Requétes sur des données a ordre incomplet

Antoine Amarilli
Institut Mines—Télécom
Télécom ParisTech; CNRS LTCI

Daniel Deutch
Blavatnik School of Computer Science
Tel Aviv University

ABSTRACT

Combiner des données ordonnées qui proviennent de différentes
sources exige de recourir a un formalisme de données a ordre in-
complet qui puisse représenter I’incertitude sur les différents ordres
possibles. Des exemples d’application sont des listes d’établisse-
ments, tels des hotels ou des restaurants, triés suivant une fonc-
tion inconnue représentant leur pertinence pour une requéte, ou leur
évaluation par des clients ; des documents édités de facon concur-
rente avec plusieurs manieres possibles d’ordonner les contribu-
tions individuelles ; des résultats d’intégration de séquences d’évé-
nements comme des données de capteurs ou des entrées de fichiers
journaux.

Le présent travail étend 1’algebre relationnelle positive aux don-
nées ordonées et aux données a ordre incomplet, et introduit un
ensemble d’axiomes pour guider la conception d’une sémantique
multiensembliste pour le langage. Nous introduisons deux telles sé-
mantiques, et montrons que I’'une d’entre elles est la plus générale
possible pour notre ensemble d’axiomes. Nous construisons ensuite
un systeme de représentation au sens fort pour ces sémantiques, qui
s’appuie sur des ordres partiels interprétés suivant une sémantique
des mondes possibles. Nous étudions 1’expressivité de notre lan-
gage de requétes, en le rattachant a des mesures de complexité sur
les ordres partiels. Nous introduisons un opérateur de top-k pour ex-
traire les k premiers éléments de 1’ordre, et étudions la complexité
de I’évaluation de requétes, au sens des réponses possibles et des
réponses certaines. Nous complétons finalement le langage avec
un opérateur qui permet d’éliminer les doublons, et investiguons
I’'impact de cette modification sur nos résultats.

1. INTRODUCTION

Many application domains need to combine and transform or-
dered data from multiple sources. Examples include readings from
multiple sensors or log entries from different applications or ma-
chines, that need to be combined to form a complete picture of
events; rankings of restaurants and hotels based on various crite-
ria (relevance, preference, or customer ratings); concurrent edits
of shared documents, where the order of contributions made by
different users needs to be merged. Even if the order of items
from each individual source is usually known, the order of items
across sources is often uncertain. For instance, even when sensor
readings or log entries are provided with timestamps, these may
be ill-synchronized across sensors or machines; rankings of hotels
and restaurants may be biased by different preferences of differ-
ent users; concurrent contributions to documents may be ordered
in multiple reasonable ways. We say the resulting information is
order-incomplete.

This paper studies query evaluation over order-incomplete data
in a relational setting. We focus on the running example of lists of
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restaurants and hotels from a travel Web site, ranked according to
an unknown function. An example query would be to obtain an or-
dered list of restaurant—hotel pairs that are in the same district, such
that the restaurant features a particular cuisine, and perhaps limit-
ing the output to the top-k such pairs. To evaluate such queries, we
need a way to preserve order information through transformations,
while accounting for its incompleteness.

To our knowledge, no previously proposed framework or system
can be used to evaluate positive relational algebra queries in this
sense; see Section 8 for a discussion of the related work. We there-
fore propose in this paper an extension of the positive relational
algebra (PosRA) to ordered and order-incomplete data, and show
how to design a bag semantics for it. We present which axioms
should necessarily be satisfied, guiding the development of seman-
tics in this context. We further propose different concrete semantics
that respect them. We then describe a compact representation sys-
tem for order-incomplete data based on partial orders, and study
the expressiveness and complexity of the semantics over this rep-
resentation system. Beyond standard relational algebra, we study
semantics for enriched languages including order-based selection
such as top-k, and an explicit operator for duplicate elimination.
‘We next summarize our main contributions in more detail.

Order-incomplete databases (Section 3). We focus on the
positive relational algebra, and capture ordered and order-incomplete
data with the notion of order-incomplete relations (for short, oi-
relations), which are sets of possible orders over tuples. To guide
our definition of a semantics for such queries over such relations,
we introduce a set of intuitive axioms: the semantics should faith-
fully generalize standard bag semantics; query evaluation should
treat oi-relations as a representation system [17]; and existing or-
der within input relations should be preserved. We then propose
concrete semantics satisfying the desiderata: GEN, which we prove
to be the most general (it imposes the minimal order constraints
so that the axioms are satisfied), and LEX, based on a natural inter-
pretation of the relational product as lexicographic ordering. We
exemplify the usefulness of the semantics, and show some equa-
tional properties of positive relational algebra that continue to hold
for them.

Partially-ordered databases (Section 4). Our abstraction
of order-incomplete relations as sets of possible worlds is useful for
defining query semantics, but not practical for representing query
evaluation results. We accordingly define partially-ordered rela-
tions (or po-relations) which introduce a partial order [32] over
their tuples. Each po-relation represents the oi-relation obtained as
the set of linear extensions of its partial order; however, not all oi-
relations may be represented as po-relations. We explain how po-



relations can be used as a strong representation system [17] for the
GEN and LEX semantics, and that query evaluation on po-relations
can be performed in polynomial time in the size of the input po-
relations.

Expressiveness: output and transformations (Section 5).

We study the expressiveness of our semantics for PosRA. We first
show that any po-relation can be obtained as the result of some
GEN query (even if the query is restricted to have no input, i.e.,
only uses some constant relations introduced as part of the seman-
tics). In contrast, the output of LEX queries is always series-parallel
(defined following the corresponding notion on partial orders), as-
suming that the input also is (and in fact, all series-parallel po-
relations can be obtained as LEX query results). We further char-
acterize query outputs by connecting them to order-theoretical no-
tions, bounding the dimension [10] (for GEN) and sp-height (for
LEX) of the resulting partial orders as a function of the query size.

We also show that the two semantics are incomparable in the
sense of the transformations they can capture: while the outputs of
LEX are of a restricted form, GEN cannot express the concatenation
operator while LEX can. We further show that for any semantics
satisfying our axioms (not just GEN and LEX), all expressed trans-
formations must be monotone but not all monotone transformations
can be expressed.

Top-k: possibility and certainty (Section 6). We enrich
the positive relational algebra with a top-k operator, where ranking
is based on the underlying order. Top-k is typically (as in SQL)
defined with respect to a total order, but our possible worlds inter-
pretation allows its natural extension to order-incomplete relations.
‘We show that the output of top-k may not be captured in general by
oi-relations, and so we restrict our attention to queries where top-k
is applied as the last operation. Here we show that the possible top-
k results may be enumerated in polynomial time in data complex-
ity, but the output size is generally exponential in k. This blowup
motivates our study of possibility and certainty of a given candidate
result for unbounded k, and more generally the problem of deciding
possibility and certainty of a candidate output for general queries.
We study the complexity of these problems as a function of the in-
put database and candidate result: while certainty may be decided
in PTIME, possibility is NP-complete in general but tractable in
some restricted cases. We finally extend our results to other forms
of order-based selection.

Duplicate elimination (Section 7). After having focused on
bag semantics, we introduce an order-aware duplicate elimination
operator to the language. For totally ordered relations, we define
the semantics of this operator so that it eliminates duplicates only if
they are contiguous, i.e., agree on their relative order with respect
to all other tuples. If the result still contains duplicates, then we
say that duplicate elimination fails (as our goal is to go back to
an underlying set relation with no duplicates), and the output is an
empty set of possible worlds. When extended to oi-relations, the
intuition is that duplicate elimination is applied only to a subset of
the possible worlds of the input, those for which all duplicates are
“synchronized”. We show po-relations continue to form a strong
representation system for this semantics and that possibility and
certainty may be decided in polynomial time. We contrast this with
alternative semantics.

We next introduce basic definitions of classical concepts; related
work is discussed in Section 8. Results are provided with complete
proofs which are deferred to the appendix due to space constraints.

2. PRELIMINARIES

In this section, we introduce useful notions. We define our query
language, a variant of the positive relational algebra, and recall its
standard semantics on unordered data.

A bag or multiset over a set X is a function B : X — N. The sup-
port of abag Bis B~' (NT) and we write x € B if and only if B(x) #
0. We write a bag B with finite support as B = {{by,...,b, }}
where n = ¥, cx B(x) is the size |B| of B: for every x € X, we have
B(x) = |{1 <k <n|by=x}. For any bag B and Boolean pred-
icate @ on elements of X, the bag B = {{x € B| ¢(x) }} is the
function that maps x to B(x) if @(x) holds and maps x to 0 other-
wise.

For any two bags B1, B over the same set X, B| & B is the bag
over X defined by x — Bj(x) + B(x). For any bag B over X and
any function F from X to bags over X, Y, F (x) is the bag over X
defined by y > ¥c B(x) - F(x)(3).

We fix a schema .#, which is a set of relation names along with
their arities. Relations in the schema are defined over a countable
set of values 2, in particular we assume N C 9. A tuple t over 9
of arity a(t) € N is an element of (). The tuple itself is denoted
(V1,-..,va(r)) (or occasionally simply v when the arity is 1); given
two tuples #; and #, (t1,1,) is the tuple of arity a(7; ) +a(r, ) obtained
by concatenating #; and #,. A (bag) relation R over 7 is a bag of
tuples over & that all have the same arity denoted a(R). Its size, or
number of tuples, is the size |R| of the bag. A (bag) database D is
an instantiation of a finite subset of the relation names in ., which
we will sometimes view as a mapping from these relation names
to relations; we impose that the relation mapped to a relation name
has the arity imposed by the schema .. We adopt the unnamed
perspective where positions of tuples are indexed by integers, and
write 7.k for the element of 7 at position & in a tuple 7 of arity n > k.

