \oplus\left(f_{3} \otimes f_{4}\right) \oplus\left(f_{4} \otimes f_{3}\right)$

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result: $\left(f_{1} \otimes f_{2}\right) \oplus\left(f_{3} \otimes f_{4}\right) \oplus\left(f_{4} \otimes f_{3}\right)$

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result: $\left(f_{1} \otimes f_{2}\right) \oplus\left(f_{3} \otimes f_{4}\right) \oplus\left(f_{4} \otimes f_{3}\right) \oplus\left(f_{5} \otimes f_{5}\right)$

Example 4: the universal semiring $\mathbb{N}[X]$

- Consider again: $\exists x y z R(x, y) \wedge R(y, z)$.
- Annotate input facts with atomic annotations $X=f_{1}, \ldots, f_{n}$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Result: $\left(f_{1} \otimes f_{2}\right) \oplus\left(f_{3} \otimes f_{4}\right) \oplus\left(f_{4} \otimes f_{3}\right) \oplus\left(f_{5} \otimes f_{5}\right)$

Specialization and homomorphisms

- These examples are captured by commutative semirings:
- security semiring (K, min, max, Public, Never available)
- bag semiring $(\mathbb{N},+, \times, 0,1)$
- Boolean semiring $(\operatorname{PosBool}[X], \vee, \wedge, \mathfrak{f}, \mathfrak{t})$
- universal semiring $(\mathbb{N}[X],+, \times, 0,1)$

Specialization and homomorphisms

- These examples are captured by commutative semirings:
- security semiring (K, min, max, Public, Never available)
- bag semiring $(\mathbb{N},+, \times, 0,1)$
- Boolean semiring $(\operatorname{PosBool}[X], \vee, \wedge, \mathfrak{f}, \mathfrak{t})$
- universal semiring $(\mathbb{N}[X],+, \times, 0,1)$
- $\mathbb{N}[X]$ is the universal semiring:
- The provenance for $\mathbb{N}[X]$ can be specialized to any $K[X]$
- By commutation with homomorphisms, atomic annotations in X can be replaced by their value in K

Specialization and homomorphisms

- These examples are captured by commutative semirings:
- security semiring (K, min, max, Public, Never available)
- bag semiring $(\mathbb{N},+, \times, 0,1)$
- Boolean semiring $(\operatorname{PosBool}[X], \vee, \wedge, \mathfrak{f}, \mathfrak{t})$
- universal semiring $(\mathbb{N}[X],+, \times, 0,1)$
- $\mathbb{N}[X]$ is the universal semiring:
- The provenance for $\mathbb{N}[X]$ can be specialized to any $K[X]$
- By commutation with homomorphisms, atomic annotations in X can be replaced by their value in K
\rightarrow Computing $\mathbb{N}[X]$ provenance subsumes all tasks
\rightarrow It can be done in PTIME data complexity for CQs

Provenance and probability

- Probabilistic query evaluation:
- Fixed CQ q, and input TID instance:

	R	
a	b	0.6
b	c	0.9

Provenance and probability

- Probabilistic query evaluation:
- Fixed CQ q, and input TID instance:

	R	
a	b	0.6
b	c	0.9

\rightarrow Computing the probability of the $\operatorname{PosBool}[X]$-provenance

Provenance and probability

- Probabilistic query evaluation:
- Fixed CQ q, and input TID instance:

	R	
a	b	0.6
b	c	0.9

\rightarrow Computing the probability of the $\operatorname{PosBool}[X]$-provenance
\rightarrow \#P-hard in data complexity

Trees and treelike instances

- Idea: restrict the instances to trees and treelike instances
- Tree decomposition of an instance: cover all facts

Trees and treelike instances

- Idea: restrict the instances to trees and treelike instances
- Tree decomposition of an instance: cover all facts
- Treewidth: minimal width (bag size) of a decomposition

Trees and treelike instances

- Idea: restrict the instances to trees and treelike instances
- Tree decomposition of an instance: cover all facts
- Treewidth: minimal width (bag size) of a decomposition
- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and k-grids have treewidth $k-1$

