Provenance Circuits for Trees and Treelike Instances

Antoine Amarilli¹, Pierre Bourhis², Pierre Senellart^{1,3}

¹Télécom ParisTech

²CNRS-LIFL

³National University of Singapore

July 10th, 2015

General idea

Introduction

•00000000

- We consider a query and a relational instance
- Often it is not sufficient to merely evaluate the query:
 - → We need quantitative information
 - → We need the link from the output to the input data

General idea

Introduction

•00000000

- We consider a query and a relational instance
- Often it is not sufficient to merely evaluate the query:
 - → We need quantitative information
 - → We need the link from the output to the input data
- → Compute query provenance!

Introduction 00000000

Example 1: security for a conjunctive query

- Consider the conjunctive query: $\exists xyz \ R(x,y) \land R(y,z)$
- Consider the relational instance below:

		R	
a	b		
b	С		
d	e		
e	d		
f	f		

- Consider the conjunctive query: $\exists xyz \ R(x,y) \land R(y,z)$
- Consider the relational instance below:

Result: true

Introduction

00000000

- Consider the conjunctive query: $\exists xyz \ R(x,y) \land R(y,z)$
- Consider the relational instance below:

	R		
а	b	Public	
b	С	Secret	
d	e	Confidential	
e	d	Confidential	
f	f	Top secret	

Result: true

Introduction

00000000

 Add security annotations: Public, Confidential, Secret, Top secret, Never available

- Consider the conjunctive query: $\exists xyz \ R(x,y) \land R(y,z)$
- Consider the relational instance below:

		R
а	b	Public
b	С	Secret
d	e	Confidential
e	d	Confidential
f	f	Top secret

Result: true

- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

- Consider the conjunctive query: $\exists xyz \ R(x,y) \land R(y,z)$
- Consider the relational instance below:

	R		
а	b	Public	
Ь	С	Secret	
d	e	Confidential	
e	d	Confidential	
f	f	Top secret	

Result: true

- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

- Consider the conjunctive query: $\exists xyz \ R(x,y) \land R(y,z)$
- Consider the relational instance below:

	R			
а	b	Public		
b	С	Secret		
d	e	Confidential		
e	d	Confidential		
f	f	Top secret		

Result: true

- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

- Consider the conjunctive query: $\exists xyz \ R(x,y) \land R(y,z)$
- Consider the relational instance below:

	R			
а	b	Public		
Ь	С	Secret		
d	e	Confidential		
e	d	Confidential		
f	f	Top secret		

Result: true

- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

- Consider the conjunctive query: $\exists xyz \ R(x,y) \land R(y,z)$
- Consider the relational instance below:

		R
a	b	Public
b	С	Secret
d	e	Confidential
e	d	Confidential
f	f	Top secret

Result: true

- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?
- → Result: Confidential

Introduction

00000000

	R	
а	Ь	
b	С	
d	e	
e	d	
f	f	

Introduction

00000000

Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.

	R	
а	Ь	
Ь	C	
d	e	
e	d	
f	f	

Result: true

Introduction

00000000

	R	
а	Ь	1
b	С	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations

Introduction

00000000

	R	
а	Ь	1
b	С	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?

Introduction

00000000

	R	
а	Ь	1
b	С	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- → Result: 1

Introduction

00000000

	R	
а	Ь	1
b	С	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- \rightarrow Result: 1+1

Introduction

00000000

	R	
а	Ь	1
b	С	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- \rightarrow Result: 1+1+1

Introduction

00000000

	R	
а	Ь	1
b	С	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- \rightarrow Result: 1+1+1+1

Introduction

00000000

	R	
а	Ь	1
b	С	1
d	e	1
e	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- \rightarrow Result: 1 + 1 + 1 + 1 = 4

Introduction

000000000

		R
ä	9	b
l	6	С
(d	e
6	e	d
1	f	f

Introduction

000000000

Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.

	R	
а	Ь	
b	C	
d	e	
e	d	
f	f	

Result: true

Introduction

000000000

	R	
а	Ь	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations

Introduction

000000000

	R	
а	Ь	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?