We then define the Boolean formulas over tuples that will be
used for the selection operator:

DEFINITION 2.1. A tuple predicate is a Boolean formula over atoms
of the form “.m = .n" or “.m =d” where m,n are positive integers
andd € 9.

A tuple predicate ¢ of the form “.m = .n” holds for a tuple ¢,
denoted @(t), if and only if m < a(t), n < a(t), and tm=t.n. A
tuple predicate @ of the form “.m = d” holds for a tuple ¢, denoted
o(1), ifand only if m < a(t) and t.m = d.

The query language we consider is the positive fragment of the
relational algebra [1], with the unnamed perspective. We now de-
fine its syntax:

«

DEFINITION 2.2. We define inductively the language of positive
relational algebra queries (or PosRA), over a countable set of con-
stant expressions €, as follows, where Q, Q1, and Q are PosRA
queries:

e for any relation name R € % or constant C € €, R and C are
PosRA queries;

o for any tuple predicate ¢, 6y(Q) is a PosRA query of arity
a(Q);

e for any sequence of (non-necessarily distinct) positive in-
tegers (ki,...,k,) with k; < a(Q) for all i, Hk,...k,,(Q) isa
PosRA query of arity p;

o when a(Q1) = a(Q2), Q1UQy is a PosRA query of arity
a(Q1) =a(Q2);

e 01 X Qy is a PosRA query of arity a(Q1) +a(Q3).

The set of relation names of a PosRA query Q is the finite subset of
relation names from . that occurs in Q.

In what follows, we fix the constant expressions % to be:



hotelname  district
restname  district — Mercure 5
Gagnaire 8 -~ "~ Balzac 8
TourArgent 5 Tsukizi 6 Mercure 12

(a) Rest table (b) Rest; table (c) Hotel table

Figure 1: Running Example

e 0, representing the empty relation';
e [t] for any tuple 7 over Z, of arity a(r), representing the sin-
gleton relation containing only tuple 7;
o N for n € N, of arity 1, representing the bag of the first
n+ 1 natural integers.
We will mostly focus on queries under bag semantics, and ad-
dress set semantics in Section 7. We recall the “classical” definition
of bag semantics (see, e.g., [7]):

DEFINITION 2.3. Let Q a PosRA query over € on relation names
{R1,...,Ry}. Let D be a database over {Ry,...,R,}. The evalua-
tion of Q over D, denoted Q(D), is a relation over 9, according to
the following inductive definition, where Q', Q1, and Q, are PosRA
queries:
e forany 1 <i< n, R; evaluates to D(R;);
o 0 evaluates to the empty bag {{ }},
e for any tuple t, [t] evaluates to the bag {{t }};
o for any n € N, NY evaluates to {{0,...,n}};
e for any tuple predicate @, G¢(Q/(D)) evaluates to the bag
{{re (D) o(t) ):
e for any sequence of integers (ki,...,kp), Hkl...k,,(Ql) evalu-
ates to e py{{ (-1, t.kp) s
o if S1:=01(D), S2:= 02(D), (Q1UD2)(D) == S1 WS,
o if S; :==Q1(D), S := 02(D), Q1 x Q> evaluates to Y, ¢,
Whes, { (11.12) 1
In the following, we will always assume that queries are applied
on databases of compatible schema.

3. ORDER-INCOMPLETE DATABASES

In this section, we introduce our notion of ordered and order-
incomplete databases, the axioms that we impose on PosRA se-
mantics for such databases, and our proposed semantics.

3.1 Totally Ordered Relations

Our first goal is to specify a semantics for the positive relational
algebra on ordered relations, defined as follows.

DEFINITION 3.1. A totally ordered relation L is a list of tuples over
9 with fixed arity a(L). We alternatively see L as a (bag) relation
Rel(L) with a total order <y on its tuples. A sublist L’ of a list L is
a list of some of the tuples from L, in the order they appear in L.

EXAMPLE 3.2. Consider the two relations Rest and Hotel in Fig-
ure 1 whose tuples contain (simplified) information regarding restau-
rants and hotels in Paris, namely their name and district. We as-
sume that customer ratings from a given travel Web site allow us to
define an order on them, so that these relations are totally ordered
from top to bottom. The column names are here to help readability
but are not strictly speaking part of the schema, as we have adopted
the unnamed perspective.

We next consider semantics for the relational algebra, applied
to totally ordered relations. First, we naturally define the ordered

!Formally, we have a distinct @ constant relation for every arity, but
we will omit this distinction.

semantics of constants:
constants 0 is the empty list (); for any tuple 7, [r] is the list (¢);
for any n € N, NS is the list (0,...,n).
Then, we define selection and projection on totally ordered rela-
tions in the natural way:
select For any tuple predicate @, 6y (L) is the sublist of tuples in
L satistying ¢.
project For A a sequence of integers, IT4(L) is the list L’ of the
I14({{#}}) for t € Rel(L), in the same order <.
However, when we try to define the union or product of totally
ordered relations, there is in general no natural way to represent the
output as a totally ordered relation.

EXAMPLE 3.3. Consider Rest and Rest, (Figure 1), two totally or-
dered relations describing different restaurants from different cat-
egories (French and International). We know nothing about the
relative order of restaurants appearing in Rest and those appear-
ing in Resty, and so there is no unique way to represent Rest\ U Rest,
as a single totally ordered relation. Similarly, say that we join Rest
and Hotel (based on location), there are multiple plausible ways to
decide a relative order between pairs of restaurants and hotels.

3.2 Order-Incomplete Relations

Intuitively, the semantics of queries involving union or product
should allow multiple possible orders to be represented in the out-
put. This motivates the notion of order-incomplete relations, which
capture the orders through a possible worlds interpretation:

DEFINITION 3.4. An order-incomplete relation (or, for short, oi-
relation) is a set W of totally ordered relations called the possible
orders of W, where the underlying relation Rel(L) of every L € W
is the same, denoted Rel(W). If W consists of a single list L, then
we say that the relation is totally ordered, and do not distinguish
between the oi-relation {L} and the totally ordered relation L. If
W consists of all possible orders on Rel(L), then we say that W
is unordered. For two oi-relations W and W', we write W C W' to
mean that every possible world of W is also a possible world of W'.

An order-incomplete database D, or oi-database, is a mapping
from a finite subset of relation names from . to oi-relations. The
underlying database Rel(D) of an oi-database is obtained by re-
placing each oi-relation W in D by its underlying relation Rel(W).

Note that the definition of oi-relations does not impose a specific
way to represent the possible orders. We will later consider an effi-
cient way to do so. For now, however, we consider them abstractly
as sets without worrying about the representation.

EXAMPLE 3.5. In our running example, consider the following
possible orders for the union of Rest and Rest,, where we specify
Jjust the restaurant names for brevity: (Tsukizi, Gagnaire, TourAr-
gent), (Gagnaire, Tsukizi, TourArgent), or (Gagnaire, TourArgent,
Tsukizi). This set of worlds can be represented as an oi-relation.

When defining the semantics of the positive relational algebra on
oi-relations, we will impose two general principles. The first one
is that the semantics that we define should always match the bag
semantics in terms of values.
bag For every PosRA query Q and oi-database D, we require that

Rel(Q(D)) = Q(Rel(D)) where Q on bag relations is applied
according to the usual bag semantics for PosRA.

The second general principle is a standard requirement in the
context of representation systems for incomplete information [17].
Namely, evaluating a query Q over an oi-database D should yield
an oi-relation whose possible orders are the possible results of eval-
uating Q over the possible orders of D. More precisely:
consistency For any PosRA query Q and any oi-database D =

{R; — W; | 1 <i< n}, we have:



QD) =UL, ... L,ew, x-xw, Q{Ri = L; | 1 <i < n}).
Hence, our existing definition of projection and selection for totally
ordered relations extends to oi-relations, and to define union and
product it will suffice to define them on totally ordered relations.

Observe that sorting (such as the ORDER BY of SQL) and position-
based selection (such as the LIMIT of SQL) are missing from the
language. The former will be expressible using the existing PosRA
operators for some of the semantics that we will introduce (see Sec-
tion 5), and the latter will be studied in Section 6.

3.3 Union and Product

As opposed to projection and selection, union and product are
operators which have multiple reasonable definitions for ordered
relations. We will first impose reasonable desiderata on their be-
havior: neither union nor product change the order within their ar-
guments, which means that if we extract from the union or product
the individual arguments, they should be unchanged.
union Letting L1, L, be two total orders and W := L U L,, all pos-

sible orders of W are interleavings of L; and L. Formally,
for every possible world L of W, there is a partition of L into
two disjoint sublists L| and L, such that L; = L} and L, = L.

product Letting L; = (t%l),...,tlg])‘) and L, = (t1(2)>~~’t|(L22)\) be
two total orders and W := L| X L,, all possible orders of W
can be decomposed, in a compatible fashion, in sublists that
match L; on the attributes from L, and sublists that match
L, on the attributes from L,.
Formally, every possible world L of W has a one-to-one map-
ping y : [1;|L]] x [1;|L2|] — [15|L1] - |L2|] such that for
any 1 < k < |L;|, the sublist of L of positions {y(k,l) |1 <
P<al}is ("), M1 P))s and for any 1< 1<
|L>|, the sublist of L of positions {y(k,!) | 1 <k <|Ly|}is

1) (2 1) (2
()t ).
We have now concluded the presentation of our axioms. In fact,

the bag axiom is redundant given the other axioms:

PROPOSITION 3.6. Axiom bag is implied by axioms constants, se-
lect, project, consistency, union, and product.