Trees and treelike instances

- Idea: restrict the instances to trees and treelike instances
- Tree decomposition of an instance: cover all facts
- Treewidth: minimal width (bag size) of a decomposition
- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and k-grids have treewidth $k-1$
- Treelike: the treewidth is bounded by a constant

Problem statement

- Many tasks have tractable data complexity on treelike instances:
- MSO query evaluation is linear [Courcelle, 1990]
- MSO result counting is linear [Arnborg et al., 1991]
- Probability evaluation is linear for trees [Cohen et al., 2009]
- (MSO covers relational algebra, UCQs, monadic Datalog...)

Problem statement

- Many tasks have tractable data complexity on treelike instances:
- MSO query evaluation is linear [Courcelle, 1990]
- MSO result counting is linear [Arnborg et al., 1991]
- Probability evaluation is linear for trees [Cohen et al., 2009]
- (MSO covers relational algebra, UCQs, monadic Datalog...)
\rightarrow Can we define provenance in this setting?

Problem statement

- Many tasks have tractable data complexity on treelike instances:
- MSO query evaluation is linear [Courcelle, 1990]
- MSO result counting is linear [Arnborg et al., 1991]
- Probability evaluation is linear for trees [Cohen et al., 2009]
- (MSO covers relational algebra, UCQs, monadic Datalog...)
\rightarrow Can we define provenance in this setting?
\rightarrow Can we compute it efficiently?

Problem statement

- Many tasks have tractable data complexity on treelike instances:
- MSO query evaluation is linear [Courcelle, 1990]
- MSO result counting is linear [Arnborg et al., 1991]
- Probability evaluation is linear for trees [Cohen et al., 2009]
- (MSO covers relational algebra, UCQs, monadic Datalog...)
\rightarrow Can we define provenance in this setting?
\rightarrow Can we compute it efficiently?
\rightarrow Can we generalize the above results?

Table of contents

(1) Introduction

(2) $\operatorname{Bool}[X]$-provenance
(3) $\mathbb{N}[X]$-provenance

4 Conclusion

General idea

- $\operatorname{Bool}[X]$-provenance on trees and treelike instances
- The world of trees:
- Query: MSO on trees
- The world of treelike instances:
- Query: MSO on the instance
\rightarrow Reduces to trees [Courcelle, 1990]

General idea

- $\operatorname{Bool}[X]$-provenance on trees and treelike instances
- The world of trees:
- Query: MSO on trees
- The world of treelike instances:
- Query: MSO on the instance
\rightarrow Reduces to trees [Courcelle, 1990]
\rightarrow Start with Bool $[X]$-provenance for queries on trees

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:
"Is there both a red and a green node?"
Valuation: $\{1,2,3,4,5,6,7\}$
The query is true

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:
"Is there both a red and a green node?"
Valuation: $\{1,2,5,6\}$
The query is false

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:
"Is there both a red and a green node?"
Valuation: $\{2,7\}$
The query is true

Provenance formulae and circuits

- Which valuations satisfy the query?

Provenance formulae and circuits

- Which valuations satisfy the query?
\rightarrow Provenance formula of a query q on an uncertain tree T :
- Boolean formula ϕ
- on variables $x_{1} \ldots x_{7}$
$\rightarrow \nu(T)$ satisfies q iff $\nu(\phi)$ is true

Provenance formulae and circuits

- Which valuations satisfy the query?
\rightarrow Provenance formula of a query q on an uncertain tree T :
- Boolean formula ϕ
- on variables $x_{1} \ldots x_{7}$
$\rightarrow \nu(T)$ satisfies q iff $\nu(\phi)$ is true
- Provenance circuit of q on T
[Deutch et al., 2014]
- Boolean circuit C
- with input gates $g_{1} \ldots g_{7}$
$\rightarrow \nu(T)$ satisfies q iff $\nu(C)$ is true

Example

Is there both a red and a green node?

Example

Is there both a red and a green node?