Introduction

000000000

	R	
а	Ь	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \land f_2)$

Introduction

000000000

	R	
а	Ь	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \land f_2) \lor (f_3 \land f_4)$

Introduction

000000000

	R	
а	Ь	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \land f_2) \lor (f_3 \land f_4)$

Introduction

000000000

	R	
а	Ь	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \land f_2) \lor (f_3 \land f_4) \lor f_5$

Introduction

000000000

R		
а	Ь	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \land f_2) \lor (f_3 \land f_4) \lor f_5$

Introduction

000000000

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	Ь	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

→ Result:

Introduction

000000000

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$

 $\mathbb{N}[X]$ -provenance

• Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

→ Result:

Introduction

000000000

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2)$

Introduction

000000000

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2)$

Introduction

000000000

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4)$

Introduction

000000000

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4)$

Introduction

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4) \oplus (f_4 \otimes f_3)$

Introduction

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4) \oplus (f_4 \otimes f_3)$

Introduction

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4) \oplus (f_4 \otimes f_3) \oplus (f_5 \otimes f_5)$

Introduction

- Consider again: $\exists xyz \ R(x,y) \land R(y,z)$.
- Annotate input facts with atomic annotations $X = f_1, \dots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
а	b	f_1
b	С	f_2
d	e	f_3
e	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4) \oplus (f_4 \otimes f_3) \oplus (f_5 \otimes f_5)$

Specialization and homomorphisms

Introduction

- These examples are captured by commutative semirings:
 - security semiring (K, min, max, Public, Never available)
 - bag semiring $(\mathbb{N}, +, \times, 0, 1)$
 - Boolean semiring $(PosBool[X], \lor, \land, f, t)$
 - universal semiring $(\mathbb{N}[X], +, \times, 0, 1)$

Specialization and homomorphisms

Introduction

- These examples are captured by commutative semirings:
 - security semiring (K, min, max, Public, Never available)
 - bag semiring $(\mathbb{N}, +, \times, 0, 1)$
 - Boolean semiring $(PosBool[X], \lor, \land, f, t)$
 - universal semiring $(\mathbb{N}[X], +, \times, 0, 1)$
- $\mathbb{N}[X]$ is the universal semiring:
 - The provenance for $\mathbb{N}[X]$ can be specialized to any K[X]
 - By commutation with homomorphisms, atomic annotations in X can be replaced by their value in K

Specialization and homomorphisms

Introduction

- These examples are captured by commutative semirings:
 - security semiring (K, min, max, Public, Never available)
 - bag semiring $(\mathbb{N}, +, \times, 0, 1)$
 - Boolean semiring $(PosBool[X], \lor, \land, f, t)$
 - universal semiring $(\mathbb{N}[X], +, \times, 0, 1)$
- $\mathbb{N}[X]$ is the universal semiring:
 - The provenance for $\mathbb{N}[X]$ can be specialized to any K[X]
 - By commutation with homomorphisms, atomic annotations in X can be replaced by their value in K
- \rightarrow Computing $\mathbb{N}[X]$ provenance subsumes all tasks
- → It can be done in PTIME data complexity for CQs

Provenance and probability

Introduction

- Probabilistic query evaluation:
 - Fixed CQ q, and input TID instance:

R		
а	b	0.6
b	С	0.9

Provenance and probability

Introduction

000000000

- Probabilistic query evaluation:
 - Fixed CQ q, and input TID instance:

	R		
а	b	0.6	
Ь	С	0.9	

Computing the probability of the PosBool[X]-provenance

Provenance and probability

Introduction

- Probabilistic query evaluation:
 - Fixed CQ q, and input TID instance:

	R		
а	b	0.6	
Ь	С	0.9	

- \rightarrow Computing the probability of the PosBool[X]-provenance
- → #P-hard in data complexity

Introduction

- Idea: restrict the instances to trees and treelike instances
 - Tree decomposition of an instance: cover all facts

Introduction

- Idea: restrict the instances to trees and treelike instances
 - Tree decomposition of an instance: cover all facts
 - Treewidth: minimal width (bag size) of a decomposition

Introduction

- Idea: restrict the instances to trees and treelike instances.
 - Tree decomposition of an instance: cover all facts
 - Treewidth: minimal width (bag size) of a decomposition
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and k-grids have treewidth k-1

Introduction

- Idea: restrict the instances to trees and treelike instances.
 - Tree decomposition of an instance: cover all facts
 - Treewidth: minimal width (bag size) of a decomposition
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and k-grids have treewidth k-1
 - Treelike: the treewidth is bounded by a constant

Introduction

- Many tasks have tractable data complexity on treelike instances:
 - MSO query evaluation is linear [Courcelle, 1990]
 - MSO result counting is linear [Arnborg et al., 1991]
 - Probability evaluation is linear for trees [Cohen et al., 2009]
 - (MSO covers relational algebra, UCQs, monadic Datalog...)