We will thus see bag as a useful property implied by the axioms,
rather than as an axiom itself. Our final set of axioms, denoted Ax,
thus consists of constants, select, project, consistency, union, and
product. We now claim:

PROPOSITION 3.7. None of the axioms in Ax is implied by the oth-
ers. In fact, if any of these axioms is discarded, there is a semantics
consistent with the other axioms (and, except when removing ax-
iom constants, with axiom bag), and a trivial query* which is not
the identity over this semantics, namely one of: Gue(R), RUO, or
I, (R x N<O) assuming that the input relation R has arity n.

This justifies that our set of axioms Ax is not redundant and that
all axioms are helpful to forbid particularly unnatural choices of
semantics. We now proceed to give concrete examples of semantics
for union and product on oi-relations that satisfy Ax (in particular
proving the consistency of Ax).

3.4 Concrete Semantics

We now define our semantics on totally ordered relations, ex-
tending them to oi-relations with axiom consistency.

2By “trivial” we mean that the query is the identity for the standard
bag semantics. However, note that we usually do not want all trivial
queries to be the identity for oi-relations (see details in appendix).

The GEN semantics. We define the generic union and product

operators as follows:

generic union L; Uggy L, with a(L1) = a(Ly), is the set of all in-
terleavings of tuples from Ly and Ly, i.e., all possible lists L’
satisfying the criteria in the union axiom.

generic product L; xggy Ly is the set of all the lists L on {{ (t,1) |
t] € Ly, 1y € Ly }} such that there are no tuples 7 = (¢1,7;) and
1" = (t],t5) where ¢’ strictly precedes ¢ in L, but, for all i, ;
precedes or equals ti' in L;. (In this definition, the ¢;’s are
tuples, not values.)

EXAMPLE 3.8. The output of Rest Uggy Rest, in our running exam-
ple is the three possible orderings of the union that were presented
in Example 3.5.

The output of the product Rest X gex G212 (Hotel) is an oi-relation
with two possible total orders:

(<G787M75>7 <G78’B78>’ <TA757M75>’ <TA757B78>)’
(<G787M75>7 <TA757M’5>7 <G787B78>’ <TA757B78>)'

The order on the product relations is in a sense the minimal order
on pairs of hotels and restaurants that is consistent with the order
on the individual lists: we do not know how to order two pairs,
except that they are comparable whenever both their hotels and
their restaurants are comparable.

Note that consequently the result of Rest X Hotel (implemented
as product followed by selection based on equality on district and
by projecting out the extra district) includes both orders ({(G,B,8),

(TA,M, 5)) and ((TA,M,5), (G, B,8)), intuitively reflecting two dif-
ferent opinions regarding the ordering of pairs of restaurant and
hotel in the same district.

We call the semantics of PosRA on oi-relations that uses Uggy
for union and Xxggy for product the GEN semantics. We show that
this semantics satisfies our axioms:

PROPOSITION 3.9. The GEN semantics satisfies Ax.

We also observe that the GEN semantics is the most general se-
mantics satisfying Ax, in the following sense:

PROPOSITION 3.10. For any PosRA query Q and any oi-database D,
letting W be the result of evaluating Q on D under the GEN seman-
tics and W' be the result under a different semantics satisfying Ax,
we have: W' CW.

Lexicographic product. Another natural semantics that can be

chosen for the product of ordered relations is that of lexical order-

ing, which is defined as follows:

lexicographic product L; xygx Ly is the list (a) consisting of all
tuples (t1,t;) such that r; € Ly and #; € L, and (b) where
(ti,12) precedes (r1,t}) if either 1y <g, t] or f; =, #] and
1 <, té. (Again, in this definition, the #;’s are tuples, not
values.)

EXAMPLE 3.11. The xygx semantics enforces a lexicographic or-
der on tuples in the result of a product. Hence, for instance, in our
running example, the join 1 3 4(0.2— 4(Rest X gx G212 (Hotel)))
includes only a single possible world; it is ordered according to the
leftmost operand in the product, i.e.,, Rest: ({Gagnaire, Balzac,8),
(TourArgent, Mercure, 5)).

It is easy to see that X gx satisfies our desiderata:

PROPOSITION 3.12. Xgx satisfies product.

Concatenation. Another natural semantics for union is that of
concatenation:
concatenation union L; Ucat Ly, with a(L;) = a(L,), is the set



formed of the single list where all tuples of L; (in order)
come before those of L, (in order).
It turns out that this useful semantics (that can easily be shown
to satisfy the union axiom) can be simulated with Uggy and Xpgx:

REMARK 3.13. For oi-relations Wy and Wy, Wy Ucat Wa =113 142
(0.1=2 (NS! x g (([0] X Lex W) Ugen ([1] X cen W2)))) where n =
a(Wl) = a(Wz).

Consequently, in the following we will mostly use the follow-
ing overall semantics for PosRA queries, all of which satisfy Ax:
GEN, LEX (with Uggy for the semantics of union and xpgx for the
semantics of product, and where Ugat can indirectly be expressed),
and GEN+LEX (with both semantics for product allowed in different
parts of the query).

3.5 Additional Properties

We have axiomatized our semantics for PosRA on totally or-
dered and order-incomplete relations, using a set of axioms that
we showed to be non-redundant (Proposition 3.7), except for ax-
iom bag (Proposition 3.6).

We now give more insight about these axioms and our semantics
by presenting some additional properties which are standard for the
positive relational algebra, and showing if they are consequences of
the axioms, or if they are satisfied by the LEX and GEN semantics.

We consider the following properties, defined for all oi-relations
Wy, Wy, W3, tuple predicate @, and sequences K| and K, of integers
in{1,...,a(W;)} and {1,...,a(W,)} respectively:

union-associative W U (W, UW3) = (W UW,)UWs
union-commutative W, UW, =W, UW;

union-distributive (W; UW,) x W3 = (W} x W3) U (W, x W3) and
W3 x (W UW,) = (W3 x W) U (W3 x W)

product-associative W x (Wo x W3) = (W) x Wh) x W3

selection-product 6, (W x Wa) = Wi x G (W2) where all atoms
of @ are of the form “.m = .n” or “.m = d” with m > a(W,),
n>a(Wy) and ¢’ is like @ except that all occurrences of .m or
.n are replaced with .(m —a(W;)) or .(n —a(W))); similarly,
0p(W) x Wa) = 0o (W) x W, where all atoms of ¢ are of the
form “.m = .n” or “.m =d” with m < a(W), n < a(W))

selection-projection Tk, (cp(W1)) = oy (I, (W1)) if all atoms
of ¢ are of the form “.m = .n” or “.m = d” with m,n € K
and @' is defined as @ except that all occurrences of .m or .n
are replaced by some position, in Ky, where m or n occurs

projection-union Ilg, (W} UW,) =TIk, (W) UTlg, (W2)

projection-product IT; _,w,) x; (W1 x W2) =Wy x Tk, (W2)
where K, is as K> but replacing every k with k+a(W); sim-
ilarly, g, aow,) 4 1.....a;)+a(ms) (Wi x Wa) =Tk, (Wy) x W,

Another property of a different nature, that is useful to have, is
that the order of query results only depend of existing order, not on
actual tuples values:

value-genericity For any Q and any oi-database D, letting A be
a bijective relabeling (i.e., a one-to-one mapping from &
onto itself extended to an operation over oi-relations and oi-
databases), then we have: A(Q(D)) = A(Q)(A(D)), where
A(Q) applies the relabeling to constant relations and values
within selections.

We show that these additional properties hold for GEN, and that
some of them hold for LEX as well:

PROPOSITION 3.14. The following properties hold:
(i) selection-projection in any semantics that satisfies Ax;
(ii) union-associative, union-commutative, as well as projection-
union for Ugen,
(iii) product-associative, selection-product, as well as projection-
product for X ey and Xpgx,
(iv) union-distributive in GEN but not in LEX;
(v) value-genericity in GEN+LEX.

Other semantics for union and product may not satisfy the same
properties; for instance, it is clear that Ugar does not satisfy ax-
iom union-commutative; value-genericity may also be violated
(see details in appendix).

4. PARTIALLY-ORDERED DATABASES

While order-incomplete relations are useful as an abstract way
to describe the semantics of PosRA, they are not a practical way to
represent query evaluation results. Indeed, if we try to enumerate
all the possible worlds of the oi-relation that represents the result of
evaluating a query, we find that they can be far too numerous, even
for a very simple query:

PROPOSITION 4.1. The number of possible worlds of R Ugey S ap-
plied to totally ordered relations R and S can be exponential in the
number of tuples of the input relations.