- Provenance formula: $\left(x_{2} \vee x_{3}\right) \wedge x_{7}$

Example

Is there both a red and a green node?

- Provenance formula: $\left(x_{2} \vee x_{3}\right) \wedge x_{7}$
- Provenance circuit:

Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets), for any input tree T, we can build a Bool $[X]$ provenance circuit of q on T in linear time in T.

Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets), for any input tree T, we can build a $\operatorname{Bool}[X]$ provenance circuit of q on T in linear time in T.
\rightarrow Key ideas:

- Compile q to a tree automaton [Thatcher and Wright, 1968]
- Write the possible transitions of the automaton on T

Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets), for any input tree T,
we can build a Bool $[X]$ provenance circuit of q on T in linear time in T.
\rightarrow Key ideas:

- Compile q to a tree automaton [Thatcher and Wright, 1968]
- Write the possible transitions of the automaton on T

Corollary

If tree nodes have a probability of being independently kept, we can compute the query probability in linear time.

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding
- Uncertain instance: each fact can be present or absent
\rightarrow Possible subinstances are possible valuations of the encoding

$$
\underbrace{R\left(a_{1}, a_{2}\right)}_{R\left(a_{2}, a_{3}\right)}
$$

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding
- Uncertain instance: each fact can be present or absent
\rightarrow Possible subinstances are possible valuations of the encoding

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding
- Uncertain instance: each fact can be present or absent
\rightarrow Possible subinstances are possible valuations of the encoding

$$
\underbrace{R\left(a_{1}, a_{2}\right)}_{R\left(a_{2}, a_{3}\right)}
$$

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding
- Uncertain instance: each fact can be present or absent
\rightarrow Possible subinstances are possible valuations of the encoding

$$
\underbrace{R\left(a_{1}, a_{2}\right)}_{R\left(a_{2}, a_{3}\right)}
$$

Our result and consequences

Theorem

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a $\operatorname{Bool}[X]$ provenance circuit of q on I.

Our result and consequences

Theorem

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a $\operatorname{Bool}[X]$ provenance circuit of q on I.

Corollary

MSO queries have linear data complexity on treelike TID instances.

Our result and consequences

Theorem

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a $\operatorname{Bool}[X]$ provenance circuit of q on I.

Corollary

MSO queries have linear data complexity on treelike TID instances.

Corollary

MSO counting has linear time complexity (already known).

Table of contents

(1) Introduction

(2) $\operatorname{Bool}[X]$-provenance
(3) $\mathbb{N}[X]$-provenance
4. Conclusion

First problem: non-monotone queries

- We want to move from $\operatorname{Bool}[X]$ to $\mathbb{N}[X]$
- Semirings and negation don't mix [Amsterdamer et al., 2011]
- Our previous construction builds circuits with NOT-gates

First problem: non-monotone queries

- We want to move from $\operatorname{Bool}[X]$ to $\mathbb{N}[X]$
- Semirings and negation don't mix [Amsterdamer et al., 2011]
- Our previous construction builds circuits with NOT-gates
$\rightarrow q$ monotone if $I \equiv q$ implies $I^{\prime} \models q$ for all $I^{\prime} \supseteq I$

First problem: non-monotone queries

- We want to move from $\operatorname{Bool}[X]$ to $\mathbb{N}[X]$
- Semirings and negation don't mix [Amsterdamer et al., 2011]
- Our previous construction builds circuits with NOT-gates
$\rightarrow q$ monotone if $I \equiv q$ implies $I^{\prime} \models q$ for all $I^{\prime} \supseteq I$
\rightarrow Provenance circuits for monotone queries can be monotone

Second problem: intrinsic definition

- Boolean provenance has an intrinsic definition: "Characterize which subinstances satisfy the query"
\rightarrow Independent from how the query is written
\rightarrow Independent from its encoding on trees
- $\mathbb{N}[X]$-provenance was defined operationally
\rightarrow Depends on how the query is written