Introduction

- Many tasks have tractable data complexity on treelike instances:
 - MSO query evaluation is linear [Courcelle, 1990]
 - MSO result counting is linear [Arnborg et al., 1991]
 - Probability evaluation is linear for trees [Cohen et al., 2009]
 - (MSO covers relational algebra, UCQs, monadic Datalog...)
- → Can we define provenance in this setting?

Introduction

- Many tasks have tractable data complexity on treelike instances:
 - MSO query evaluation is linear [Courcelle, 1990]
 - MSO result counting is linear [Arnborg et al., 1991]
 - Probability evaluation is linear for trees [Cohen et al., 2009]
 - (MSO covers relational algebra, UCQs, monadic Datalog...)
- → Can we define provenance in this setting?
- → Can we compute it efficiently?

Introduction

- Many tasks have tractable data complexity on treelike instances:
 - MSO query evaluation is linear [Courcelle, 1990]
 - MSO result counting is linear [Arnborg et al., 1991]
 - Probability evaluation is linear for trees [Cohen et al., 2009]
 - (MSO covers relational algebra, UCQs, monadic Datalog...)
- → Can we define provenance in this setting?
- → Can we compute it efficiently?
- → Can we generalize the above results?

Table of contents

- 2 Bool[X]-provenance

General idea

- Bool[X]-provenance on trees and treelike instances
- The world of trees:
 - Query: MSO on trees
- The world of treelike instances:
 - Query: MSO on the instance
 - → Reduces to trees [Courcelle, 1990]

General idea

- Bool[X]-provenance on trees and treelike instances
- The world of trees:
 - Query: MSO on trees
- The world of treelike instances:
 - Query: MSO on the instance
 - → Reduces to trees [Courcelle, 1990]
- \rightarrow Start with Bool[X]-provenance for queries on trees

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:

"Is there both a red and a green node?"

Valuation: $\{1, 2, 3, 4, 5, 6, 7\}$

The query is true

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:

"Is there both a red and a green node?"

Valuation: $\{1, 2, 5, 6\}$

The query is false

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:

"Is there both a red and a green node?"

Valuation: $\{2,7\}$

The query is true

Provenance formulae and circuits

• Which valuations satisfy the query?

Provenance formulae and circuits

- Which valuations satisfy the query?
- \rightarrow Provenance formula of a query q on an uncertain tree T:
 - ullet Boolean formula ϕ
 - on variables $x_1 \dots x_7$
 - $\rightarrow \nu(T)$ satisfies q iff $\nu(\phi)$ is true

Provenance formulae and circuits

- Which valuations satisfy the query?
- \rightarrow Provenance formula of a query q on an uncertain tree T:
 - ullet Boolean formula ϕ
 - on variables $x_1 \dots x_7$
 - $\rightarrow \nu(T)$ satisfies q iff $\nu(\phi)$ is true
 - Provenance circuit of q on T
 [Deutch et al., 2014]
 - Boolean circuit C
 - with input gates $g_1 \dots g_7$
 - $\rightarrow \nu(T)$ satisfies q iff $\nu(C)$ is true

Example

Is there both a red and a green node?

Example

Is there both a red and a green node?

• Provenance formula: $(x_2 \lor x_3) \land x_7$

Example

Is there both a red and a green node?

- Provenance formula: $(x_2 \lor x_3) \land x_7$
- Provenance circuit:

Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets), for any input tree T, we can build a Bool[X] provenance circuit of q on T in linear time in T.

Our main result on trees

$\mathsf{Theorem}$

For any fixed MSO query q (first order + quantify on sets), for any input tree T, we can build a Bool[X] provenance circuit of q on T in linear time in T.

- \rightarrow Key ideas:
 - Compile q to a tree automaton [Thatcher and Wright, 1968]
 - Write the possible transitions of the automaton on T

Our main result on trees

$\mathsf{Theorem}$

For any fixed MSO query q (first order + quantify on sets), for any input tree T, we can build a Bool[X] provenance circuit of q on T in linear time in T.