This means that, if we were to represent explicitly the collection
of possible worlds of oi-relations, query evaluation would be ex-
ponential in data complexity, which is clearly undesirable. Thus,
in this section, we propose a natural representation of oi-relations
through partially ordered relations, which (as we will show) can be
used as a strong representation system for the GEN+LEX semantics.

DEFINITION 4.2. A partially ordered relation (po-relation) over fu-
ples of arity n € Nis a triple R= (ID, T, <), where ID is a finite set
of identifiers, T is a mapping of identifiers in ID to tuples of arity n,
and < is a partial order over ID. If < is empty (i.e., imposes no
order constraints), we say the po-relation is unordered. If < is a
total order, we say the po-relation is totally ordered.

A partially ordered database (or po-database) is a mapping from
a finite subset of relation names in . to po-relations whose sets
of tuple identifiers are pairwise disjoint. We say a po-database is
unordered or totally ordered if all of its po-relations are.

We now define the semantics of po-relations by constructing the
oi-relation that each po-relation captures. To do so, we need to
define more terminology about partial orders:

DEFINITION 4.3. A poset, or partially ordered set, is a pair P =
(V,<) where < is a partial order over a finite® set V; its domain
dom(P) is the set V. For a po-relation (ID,T,<), we say that
(ID, <) is its underlying poset.

A linear extension of a poset (V, <) is a total order (V,<') such
that for all x,y €V, if x <y then x < y.

EXAMPLE 4.4. Continuing our (TA,5,B,8)
running example, the oi-relation of T

Example 3.8 obtained by evaluat- / \

ing Rest X ggy G'2¢12(Hotels) canbe (G,8,B,8) (TA,5,M,5)
captured by the po-relation with 4 /

tuples represented by the Hasse di-

agram to the right: the order is rep- (G,8,M,5)

resented from bottom to top, a path from a tuple t| below to a tuple
tr above indicating that t; < t.

We can now define the oi-relation captured by a po-relation:

3We only consider finite posets.



DEFINITION 4.5. A possible world of a partially ordered relation
R = (ID,T,<) is a po-relation (ID,T,<') such that (ID,<') is a
linear extension of (ID,<). We identify (ID,T,<') with the corre-
sponding totally ordered relation.

The oi-relation captured by R, written pw(R), is the set of its
possible worlds. Similarly, for a po-database D, pw(D) is the set
of possible worlds obtained by picking a possible world for each
relation of D.

It is then natural to ask whether any oi-relation can be captured
by a po-relation, but the answer is negative:

EXAMPLE 4.6. Consider the three hotel tuples from Figure 1, re-
ferred to, in order, as t1, ty, t3. Let W be the oi-relation {(t2,1,13),
(t3,11,12) }. This relation represents the hotel preferences of a user
who plans to attend a conference in Paris but where it is not known
yet whether it will take place in a Western or Eastern district (so
the central 5th district of t is always a compromise between the
Western and Eastern ty and t3).

Now, assume by contradiction that there is a po-relation R such
that W = pw(R). No comparability pair can hold in the partial
order of R, as for any two elements x # y (for x,y € {t1,t2,13}),
there is one linear extension of W such that x <y holds and one
such that y < x holds. Yet if R is unordered, then pw(R) includes,
e.g., the possible world (ty,ty,t3) ¢ W.

Are po-relations still useful, then? In fact, we now show that
they form a strong representation system for the positive relational
algebra under the full GEN+LEX semantics. In other words, starting
with input oi-relations represented as po-relations, the output oi-
relation is always representable as a po-relation. Furthermore, the
output po-relation can be computed efficiently from the input in
data complexity, so that it is practical to work with po-relations
(rather than oi-relations).

THEOREM 4.7. Let Q be a fixed PosRA query. Given a po-database
D, we can compute in polynomial time a po-relation Q(D) such that
pw(Q(D)) = Q(pw(D)) under the GEN+LEX semantics.

This important result will serve as the basis of our analysis of
the expressiveness of PosRA, and of top-k query evaluation, in the
following sections.

5. EXPRESSIVENESS

We now discuss the expressiveness of the proposed semantics for
PosRA: what can be expressed, in terms of output or transforma-
tions, depending on the allowed inputs?

We first study which po-relations can be obtained as the output
of queries, and show that any po-relation can be obtained as the
result of some GEN query, even if the query is restricted to have no
input, i.e. it only uses constant relations (Proposition 5.3). Like-
wise, any series-parallel po-relation can be obtained as the result
of a LEX query with no input (Proposition 5.6). Conversely, we
have already shown that, when the inputs are po-relations, the out-
put of GEN queries is always a po-relation (Theorem 4.7). For LEX,
we further show that if the underlying posets of the input relations
are all series-parallel then the same applies to the query output.

We then show that the expressiveness of queries is further limited
by the query size, in the sense that the size of GEN queries without
inputs can be used to bound the dimension of the resulting partial
orders (Proposition 5.7), and the size of LEX queries can be used to
bound the sp-height of the resulting series-parallel partial orders,
depending on that of the input partial orders (Proposition 5.9).

We next study the transformations that can be expressed by GEN
and LEX, and show that the two semantics are incomparable in this
sense (Corollary 5.14): the outputs of LEX are of a restricted form,

but GEN cannot express the concatenation operator Ugar Whereas
LEX can (which we use to show that LEX can also express a sort
operator). We conclude by giving limits on the expressiveness of
any semantics satisfying our axioms: all expressed transformations
must be monotone (Proposition 5.19) but some monotone transfor-
mations cannot be expressed (Proposition 5.20).

For the expressiveness results, we will need to formalize a notion
of isomorphism on posets, and po-relations:

DEFINITION 5.1. An isomorphism between posets (Py,<;) and
(Py,<2) is a bijection f : Py — P, which preserves order in both
directions: for any x,y € P, x <1 y iff f(x) <2 f(y).

An isomorphism between po-relations Ry = (ID1,T1,<) and
Ry = (ID3,T5,<3) is an isomorphism f : ID{ — ID; from the un-
derlying poset (ID1,<1) of R| to the underlying poset (ID3,<5) of
Ry, which additionally preserves values: for all x € IDy, T (x) =
/()

We also need the notion of realizer and dimension of a partial
order:

DEFINITION 5.2. Letting (P,<) be a poset, we say that a set of
total orders (P,<y),...,(P,<y) is a realizer of (P,<) if for every
X,y € P, x <y iff x <;yforall i. The dimension [10] of P is the
smallest n such that there exists a set of n total orders that realizes
P.

5.1 Possible Outputs

We start by studying the LEX and GEN semantics in terms of the
possible relations that can be obtained as output. As we construct
the query as a function of the desired output (rather than fixing
the query and studying the transformation that it expresses), it will
actually be sufficient to study queries with no inputs.

GEN semantics. We show that, following the GEN semantics, any
po-relation can be obtained as output, even when no input is pro-
vided (a query with no input is a query where all relations are the
constant expressions introduced in Section 3). This means that GEN,
even with no inputs, matches the upper bound in expressive power
implied by Theorem 4.7 (namely, that the output to queries taking
po-relations as inputs will be po-relations).

PROPOSITION 5.3. For any po-relation R, there is a PosRA query Q
with no inputs such that the result of evaluating Q using the GEN se-
mantics is R.

LEX semantics. In contrast, the output of the LEX semantics is of
a restricted kind, as we now explain. We say that a po-relation
R = (ID,T,<R) is series-parallel if (ID,<g) is a series-parallel
poset [32], defined as follows:

DEFINITION 5.4. The class of series-parallel posets is the class in-
cluding all single-element orders and closed under the series and
parallel composition operations. Given two series-parallel posets
P and Q with disjoint domains, the series composition of P and Q
is the poset on dom(P) Lldom(Q) whose restriction to dom(P) and
dom(Q) matches P and Q, and such that p < q for any p € dom(P)
and g € dom(Q). The parallel composition of P and Q is the poset
on dom(P) Udom(Q) whose restriction to dom(P) and dom(Q)
matches P and Q, and such that no p € dom(P) and q € dom(Q)
are comparable. A po-relation is series-parallel if its underlying
poset is.

We first show that any series-parallel po-relation can be obtained
as output to a LEX query with no input relations:

PROPOSITION 5.5. For any series-parallel po-relation R, there ex-
ists a PosRA query Q with no inputs such that the result of evaluat-



ing Q under the LEX semantics is R.

We then show that the output of queries under the LEX semantics
is always series-parallel (or empty, i.e., has no tuples), if the input
po-relations are also series-parallel (in particular when there is no
input).

PROPOSITION 5.6. (Follows from [15].) For any query Q and po-
database D of series-parallel po-relations, Q(D) under the LEX se-
mantics is either series-parallel or empty.

Bounded query size. We have shown that GEN queries can have
arbitrary po-relations as output, and that LEX queries can have ar-
bitrary series-parallel po-relations as output. However, the con-
struction builds queries whose size depends on the desired output
po-relation.

We now show that, by contrast, if there is a bound on the size of
the queries, then not all po-relations can be captured as output. Of
course, this is not very surprising if no input relations are allowed
(because there are only finitely many possible such queries, and
infinitely many possible outputs). Yet we will show that, if the input
relations are of restricted form, there are expressiveness limitations
on query results no matter the size of the input relations.

We formalize this by showing bounds on certain poset complex-
ity measures (poset dimension, sp-height of series-parallel posets)
when the query size is bounded.