Second problem: intrinsic definition

- Boolean provenance has an intrinsic definition: "Characterize which subinstances satisfy the query"
\rightarrow Independent from how the query is written
\rightarrow Independent from its encoding on trees
- $\mathbb{N}[X]$-provenance was defined operationally
\rightarrow Depends on how the query is written
\rightarrow We restrict to (Boolean) UCQs from now on

Provenance of a Boolean CQ

- Query: $q: \exists x y R(x, y) \wedge R(y, x)$

\mathbf{R}		
a	a	x_{1}
b	c	x_{2}
c	b	x_{3}

Provenance of a Boolean CQ

- Query: $\boldsymbol{q}: \exists x y R(x, y) \wedge R(y, x)$

\mathbf{R}		
a	a	x_{1}
b	c	x_{2}
c	b	x_{3}

- Provenance:

Provenance of a Boolean CQ

- Query: $\boldsymbol{q}: \exists x y R(x, y) \wedge R(y, x)$

\mathbf{R}		
a	a	x_{1}
b	c	x_{2}
c	b	x_{3}

- Provenance:
$\left(x_{1} \otimes x_{1}\right)$

Provenance of a Boolean CQ

- Query: $\boldsymbol{q}: \exists x y R(x, y) \wedge R(y, x)$

	\mathbf{R}	
a	a	x_{1}
b	c	x_{2}
c	b	x_{3}

- Provenance:
$\left(x_{1} \otimes x_{1}\right)$

Provenance of a Boolean CQ

- Query: $q: \exists x y R(x, y) \wedge R(y, x)$

\mathbf{R}		
a	a	x_{1}
b	c	x_{2}
c	b	x_{3}

- Provenance:
$\left(x_{1} \otimes x_{1}\right) \oplus\left(x_{2} \otimes x_{3}\right)$

Provenance of a Boolean CQ

- Query: $q: \exists x y R(x, y) \wedge R(y, x)$

- Provenance:
$\left(x_{1} \otimes x_{1}\right) \oplus\left(x_{2} \otimes x_{3}\right)$

Provenance of a Boolean CQ

- Query: $q: \exists x y R(x, y) \wedge R(y, x)$

- Provenance:
$\left(x_{1} \otimes x_{1}\right) \oplus\left(x_{2} \otimes x_{3}\right) \oplus\left(x_{3} \otimes x_{2}\right)$

Provenance of a Boolean CQ

- Query: $q: \exists x y R(x, y) \wedge R(y, x)$

\mathbf{R}		
a	a	x_{1}
b	c	x_{2}
c	b	x_{3}

- Provenance:
$\left(x_{1} \otimes x_{1}\right) \oplus\left(x_{2} \otimes x_{3}\right) \oplus\left(x_{3} \otimes x_{2}\right)$ aka $x_{1}^{2}+2 x_{2} x_{3}$

Provenance of a Boolean CQ

- Query: $q: \exists x y R(x, y) \wedge R(y, x)$

\mathbf{R}		
a	a	x_{1}
b	c	x_{2}
c	b	x_{3}

- Provenance:
$\left(x_{1} \otimes x_{1}\right) \oplus\left(x_{2} \otimes x_{3}\right) \oplus\left(x_{3} \otimes x_{2}\right)$ aka $x_{1}^{2}+2 x_{2} x_{3}$
- Definition:
- Sum over query matches
- Multiply over matched facts

Provenance of a Boolean CQ

- Query: $q: \exists x y R(x, y) \wedge R(y, x)$

	\mathbf{R}	
a	a	x_{1}
b	c	x_{2}
c	b	x_{3}

- Provenance:
$\left(x_{1} \otimes x_{1}\right) \oplus\left(x_{2} \otimes x_{3}\right) \oplus\left(x_{3} \otimes x_{2}\right)$ aka $x_{1}^{2}+2 x_{2} x_{3}$
- Definition:
- Sum over query matches
- Multiply over matched facts

How is $\mathbb{N}[X]$ more expressive than $\operatorname{PosBool}[X]$?
\rightarrow Coefficients: counting multiple derivations
\rightarrow Exponents: using facts multiple times