- \rightarrow Key ideas:
 - Compile q to a tree automaton [Thatcher and Wright, 1968]
 - Write the possible transitions of the automaton on T

Corollary

If tree nodes have a probability of being independently kept, we can compute the query probability in linear time.

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding
- Uncertain instance: each fact can be present or absent
- → Possible subinstances are possible valuations of the encoding

F	₹	R(a-	(a_1,a_2)
a b b	С	$R(a_2, a_3)$	$R(a_2, a_3)$

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding
- Uncertain instance: each fact can be present or absent
- → Possible subinstances are possible valuations of the encoding

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding
- Uncertain instance: each fact can be present or absent
- → Possible subinstances are possible valuations of the encoding

Treelike instances

- Tree encodings: represent treelike instances as trees
- MSO query on an instance \rightarrow MSO query on the tree encoding
- Uncertain instance: each fact can be present or absent
- → Possible subinstances are possible valuations of the encoding

R		R(a	(a_1, a_2)
a b b	С	$R(a_2, a_3)$	$R(a_2, a_3)$

Our result and consequences

$\mathsf{Theorem}$

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a Bool[X] provenance circuit of q on I.

Our result and consequences

$\mathsf{Theorem}$

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a Bool[X] provenance circuit of q on I.

Corollary

MSO queries have linear data complexity on treelike TID instances.

Our result and consequences

$\mathsf{Theorem}$

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a Bool[X] provenance circuit of q on I.

Corollary

MSO queries have linear data complexity on treelike TID instances.

Corollary

MSO counting has linear time complexity (already known).

Table of contents

- Bool[X]-provenance

First problem: non-monotone queries

- We want to move from Bool[X] to $\mathbb{N}[X]$
- Semirings and negation don't mix [Amsterdamer et al., 2011]
- Our previous construction builds circuits with NOT-gates

First problem: non-monotone queries

- We want to move from Bool[X] to $\mathbb{N}[X]$
- Semirings and negation don't mix [Amsterdamer et al., 2011]
- Our previous construction builds circuits with NOT-gates
- \rightarrow q monotone if $I \models q$ implies $I' \models q$ for all $I' \supseteq I$

First problem: non-monotone queries

- We want to move from Bool[X] to $\mathbb{N}[X]$
- Semirings and negation don't mix [Amsterdamer et al., 2011]
- Our previous construction builds circuits with NOT-gates
- \rightarrow q monotone if $I \models q$ implies $I' \models q$ for all $I' \supseteq I$
- → Provenance circuits for monotone queries can be monotone

Second problem: intrinsic definition

- Boolean provenance has an intrinsic definition: "Characterize which subinstances satisfy the query"
 - → Independent from how the query is written
 - Independent from its encoding on trees
- $\mathbb{N}[X]$ -provenance was defined operationally
 - Depends on how the query is written

Second problem: intrinsic definition

- Boolean provenance has an intrinsic definition: "Characterize which subinstances satisfy the query"
 - → Independent from how the guery is written
 - Independent from its encoding on trees
- $\mathbb{N}[X]$ -provenance was defined operationally
 - → Depends on how the query is written
- → We restrict to (Boolean) UCQs from now on

R x_1 x_2 x_3 • Query: $q : \exists xy \ R(x,y) \land R(y,x)$

	R	
а	a	<i>x</i> ₁
b	С	x_2
С	b	<i>X</i> ₃

- Query: $q: \exists xy \ R(x,y) \land R(y,x)$
- Provenance:

	R	
а	а	<i>x</i> ₁
b	С	x_2
С	b	X 3

- Query: $q: \exists xy \ R(x,y) \land R(y,x)$
- Provenance: $(\mathbf{x}_1 \otimes \mathbf{x}_1)$

	R	
а	а	<i>x</i> ₁
b	C	x_2
C	b	X 3

- Query: $q: \exists xy \ R(x,y) \land R(y,x)$
- Provenance: $(x_1 \otimes x_1)$

	R	
а	а	<i>x</i> ₁
b	C	x_2
C	b	<i>X</i> ₃

- Query: $q: \exists xy \ R(x,y) \land R(y,x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3)$

	R	
а	а	<i>x</i> ₁
b	С	x_2
С	b	<i>X</i> ₃

- Query: $q: \exists xy \ R(x,y) \land R(y,x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3)$

R X_1 X_2 X_3

- Query: $q: \exists xy \ R(x,y) \land R(y,x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3) \oplus (x_3 \otimes x_2)$