We can use poset dimension as a bound on the possible po-
relations that can be obtained as output to a fixed query. Of course,
we cannot obtain any bound if the input po-relations are allowed
to be arbitrary (as the identity query could then have arbitrary out-
puts). We accordingly restrict to input po-relations that are unions
of totally ordered relations. This is a natural restriction in our mo-
tivating scenarios where ordered data is combined, as the original
will usually be totally ordered. We then have the following bound:

PROPOSITION 5.7. For any k > 1, for any fixed query Q with no
more than k product signs, for any input po-database D where each
po-relation is a union of totally ordered relations, the dimension of
the underlying poset of Q(D) (under the GEN semantics) is at most
(k+1).

Conversely, for any k-dimensional poset (P,<) there exists a
query Q with no more than k product signs, and a po-database D of
totally ordered po-relations such that the underlying poset of Q(D)
(under the GEN semantics) is (P, <).

In contrast, note that for the LEX semantics, by Proposition 5.6,
even when allowing arbitrary series-parallel po-relations as input,
the underlying poset of the query output is always series-parallel
and thus has dimension at most 2 (by Proposition 2.2 of [27]).

We can show a result for LEX similar to the one above, using
a different notion of complexity for series-parallel posets derived
from the sp-height of an tree to construct this poset, called the sp-
tree.

DEFINITION 5.8. An sp-tree [5] is a rooted ordered tree whose
internal nodes are labeled either “series” or “parallel”, and leaf
nodes are labeled with “singleton”. The decoding of an sp-tree is
a series-parallel poset (defined up to isomorphism) obtained in the
following fashion:

o the decoding of a “singleton” node is the poset ({s},0) where
s is a fresh element;

e the decoding of a “series” node is the series composition of
the posets obtained as the decoding of the children of this
node, in the order in which they appear;

o [ikewise, the decoding of a “parallel” node is the parallel
composition of the decoding of the children.

We define the height of an sp-tree in the usual manner. The sp-
height of a series-parallel poset (P, <) is the minimal height of an
sp-tree that decodes to (P,<) up to isomorphism.

PROPOSITION 5.9. For any k € N and query Q, there is k' € N
(depending only on k and Q) such that for any po-database D of
series-parallel po-relations of sp-height at most k, the underlying
poset of Q(D) (under the LEX semantics) is series-parallel with sp-
height at most k', or empty.

Of course, this result also applies if the input po-relations are
series-parallel posets of a restricted form, e.g., totally ordered rela-
tions or unions thereof.

5.2 Possible Transformations

We now study the LEX and GEN semantics in terms of the possible
transformations they can express on their input relations, leverag-
ing results obtained thus far to show that they are incomparable.
We limit our study to the case of input oi-relations which are po-
relations, so that again the output oi-relations are po-relations by
Theorem 4.7.

DEFINITION 5.10. A transformation is defined as a mapping from
po-databases to po-relations. A query Q expresses a transforma-
tion f (under semantics X) if, for any po-database D, Q(D) (under
semantics X) is isomorphic to f(D).

We note that, as long as value-genericity holds, queries can only
express generic transformations, in the following sense. A trans-
formation is generic except for values ¥ C 7 if, for any mapping
V9 — 2 which is the identity on ¥/, and any po-database D, we
have f(v(D)) =v(f(D)). A query Q may only express transforma-
tions that are generic except for values that occur in Q (in constant
relations, or in selection predicates).

Comparing LEX and GEN. We may now compare the expres-
sive power of LEX and GEN in terms of the transformations that
they define on po-relations. It is a straightforward consequence of
Proposition 5.6 that:

COROLLARY 5.11. There are transformations expressible in GEN
but not in LEX.

Conversely, we show that GEN does not capture LEX, by showing
that the concatenation operator Ugat cannot be expressed in the GEN
semantics:

PROPOSITION 5.12. For any distinguished relation names R and S,
there is no query Q such that, for any po-database D, Q(D) evalu-
ates to R Ucpt S under the GEN semantics.

By contrast, Ugar could be expressed in LEX, as explained in
Remark 3.13. This immediately implies:

COROLLARY 5.13. There are transformations expressible in LEX
but not in GEN.

Hence, from Corollaries 5.11 and 5.13, we observe that GEN+LEX
is strictly more expressive than LEX or than GEN:

COROLLARY 5.14. The GEN and LEX semantics are incomparable
in terms of expressive power for transformations.

Sorting. From the previous discussion, we observe that, as LEX
can encode UgarT, it can also encode a sort operator, defined as fol-
lows:

DEFINITION 5.15. For any integer 1 < i < a(L), domain U C 9
and total order <y on U, we define the sort operator Sort; ,, as
follows: for any totally ordered relation L such that 11;(L) C U,
Sort; <, (L) is the totally ordered relation consisting of the tuples



of L sorted according to the order <y on their values at posi-

tion i, keeping the existing order of L between tuples which have

the same value at position i (hence, this is a stable sort). Note that

Sort; <, (R) is undefined if R contains a tuple t such thatt.i ¢ U. We

extend Sort; <, to oi-relations using axiom consistency as usual.
When U is finite, we say that Sort; -, is a finite sort.

We now show that finite sorts can be expressed in LEX and di-
rectly encoded as a query:

PROPOSITION 5.16. For any finite sort Sort; -, there is a PosRA
query Q with distinguished relation name R such that, for any po-
database D, Q(D) under the LEX semantics evaluates to Sort; -, (R)
when it is defined.

But sorting is impossible in GEN by Proposition 5.12:

COROLLARY 5.17. For any domain U of size > 2 and total or-
der <y on U, for any distinguished relation name R with arity
n > 2 and position 1 < i < n, there is no query Q such that, for
any po-database D, Q(D) under the GEN semantics evaluates to
Sort; <, (R) when it is defined.

Proposition 5.16 does not extend to infinite sort because the or-
der on the infinite domain needs to be specified in some way. The
result can be extended to any infinite sort if we assume that an infi-
nite totally ordered relation is provided in the input po-database to
represent the order on which to sort.

Intrinsic limits. Our expressiveness results so far were limited
to the GEN and LEX semantics. However, while those two semantics
are natural, our axioms Ax also allow different semantics, leaving
open the question of which transformations can be expressed by
them. We now present expressiveness limits for any PosRA seman-
tics that satisfies Ax (in particular GEN+LEX). Formally, we show
that every such semantics captures a strict subset of the monotone
PTIME transformations on po-relations, and give an example of a
natural transformation which is not captured.

Clearly the transformations are PTIME by Theorem 4.7. We now
show that semantics that satisfy Ax are monotone:

DEFINITION 5.18. A transformation f is monotone if for every
po-databases D and D' we have pw(f(D)) C pw(f(D’)) whenever
pw(Rp) C pw(Rpy) for every relation name R (Rp and Ry being
the relations for R in D and D' respectively).

PROPOSITION 5.19. For any semantics X satisfying Ax and PosRA
query Q, if a transformation f is expressed by Q under semantics
X, then f is monotone.

This is a coarse restriction, of course, and it is not at all the case
that our semantics can capture any monotone query. We leave pre-
cise characterization of expressiveness for future work, but, for in-
stance, we cannot “forget” input order:

PROPOSITION 5.20. There is no semantics X satisfying Ax and
query Q that capture the following monotone, generic transfor-
mation f: letting R be a distinguished relation name, for any po-
database D, f(D) = Rel(R).

6. TOP-x

The query language that we have studied so far does not allow
selection based on the order on tuples. In this section we allow
such selection by introducing a top-k operator, for which we will
study possibility and certainty. As we will see at the end of the
section, these problems generalize the natural questions of decid-
ing instance certainty and instance possibility for po-relations (see
Definition 6.16), for our possible worlds semantics.

6.1 Definition and General Results

As usual, we first introduce the semantics of top, for totally or-
dered relations:

DEFINITION 6.1. For every k € N we introduce a unary operator
topy, with the following semantics: for every totally ordered relation
L, topy (L) is the totally ordered relation which is the sublist of L of
positions from 1 to min(k, |L]).

We then use axiom consistency to extend top, to work on oi-
relations and po-relations. We note that oi-relations cannot repre-
sent the result of the top, operator when the input relation is not
totally ordered:

EXAMPLE 6.2. Consider the query with no inputs: Q = top ([a] U
[b]) for a,b € 9. As the possible worlds of [a] U [b] are (a,b) and
(b,a), the possible query results should be (a) and (b). However,
this is not representable by an oi- or po-relation, because the do-
mains of the two results differ.

We thus restrict our attention to cases where topy, is applied as
the last operation of the query. In this case, we can show that, for
fixed k:

PROPOSITION 6.3. For any fixed query Q := top,(Q') with Q' in
the GEN+LEX semantics, one can compute the possible results of
Q(D) in PTIME in the input po-database D.

However, the complexity may be exponential in the value of k
(as well as in the size of Q). In this section, we study the feasibil-
ity of query evaluation when the top-k operator is added as a last
operation and k is not fixed in the query. As the number of possi-
ble top-k results may then be exponential in k, we consider instead
the two following possibility and certainty problems for top-k with
unbounded:k:

DEFINITION 6.4. For a PosRA query Q evaluated under seman-
tics X, given an input po-database D, and a totally ordered po-
relation L (called the candidate possible world), the top-k possibil-
ity problem asks whether there is a possible world of Q(D) whose
|L| first elements are exactly L; in other words, whether L is a pos-
sible world of top,;(Q(D)).