Our result for $\mathbb{N}[X]$-provenance circuits

```
Theorem
For any fixed UCQ q and \(k \in \mathbb{N}\), for any input instance I of treewidth \(\leq k\), we can build in linear time a \(\mathbb{N}[X]\) provenance circuit of \(q\) on \(I\).
```


Our result for $\mathbb{N}[X]$-provenance circuits

```
Theorem
For any fixed UCQ q and \(k \in \mathbb{N}\), for any input instance I of treewidth \(\leq k\), we can build in linear time a \(\mathbb{N}[X]\) provenance circuit of \(q\) on \(I\).
```

\rightarrow What fails for MSO/Datalog?

- Unbounded maximal multiplicity
- Logical definition of fact multiplicity?

Table of contents

(1) Introduction

(2) $\operatorname{Bool}[X]$-provenance
(3) $\mathbb{N}[X]$-provenance

4 Conclusion

Summary

- Result:
\rightarrow Linear time provenance circuit computation on trees and treelike instances:
- for MSO, Bool $[X]$
- for monotone MSO, PosBool $[X]$
- for UCQ, $\mathbb{N}[X]$
\rightarrow cheaper than on arbitrary instances (linear vs PTIME)
\rightarrow not more expensive than query evaluation

Summary

- Result:
\rightarrow Linear time provenance circuit computation on trees and treelike instances:
- for MSO, Bool $[X]$
- for monotone MSO, PosBool $[X]$
- for UCQ, $\mathbb{N}[X]$
\rightarrow cheaper than on arbitrary instances (linear vs PTIME)
\rightarrow not more expensive than query evaluation
- Techniques:
- Creative provenance representations (arithmetic circuits)
- Intrinsic definitions of provenance (rather than operational)
- Extending provenance to MSO ($\operatorname{PosBool}[X]$ only for now)

Summary

- Result:
\rightarrow Linear time provenance circuit computation on trees and treelike instances:
- for MSO, Bool $[X]$
- for monotone MSO, PosBool $[X]$
- for UCQ, $\mathbb{N}[X]$
\rightarrow cheaper than on arbitrary instances (linear vs PTIME)
\rightarrow not more expensive than query evaluation
- Techniques:
- Creative provenance representations (arithmetic circuits)
- Intrinsic definitions of provenance (rather than operational)
- Extending provenance to MSO (PosBool $[X]$ only for now)
- Applications:
\rightarrow Capture existing results (decouple symbolic and numerical computation)
\rightarrow Extend to new applications (probabilities)

Future work

- Extend $\mathbb{N}[X]$ beyond UCQs (e.g., formal series, multiplicities)
- Monadic Datalog? [Gottlob et al., 2010]
- Other applications? aggregation, enumeration?
- Experiments for efficient probabilistic query evaluation
- Query-specific tree decompositions?

Future work

- Extend $\mathbb{N}[X]$ beyond UCQs (e.g., formal series, multiplicities)
- Monadic Datalog? [Gottlob et al., 2010]
- Other applications? aggregation, enumeration?
- Experiments for efficient probabilistic query evaluation
- Query-specific tree decompositions?

Thanks for your attention!

References I

雷 Amsterdamer，Y．，Deutch，D．，and Tannen，V．（2011）．
On the limitations of provenance for queries with difference． In TaPP．

管 Arnborg，S．，Lagergren，J．，and Seese，D．（1991）．
Easy problems for tree－decomposable graphs．
J．Algorithms，12（2）：308－340．
囯 Chaudhuri，S．and Vardi，M．Y．（1992）．
On the equivalence of recursive and nonrecursive Datalog programs．
In PODS．
围 Cohen，S．，Kimelfeld，B．，and Sagiv，Y．（2009）．
Running tree automata on probabilistic XML．
In PODS．

References II

R Courcelle，B．（1990）．
The monadic second－order logic of graphs．I．Recognizable sets of finite graphs．
Inf．Comput．，85（1）．
囦 Deutch，D．，Milo，T．，Roy，S．，and Tannen，V．（2014）．
Circuits for datalog provenance．
In ICDT．
围 Gottlob，G．，Pichler，R．，and Wei，F．（2010）． Monadic datalog over finite structures of bounded treewidth． TOCL，12（1）：3．

囦 Green，T．J．，Karvounarakis，G．，and Tannen，V．（2007）． Provenance semirings．
In PODS．

References III

雷 Thatcher, J. W. and Wright, J. B. (1968).
Generalized finite automata theory with an application to a decision problem of second-order logic.
Mathematical systems theory, 2(1):57-81.