- Query: $q: \exists xy \ R(x,y) \land R(y,x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3) \oplus (x_3 \otimes x_2)$

aka $x_1^2 + 2x_2x_3$

	R	
а	а	<i>x</i> ₁
b	С	x_2
С	b	<i>X</i> ₃

- Query: $q : \exists xy \ R(x, y) \land R(y, x)$
- Provenance:

$$(x_1 \otimes x_1) \oplus (x_2 \otimes x_3) \oplus (x_3 \otimes x_2)$$

aka $x_1^2 + 2x_2x_3$

- Definition:
 - Sum over query matches
 - Multiply over matched facts

- Query: $q : \exists xy \ R(x,y) \land R(y,x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3) \oplus (x_3 \otimes x_2)$ aka $x_1^2 + 2x_2x_3$
- Definition:
 - Sum over query matches
 - Multiply over matched facts

How is $\mathbb{N}[X]$ more expressive than PosBool[X]?

- → Coefficients: counting multiple derivations
- → Exponents: using facts multiple times

Our result for $\mathbb{N}[X]$ -provenance circuits

$\mathsf{Theorem}$

For any fixed UCQ q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a $\mathbb{N}[X]$ provenance circuit of q on I.

Our result for $\mathbb{N}[X]$ -provenance circuits

$\mathsf{Theorem}$

For any fixed UCQ q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a $\mathbb{N}[X]$ provenance circuit of q on I.

- → What fails for MSO/Datalog?
 - Unbounded maximal multiplicity
 - Logical definition of fact multiplicity?

Table of contents

- Bool[X]-provenance
- Conclusion

Summary

Result:

- → Linear time provenance circuit computation on trees and treelike instances:
 - for MSO, Bool[X]
 - for monotone MSO, PosBool[X]
 - for UCQ, $\mathbb{N}[X]$
- → cheaper than on arbitrary instances (linear vs PTIME)
- → not more expensive than query evaluation

Summary

Result:

- → Linear time provenance circuit computation on trees and treelike instances:
 - for MSO, Bool[X]
 - for monotone MSO, PosBool[X]
 - for UCQ, $\mathbb{N}[X]$
- → cheaper than on arbitrary instances (linear vs PTIME)
- → not more expensive than query evaluation
- Techniques:
 - Creative provenance representations (arithmetic circuits)
 - Intrinsic definitions of provenance (rather than operational)
 - Extending provenance to MSO (PosBool[X] only for now)

Summary

Result:

- → Linear time provenance circuit computation on trees and treelike instances:
 - for MSO, Bool[X]
 - for monotone MSO, PosBool[X]
 - for UCQ, $\mathbb{N}[X]$
- → cheaper than on arbitrary instances (linear vs PTIME)
- → not more expensive than query evaluation
- Techniques:
 - Creative provenance representations (arithmetic circuits)
 - Intrinsic definitions of provenance (rather than operational)
 - Extending provenance to MSO (PosBool[X] only for now)
- Applications:
 - → Capture existing results (decouple symbolic and numerical computation)
 - → Extend to new applications (probabilities)

Future work

- Extend $\mathbb{N}[X]$ beyond UCQs (e.g., formal series, multiplicities)
- Monadic Datalog? [Gottlob et al., 2010]
- Other applications? aggregation, enumeration?
- Experiments for efficient probabilistic query evaluation
- Query-specific tree decompositions?

Future work

- Extend $\mathbb{N}[X]$ beyond UCQs (e.g., formal series, multiplicities)
- Monadic Datalog? [Gottlob et al., 2010]
- Other applications? aggregation, enumeration?
- Experiments for efficient probabilistic query evaluation
- Query-specific tree decompositions?

Thanks for your attention!

References I

- Amsterdamer, Y., Deutch, D., and Tannen, V. (2011). On the limitations of provenance for queries with difference. In *TaPP*.
- Arnborg, S., Lagergren, J., and Seese, D. (1991). Easy problems for tree-decomposable graphs. J. Algorithms, 12(2):308–340.
- Chaudhuri, S. and Vardi, M. Y. (1992).

 On the equivalence of recursive and nonrecursive Datalog programs.

 In *PODS*.
- Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009). Running tree automata on probabilistic XML. In *PODS*.

References II

Courcelle, B. (1990).

The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.

Inf. Comput., 85(1).

Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014). Circuits for datalog provenance. In *ICDT*.

- Gottlob, G., Pichler, R., and Wei, F. (2010).

 Monadic datalog over finite structures of bounded treewidth.

 TOCL, 12(1):3.
- Green, T. J., Karvounarakis, G., and Tannen, V. (2007). Provenance semirings. In *PODS*.

References III

Thatcher, J. W. and Wright, J. B. (1968).

Generalized finite automata theory with an application to a decision problem of second-order logic.

Mathematical systems theory, 2(1):57–81.

Semiring provenance [Green et al., 2007]

- Semiring $(K, \oplus, \otimes, 0, 1)$
 - (K, \oplus) commutative monoid with identity 0
 - (K, \otimes) commutative monoid with identity 1
 - ullet \otimes distributes over \oplus
 - ullet 0 absorptive for \otimes

Semiring provenance [Green et al., 2007]

- Semiring $(K, \oplus, \otimes, 0, 1)$
 - (K, \oplus) commutative monoid with identity 0
 - (K, \otimes) commutative monoid with identity 1
 - ⊗ distributes over ⊕
 - ullet 0 absorptive for \otimes
- Idea: Maintain annotations on tuples while evaluating:
 - Union: annotation is the sum of union tuples
 - Select: select as usual
 - Project: annotation is the sum of projected tuples
 - Product: annotation is the product

Tree automata

Tree automata

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\bot, G, R, \top\}$

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\bot, G, R, \top\}$
- Final states: {⊤}

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\bot, G, R, \top\}$
- Final states: $\{\top\}$
- Initial function:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\bot, G, R, \top\}$
- Final states: $\{\top\}$
- Initial function:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\bot, G, R, \top\}$
- Final states: {⊤}
- Initial function:
- 🛑 G
- Transitions (examples):

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\bot, G, R, \top\}$
- Final states: {⊤}
- Initial function:
- Transitions (examples):

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\bot, G, R, \top\}$
- Final states: {⊤}
- Initial function:

Transitions (examples):

Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

Instance:

N a b b c c d d e f

S a c b e

Instance:

N	
a	b
b	С
С	d
d	e
	_

Gaifman graph:

Instance:

N		
a	b	
b	С	
С	d	
d	e	
e	f	

Gaifman graph: Tree decomp.:

Instance:

Ν е

Gaifman graph: Tree decomp.:

Tree encoding:

Example: block-independent disjoint (BID) instances

name	city	iso	р
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	jр	0.1
icalp	kyoto	jp	0.9

Example: block-independent disjoint (BID) instances

name	city	iso	р
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	jp	0.1
icalp	kyoto	jp	0.9

• Evaluating a fixed CQ is #P-hard in general

Example: block-independent disjoint (BID) instances

name	city	iso	р
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	jр	0.1
icalp	kyoto	jр	0.9

- Evaluating a fixed CQ is #P-hard in general
- → For a treelike instance, linear time!

Supporting coefficients

- In the world of trees
 - The same valuation can be accepted multiple times
 - → Number of accepting runs of the bNTA
- In the world of treelike instances
 - The same match can be the image of multiple homomorphisms

Supporting coefficients

- In the world of trees
 - The same valuation can be accepted multiple times
 - → Number of accepting runs of the bNTA
- In the world of treelike instances
 - The same match can be the image of multiple homomorphisms
- → Add assignment facts to represent possible assignments
- → Encode to a bNTA that guesses them

Supporting exponents

- In the world of trees
 - The same fact can be used multiple times
 - Annotate nodes with a multiplicity
 - The bNTA is monotone for that multiplicity
 - Use each input gate as many times as we read its fact
- In the world of treelike instances
 - The same fact can be the image of multiple atoms
 - Maximal multiplicity is query-dependent but instance-independent

Supporting exponents

- In the world of trees
 - The same fact can be used multiple times
 - Annotate nodes with a multiplicity
 - The bNTA is monotone for that multiplicity
 - Use each input gate as many times as we read its fact
- In the world of treelike instances
 - The same fact can be the image of multiple atoms
 - Maximal multiplicity is query-dependent but instance-independent
- → Encodes CQs to bNTAs that read multiplicities
 - Consider all possible CQ self-homomorphisms
 - Count the multiplicities of identical atoms
 - Rewrite relations to add multiplicities
 - Usual compilation on the modified signature