The top-k certainty problem is to determine whether all possible
worlds of Q(D) satisfy this condition.

In our example application, if we assume a fixed query Q that
integrates po-relations representing user preference on hotels, and
whose output are names of hotel chains (with possible duplicates),
the top-k possibility problem, given a po-database D representing
the input hotels and a list L of hotel chain names, asks whether L
can be the first elements of a possible world of Q(D). For instance,
we ask whether it is possible that all the top-3 hotels are “Mercure”
hotels.

We now study the top-k possibility and certainty problems for the
LEX, GEN and GEN+LEX semantics. Our results are summarized in
Table 1. We always study data complexity: the query Q is fixed, and
the input is the po-database D and the candidate possible world L
(and we look at top-k for k = |L|, so k is not fixed).

The following results show that, in general, the certainty prob-
lem is in PTIME, but the possibility problem is NP-complete, even
if we assume that all relations of the input po-database D are ei-
ther unordered or totally ordered. Certainty is decided following a
decomposition of the query result in a series composition, and the
hardness of possibility is by a reduction from unary-3-partition.

THEOREM 6.5. Top-k certainty is in PTIME for GEN+LEX.

THEOREM 6.6. Top-k possibility is NP for GEN+LEX and NP-hard
for both GEN and LEX, even assuming that each input po-relation is
either unordered or totally ordered.




6.2 Tractability for Possibility

As we have shown that top-k possibility is NP-hard, we now
show some restrictions that ensure tractability.

Unordered case. For any query Q under the GEN or LEX seman-
tics, if we only allow unordered relations in the input po-database,
then the top-k possibility problem can be solved in PTIME. This is
fairly intuitive but is not entirely obvious, because order can be im-
posed on the input relations using constants in the query. However,
we show that the resulting order is always of a certain restricted
form, so that possibility is still in PTIME.

DEFINITION 6.7. Given a poset (P,<), a subset S C P is an undis-
tinguishable antichain if it is both an antichain (there are no x,y € S
such that x < y) and it is an undistinguishable set (or interval [13]):
fJorallx,yeSandz€ P\S, x<ziff y<z andz<xiffz<y.

An undistinguishable antichain partition (ua-partition) of a poset
is a partition of its domain into undistinguishable antichains. A
poset always has at least one partition, namely, the one where each
element is put in its own partition. The cardinality of such a parti-
tion is its number of classes.

PROPOSITION 6.8. For any poset (P,<), an ua-partition of mini-
mal cardinality can be computed in PTIME.

Accordingly, we define the ua-width of a poset as the cardinality
of its smallest ua-partition.

PROPOSITION 6.9. For any constant c, top-k possibility is in PTIME
for the GEN+LEX semantics if we assume that all input po-relations
have ua-width at most c.

COROLLARY 6.10. Top-k possibility is in PTIME for the GEN+LEX
semantics if all input po-relations are unordered.

Totally ordered case. We next consider the case where all in-
put po-relations are totally ordered, which, as we already men-
tioned, is a natural restriction in our motivating scenarios. We show
that in this case, top-k possibility remains NP-hard for GEN.

PROPOSITION 6.11. Top-k possibility is NP-hard for the GEN se-
mantics even if all input relations are assumed to be totally ordered.

However, possibility becomes tractable for LEX under this hy-
pothesis. In fact, we can show a stronger claim, with a suitable
definition:

DEFINITION 6.12. The breadth of an sp-tree is its number of top-
most nodes that have no “parallel” descendants (and are not them-
selves “parallel”).

PROPOSITION 6.13. For any constant ¢ € N, top-k possibility is in
PTIME for the LEX semantics if all input po-relations are series-
parallel and each of their underlying posets has an sp-tree with
breadth at most c.

COROLLARY 6.14. Top-k possibility is in PTIME for the LEX se-
mantics if all input po-relations are totally ordered.

No duplicates. A last way to ensure tractability is to assume
that tuple values in the query result are all unique (with no dupli-
cates). Intuitively, this makes it easy to decide which tuple from the
candidate possible world should be matched to which tuple in the
query result, because the unique tuple values ensure that only one
match must be considered.

PROPOSITION 6.15. Top-k possibility is in PTIME for the GEN+LEX
semantics if we assume that all tuple values in Q(D) are unique.

Table 1: Summary of complexity results for top-k

Problem Product Input Complexity

Cert. GEN+LEX any PTIME (Thm. 6.5)
Poss. GEN+LEX any NP (Thm. 6.6)
Poss.! GEN+LEX any PTIME (Prop. 6.3)
Poss.2 GEN+LEX any PTIME (Prop. 6.15)
Poss. LEX total PTIME (Cor. 6.14)
Poss. GEN+LEX unordered PTIME (Cor. 6.10)
Poss. LEX total+unordered NP-hard (Thm. 6.6)
Poss. GEN total NP-hard (Prop. 6.11)

I Assuming k is bounded
2 Assuming no duplicate values in the query output

6.3 Other Problems

We now discuss some other natural questions that can be asked
about a po-relation, but that cannot be expressed in our algebra
(because their result would not be captured by our representation
system).

Bottom-k. Of course, all of our study of top-k also applies to a
corresponding bottom-k operator that returns the last k elements.
The same tractability and intractability results apply as they are
symmetric up to order reversal.

Instance possibility. A special case of interest is when the num-
ber of tuples in the candidate possible world L is exactly the number
of tuples in the possible worlds of Q(D), i.e., the top-k operator has
no effect. We can accordingly define:

DEFINITION 6.16. We define the instance possibility problem for a
fixed query Q, given an input po-database D and a totally ordered
candidate possible world L, as determining whether L € pw(Q(D)).
The instance certainty problem asks whether pw(Q(D)) = {L}.

There is a reduction from instance possibility and certainty to
the corresponding top-k problems (with the additional assumption
that |L| = |[Rel(Q(D))|). Hence, all upper bounds in Table 1 also
apply to instance possibility and certainty. What is more, it can be
seen from the proofs that the lower bounds also extend to instance
possibility and certainty.

We can also prove the following tractability result which specif-
ically applies to instance possibility (once again we are studying
data complexity):

PROPOSITION 6.17. The instance possibility problem is in PTIME
for the GEN+LEX semantics assuming that all input relations are
either unordered or totally ordered, and that the fixed query does
not use any product operator.

Ranks. The problem of rank possibility and rank certainty is to
decide, given an input rank k and tuple ¢, whether the tuple at rank
k may be ¢, or is always 7, in the possible worlds of a query result
(or, more generally, of a po-relation).

PROPOSITION 6.18. The problem of rank possibility and rank cer-
tainty on any po-relation R is in PTIME.

Sublists. The problem of sublist possibility is to decide, given a
totally ordered relation L and a po-relation R, whether there is a
possible world L' of R such that L is a sublist of L.

As there is a clear reduction from instance possibility to sublist



possibility, and NP-membership is immediate by guessing a way to
realize a suitable world L', we can show:

PROPOSITION 6.19. The sublist possibility problem is NP-complete
in the input po-relation R and candidate sublist L.

However, following a similar idea as Proposition 6.3:

PROPOSITION 6.20. We can solve the sublist possibility problem
in PTIME in the input po-relation R and sublist L, if the length of L
is assumed to be bounded by a constant.

7. DUPLICATE ELIMINATION

So far we have focused on bag semantics, keeping duplicate tu-
ples and treating them as different objects. Yet, in many motivating
scenarios, tuples with the same values actually refer to the same
object (e.g., the same restaurant reviewed on different Web sites),
and in a set semantics spirit one would like to keep a single copy
of them. The main difficulty is that tuples with the same value may
differ in terms of their order relation with other tuples.

We next discuss what form of duplicate elimination can still take
place. We define a dupElim operator, first on totally ordered rela-
tions and then (following axiom consistency) on po-relations.

7.1 Semantics for Totally Ordered Relations
We will rely on a notion of undistinguishable subsets:

DEFINITION 7.1. Given any totally ordered relation L= (ty,. .. ,t,)
and a subset S of tuples from L, we say that S is an undistinguish-
able subset (or u-subset) if it is a contiguous sub-sequence of du-
plicate tuples in W, i.e. for all t;,t; € S, we have t; = t; and for all
tEWNS, t <t ifft <tj andt; <tifft; <t.

EXAMPLE 7.2. In the totally ordered relation [];(Hotel), where
Hotel is as in Figure I, the two “Mercure" tuples do not form a
u-subset since they do not agree on their relative ordering with re-
spect to “Balzac". By contrast, in a totally ordered relation L =
(A,B,B,C) (where A, B, and C are tuples over 9), the two occur-
rences of B form an u-subset. Note that a singleton is always a
u-subset.

We use this notion to define a semantics for duplicate elimination
on any totally ordered relation L, in the following way. First, check
that for every tuple value in L, all the occurrences of this value form
a u-subset. If this condition is satisfied, we set dupElim(L) to be
the single possible world obtained by picking one representative
element for each u-subset (clearly the result does not depend on
the choice of representatives). If it is not respected, we say that
duplicate elimination has failed, and set dupElim(L) to be an empty
set of possible worlds.