Semiring provenance [Green et al., 2007]

- Semiring $(K, \oplus, \otimes, 0,1)$
- (K, \oplus) commutative monoid with identity 0
- (K, \otimes) commutative monoid with identity 1
- \otimes distributes over \oplus
- 0 absorptive for \otimes

Semiring provenance [Green et al., 2007]

- Semiring $(K, \oplus, \otimes, 0,1)$
- (K, \oplus) commutative monoid with identity 0
- (K, \otimes) commutative monoid with identity 1
- \otimes distributes over \oplus
- 0 absorptive for \otimes
- Idea: Maintain annotations on tuples while evaluating:
- Union: annotation is the sum of union tuples
- Select: select as usual
- Project: annotation is the sum of projected tuples
- Product: annotation is the product

Tree automata

Tree alphabet:

Tree automata

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"

Tree automata

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\bigcirc
-

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\bigcirc
-
- G

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\perp
- R
- Transitions (examples):

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\perp
- R
- Transitions (examples):

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\perp
- R
- Transitions (examples):

Constructing the provenance circuit

\rightarrow Construct a Boolean provenance circuit bottom-up

Constructing the provenance circuit

\rightarrow Construct a Boolean provenance circuit bottom-up

whenever

Constructing the provenance circuit

\rightarrow Construct a Boolean provenance circuit bottom-up

whenever

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

Gaifman graph:

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

Gaifman graph: Tree decomp.:

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

Gaifman graph: Tree decomp.:

Tree encoding:

Example: block-independent disjoint (BID) instances

name	city	iso	p
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	jp	0.1
icalp	kyoto	jp	0.9

Example: block-independent disjoint (BID) instances

name	city	iso	p
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	jp	0.1
icalp	kyoto	jp	0.9

- Evaluating a fixed CQ is \#P-hard in general

Example: block-independent disjoint (BID) instances

name	city	iso	p
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	jp	0.1
icalp	kyoto	jp	0.9

- Evaluating a fixed CQ is \#P-hard in general
\rightarrow For a treelike instance, linear time!

Supporting coefficients

- In the world of trees
- The same valuation can be accepted multiple times
\rightarrow Number of accepting runs of the bNTA
- In the world of treelike instances
- The same match can be the image of multiple homomorphisms

Supporting coefficients

- In the world of trees
- The same valuation can be accepted multiple times
\rightarrow Number of accepting runs of the bNTA
- In the world of treelike instances
- The same match can be the image of multiple homomorphisms
\rightarrow Add assignment facts to represent possible assignments
\rightarrow Encode to a bNTA that guesses them

Supporting exponents

- In the world of trees
- The same fact can be used multiple times
- Annotate nodes with a multiplicity
- The bNTA is monotone for that multiplicity
- Use each input gate as many times as we read its fact
- In the world of treelike instances
- The same fact can be the image of multiple atoms
- Maximal multiplicity is query-dependent but instance-independent

Supporting exponents

- In the world of trees
- The same fact can be used multiple times
- Annotate nodes with a multiplicity
- The bNTA is monotone for that multiplicity
- Use each input gate as many times as we read its fact
- In the world of treelike instances
- The same fact can be the image of multiple atoms
- Maximal multiplicity is query-dependent but instance-independent
\rightarrow Encodes CQs to bNTAs that read multiplicities
- Consider all possible CQ self-homomorphisms
- Count the multiplicities of identical atoms
- Rewrite relations to add multiplicities
- Usual compilation on the modified signature