Intuitively, duplicate elimination tries to reconcile (or “synchro-
nize”’) order constraints for tuples sharing the same values, and fails
when this cannot be done. We discuss other possibilities in Sec-
tion 7.3.

EXAMPLE 7.3. For dupElim(I; (Hotel)), we can see that dupli-
cate elimination fails. However, for L as in the previous example,

dupElim(L) = (A, B,C).

7.2 Semantics for General oi-Relations

We now consider duplicate elimination for oi-relations, which
may consist of multiple possible worlds. We define duplicate elim-
ination via axiom consistency: the possible worlds are all results
of duplicate elimination for each possible world of the input:

DEFINITION 7.4. Given an oi-relation R, we let dupElim(R) be
Uwer dupElim(W). We say that dupElim(R) completely fails if
dupElim(R) = 0.

The intuition is that we only keep possible worlds where du-
plicates agree, so duplicate elimination can be done “safely". We
completely fail if dupElim fails on all possible worlds.

EXAMPLE 7.5. Consider the totally ordered relation defined as
Resty = (Tsukizi, Gagnaire), and consider the following query Q :
dupElim([]; (Rest) Ugen Rest3). The goal of query Q is to com-
bine two different restaurant rankings, performing duplicate elim-
inations to consider different occurrences of the same restaurant
name as referencing the same actual restaurant. The only possible
world of the query output (and indeed, the only consistent way of
consolidating both rankings) is (Tsukizi, Gagnaire, TourArgent),
since duplicate elimination fails in the other possible worlds of the
union.

It is immediate that:

PROPOSITION 7.6. For every oi-relation R, the following holds:
dupElim(R) either completely fails or its result may be captured by
a non-empty oi-relation.

More interestingly, po-relations are still a strong representation

system for queries with dupElim (up to complete failure). To show
this, we need to define a notion of quotient of a po-relation by value
equality:
DEFINITION 7.7. For a po-relation R = (ID,T, <), we define the
value-equality quotient of R as the directed graph Gg = (ID',E)
where: ID' is the quotient of ID by the equivalence relation idy ~
idy < T(idy) = T(idy); and E := {(id},id}) € ID'* | id| # idy A
I(idy,idy) € id| x idy, id) < idy}.

Cycles in the value-equality quotient of R precisely characterize
complete failure of dupElim.

PROPOSITION 7.8. For any po-relation R, dupElim(pw(R)) com-
pletely fails iff Gg has a cycle.

COROLLARY 7.9. For every po-relation R, one can determine in
PTIME if dupElim(pw(R)) completely fails; if it does not, one can
compute in PTIME a po-relation R such that we have pw(R') =
dupElim(pw(R)).

Combined with Theorem 4.7, this means that po-relations may
still serve as representation system for the extended language in-
cluding dupElim, if we add the possibility of declaring failure of
the entire query.

Top-k. Notice that the above result, together with Proposition 6.15,
implies that when we perform dupElim as the last operation of a
query (in the spirit of set semantics), then top-k and instance possi-
bility and certainty may be decided in PTIME data complexity.

7.3 Alternative Semantics

In addition to the dupElim operator that we have defined, there
are at least two plausible alternative semantics for duplicate elim-
ination on totally ordered relations, which we can then extend to
oi-relations using axiom consistency.

Weak duplicate elimination. A first possibility is to keep one
representative element for each maximal u-subset (sequence of undis-
tinguishable duplicates), even if multiple representatives are kept
for each value. This duplicate elimination scheme is weak in the
sense that duplicates may remain in the output.

EXAMPLE 7.10. For A # B tuples on 9, consider the totally or-
dered relation L = (A,B,B,A). According to this semantics, we
would have dupElim(L) = (A, B,A).

However, the analogue of Proposition 7.6 does not apply to this
semantics: the result of duplicate elimination on an oi-relation (or



even on a po-relation) may no longer be representable as an oi-
relation:

EXAMPLE 7.11. Consider po-relation R = ({ay,b,as},T, <) with
T(a1) = T(ap) = A and T(b) = B, where A # B are tuples over
9, and < is defined by ay < b and ay < ay. We have pw(R) =
{(A,B,A),(A,A,B)}, so that by axiom consistency we have that
dupElim(pw(R)) = {(A,B,A),(A,B)} which is no longer an oi-
relation (the underlying bag relations of the two possible worlds
are different).

Aggressive duplicate elimination. To design a semantics
which is not weak but cannot fail, one alternative scheme is to de-
fine duplicate elimination on a totally ordered relation L as the oi-
relation whose possible worlds are all possible totally ordered rela-
tions that can be obtained by choosing one representative element
for each value, no matter whether the representatives are undistin-
guishable or not. In other words, we do not worry if we are not able
to reconcile the order between duplicate tuples:

EXAMPLE 7.12. Considering L as in Example 7.10, we obtain
dupElim(L) = {(A,B), (B,A)}.

The result is then always representable as an oi-relation. How-
ever, the analogue of Corollary 7.9 does not hold: po-relations are
no longer a strong representation system for this semantics:

EXAMPLE 7.13. For A, B and C distinct tuples on 9, consider
the totally ordered relation L = (A,C,B,C,A). We then have that
dupElim(L) = {(4,C,B),(A,B,C),(B,C,A),(C,B,A)}, and there
is no po-relation R such that pw(R) = dupElim(L) (not all six per-
mutations of {A,B,C} are possible worlds, yet each comparability
pair is violated in a possible world).

8. RELATED WORK

We next overview multiple lines of related work.

Order theory. Our development is naturally related to order the-
ory; in particular, po-relations may be viewed as labeled posets [30],
where labels are tuples. However, our focus on data management
means that we study transformations based on queries, and study
their complexity as a function of the inputs (data complexity), which
is not a common perspective when studying partial orders (see an
exception below). Hence, while we use the notions of poset dimen-
sion [10] and series-parallel posets [32], and our proofs of corre-
sponding results leverage technical lemmas from [16, 29], to our
knowledge our results are not covered by general results from (par-
tial) order theory.

The most relevant work in this context is [14,15], bridging partial
order theory and data management: they study queries on pomsets,
which are labeled posets quotiented by isomorphism (i.e., renam-
ing of identifiers). Their operators include Uggy (‘‘additive union”),
Ucat (“‘concatenation”), xpgx (“cartesian product”) and generaliza-
tions of projection and selection (“restructuring”). Their Proposi-
tion 4.1 thus implies our Proposition 5.6 about the output of LEX
queries being series-parallel, and we use their Proposition 4.6 as a
tool in the proof of Theorem 6.5. However, our finer results about
LEX (e.g., Proposition 5.9) are new, and our results about GEN are
not covered by theirs as the xggy operator is not proposed there.
Beyond that, our semantic desiderata (not met by their semantics),
our study of top-k possibility and certainty and our particular notion
of duplicate elimination are all absent from [15] and novel to our
knowledge. The “individual objects” operator of [15] is similar to
our dupElim but removes conflicting order constraints rather than
ensuring that they can be reconciled; also, it focuses on manipu-

lating pomsets directly rather than seeing them as a representation
system for transformations on their possible worlds.

Order theory has been also largely considered for handling pref-
erence data in database systems [3,20,21,34] with concrete repre-
sentation systems or query languages; our study differs from these
in the sense that we propose a more general framework for data
management in ordered domains.

Queries on ordered domains. In contrast to our work, which
studies relations with ordered tuples, many works [6,28] consider
a different setting where there is an underlying order on domain
elements. For instance, [36] studies a model where the universe is
partially ordered and comparability relations between domain ele-
ments are seen as facts. Further, in the context of the expressive
power of queries, the effect of having total ordering on the universe
has been studied extensively [18,37]. Yet, all these works differ
from ours, because the underlying model is not the same and does
not consider order between tuples.

Temporal data and data integration. A common use of or-
der on facts are temporal databases [8,33] but they usually consider
the order induced by timestamps, which is a total order. One ex-
ception is [12] which considers the partial order on facts induced by
some facts being more current than others, and reasons about the
possible total orders for the currency relation. However, the work
does not consider how the order on facts could be manipulated via
relational queries. What is more, because of the focus on currency,
the possible worlds of the order are only completions for the facts
associated to each entity, not for the overall facts, so they are not
totally ordered relations in general: this differs from our semantics.

Data integration on ordered data has been considered in context
of rank aggregation [34,35] which study how to order integrated
data according to user preferences. However, these works explore
only specific semantics of ranking, in particular the ranking-join
operator, and assume that the order on data is given by a score of a
certain form; by contrast, we study the whole PosRA algebra and
make no assumption about the order. The recent work [2] discusses
the integration of temporal (hence, ordered) data, in a way that fol-
lows user preferences. Important differences with our approach
include their focus on temporal data rather than arbitrary orders
(although they can have multiple time domains), and their focus on
a single preference-aware union operator, unlike our setting where
we extend the full positive relational bag algebra.

Incomplete and probabilistic information. Our notion of
oi-relation is inspired by the general question of incomplete data
management [17] (which has also been extensively studied beyond
relational settings, see e.g. [4,26]) with our axiom consistency be-
ing a standard desideratum in this context. In the same way, our
study of possibility and certainty in Section 6 is a common focus
of works on incomplete information, unique here in the sense that
uncertainty is on the order of tuples. Related work in this direction
is the study of uncertain and probabilistic temporal and streaming
data (e.g., [11,23-25]); led by different motivations, these works
focus on different semantic choices than ours (e.g. not focusing
on relational algebra on partial orders, not considering duplicate
elimination, having different notions of top-k, etc.). Top-k queries
has been studied in various probabilistic contexts [9,23,31,34,39],
but the semantics of ranking results for top-k is typically based on
probability of results, on known values, or a combination of both
(e.g. ranking based on expected value), rather than our ranking
which is a combination of given rankings without a known under-
lying ordered domain.



Practical languages and implementations. XQuery and
SQL are two examples of concrete query languages which can ma-
nipulate ordered data. In terms of specification, in standard SQL
and some of its extensions [22], “ordering of the rows of the table
specified by the query expression is guaranteed only for the query
expression that immediately contains the ORDER BY clause” [19].
For XQuery, results are either ordered or unordered, but operations
(e.g. union) will revert to the non-controllable document order
([38], section 3.4.2). Similar principles apply to other query lan-
guages. Practical implementations of SQL, when computing, e.g.,
the union of two ordered results, usually return one possible choice
to combine their orders, though the specifics depend on which algo-
rithm is used to compute the result. In contrast, our work proposes a
more principled way of allowing to maintain all possible orderings
that “make sense” (as made precise by our axiomatization).

9. CONCLUSION

We have proposed and studied possible worlds semantics for
query evaluation, for the positive relational algebra enriched with
constructs for order-based selection such as top-k, in presence of
order-incomplete relational data. Other semantic choices are plau-
sible and may fit our paradigm. Their exploration, involving further
study of the tradeoff between expressiveness and complexity, is left
for future work. As we have pointed out, this is particularly the case
for duplicate elimination and set semantics.

An additional intriguing challenge for future work would be to
combine “standard” incompleteness on data values, in addition to
incompleteness of the order (possibly based on extending our pos-
sible worlds approach). Last, since our motivating scenarios in-
volve data originating from multiple sources, effective provenance
tracking in this context would be particularly relevant; we intend to
study it as future work.
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APPENDIX
A. PROOFS FOR SECTION 3 (ORDER-INCOMPLETE DATABASES)

PROPOSITION 3.6. Axiom bag is implied by axioms constants, select, project, consistency, union, and product.

Proof. The proof is naturally by induction on the structure of a PosRA query (where Q, Q1, Q> are PosRA queries) over {Ry,...,R,} and €:

if the query is of the form R;, this is trivial;

the constants axiom implies that Rel(0) = Rel(()) = {{ }};

for any tuple ¢, the constants axiom implies that Rel([¢]) = Rel((¢)) = {{# }};

for any n € N, the constants axiom directly implies that Rel((0,...,n)) = {{0,...,n}};

for any tuple predicate @, the consistency and select axioms imply that any possible world of the oi-relation 6, (Q(D)) is formed of

the tuples that satisfy ¢, with their original multiplicity in Q(D);

e for any sequence of integers (ki,...,kp), the consistency and project axiom imply that any possible world of ITj, & (Q(D)) is formed
of all tuples of the form Iy ({{t }}) for r € Rel(Q(D)), with the sum of the multiplicities of such tuples ;

e the union and consistency axioms imply that any possible world of Q1 (D) U Q> (D) contains exactly the tuples of Q1 (D) and of Q5 (D),
with the sum of their multiplicities;

e the product (especially, the requirement of the mapping being one-to-one) and consistency axioms finally imply that any possible
world of Q1 (D) x O»(D) has for underlying bag relation the product of these two relations. O

PROPOSITION 3.7. None of the axioms in Ax is implied by the others. In fact, if any of these axioms is discarded, there is a semantics
consistent with the other axioms (and, except when removing axiom constants, with axiom bag), and a trivial query* which is not the identity
over this semantics, namely one of- Gyue(R), RU®, or IT;__,(R x N<O) assuming that the input relation R has arity n.

Proof. First, let us prove that with the axioms Ax, each of the trivial queries that we consider is indeed the identity:

Oirue(R): by axiom select, this is the identity on totally ordered relations; by axiom consistency, this is also the identity on oi-relations.

RUO: by axioms union and constants, this is the identity on totally ordered relations; by axiom consistency, this is also the identity on
oi-relations.

I ,(RxN <0): we assume # to be the arity of the relation mapped to R. By axiom product and constants, R x NS0 results in an identical
totally ordered relation, except that its arity has increased by one. Then, by axiom project, we retrieve the initial totally ordered relation.
By axiom consistency, this query is also the identity on oi-relations.

We now consider each axiom in turn, showing that dropping it would allow a semantics that still satisfies axiom bag (except when the
removed axiom is axiom constants) but where one of these trivial queries is not the identity. This also implies that the set of axioms is not
redundant.

For every case, we start with the GEN semantics (see Section 3.4) and modify it for one particular operator. We also rely on suitable
modifications of Proposition 3.6 to show that the bag axiom is still satisfied by this modified semantics.

constants: we can set the semantics of @ to be (0). The bag axiom is violated, but no other axiom constrains the semantics of . Then, by
axiom union, @ U0 has at least one possible world, and the only possible world that is consistent with the axiom is (0,0). Therefore
DU #0.

select: set the semantics of 6 (L) to be the set of all permutations of 6 (Rel(L)). This change does not affect the validity of the bag axiom,
and no other axiom constrains the semantics of selection on totally ordered relations. Then:

0 ({(0,1)}) = {(0,1),(1,0)} # {(0, )}-

project: set the semantics of I14(L) to be the set of all permutations of IT4(Rel(L)). This change does not affect the validity of the bag
axiom, and no other axiom constrains the semantics of projection on totally ordered relations. Then:

HI,Z({(Ov 1)} XNSO) = {(071)7(1’0)} 5& {(07 1)}

consistency: set the semantics of union on oi-relations when at least one operand has at least two possible worlds to be the set of all
permutations of the bag semantics of union. This change does not affect the validity of the bag axiom, nor does it change anything to
the semantics of union on totally ordered relations as constrained by the union axiom. Then:

{(0,1,2),(0,2,1)} U0
={(0,1,2),(0,2,1),(1,0,2),(1,2,0),(2,0,1),(2,1,0) }
#{(0,1,2),(0,2,1)}.

union: set the semantics of L; UL, to be the set of all permutations of Rel(L;) URel(L;). This change does not affect the validity of the bag
axiom, and no other axiom constrains the semantics of union on totally ordered relations. Then:

{(0,H)}u0 = {(0,1),(1,0)} #{(0,1)}.

4By “trivial” we mean that the query is the identity for the standard bag semantics. However, note that we usually do not want all trivial
queries to be the identity for oi-relations (see details in appendix).




product: set the semantics of L; X Lj to be the set of all permutations of Rel(L;) x Rel(L,). This change does not affect the validity of the
bag axiom, and no other axiom constrains the semantics of product on totally ordered relations. Then:

i 2({(0, 1)} x N¥%) = {(0,1),(1,0)}) # {(0,1)}. O

As a complement to Proposition 3.7, we present an example of a query whose semantics is the identity for bag relational algebra but where
we do not wish that the query is the identity for oi-relations.

EXAMPLE A.l. Assume a user favors Mercure hotels. The user issues Q := G| —Mercure (H0tel) U G | —Mercure (Hotel) with the intent of
retrieving all hotels, but treating Mercure hotels in a special way. The semantics of Q in the bag relational algebra is the identity. However,
for oi-relations, it may not be the identity: intuitively, the order between tuples satisfying “.1 = Mercure” and those that do not is lost and
could be recreated in a different way. For example, the user may want to put all Mercure hotels first; that is the behavior of the Ucat operator,
that we introduce further.

PROPOSITION 3.9. The GEN semantics satisfies Ax.

Proof. By construction, GEN satisfies the constants, select, project, and consistency axioms.

The fact that GEN satisfies the union axiom is clear: all possible worlds in the union are interleavings since the possible worlds are precisely
all interleavings.

Let us now prove that the product axiom is also satisfied. Let L be a possible world of L; x L,. Let us write L; = (tl(])7 . ,t,(,])) and

Ly, = (11(2), .. ,téz)). The totally ordered relation L is defined to contain, forevery 1 <k < pand 1 </ < qgatuplefy; = (t,El) , ll(2>>; we define

v as the function that maps (k,/) to the position of tuple #; ; in L. For a fixed k, the projection of y(k, [1;4]) onto the last a(L;) attributes has

for elements (ignoring order) t§2)7t§2> ye .t(gz), i.e., exactly those of Lp. We just need to show that order is also preserved. Assume it is not

the case; then there exists 1 <i < j < g such that #; ; precedes #; ; in L. This contradicts the semantics of product in GEN. Similarly, we show

that for a fixed /, the projection of y([1; p]|,!) onto the first a(L;) attributes is exactly L. O

PROPOSITION 3.10. For any PosRA query Q and any oi-database D, letting W be the result of evaluating Q on D under the GEN semantics
and W' be the result under a different semantics satisfying Ax, we have: W' CW.

Proof. We prove this by induction on the structure of Q. Since the axioms fully constrain constants, selection, and projection, we can limit
the study to union and product. Letting X be some other semantics satisfying the axioms, we will write Ux and xx for unions and products
performed under X.

Assume that Q = Q1 U Q3 and, letting W) and W, be the results of evaluating O and Q; under the GEN semantics, and W and W, be the
results under the X semantics, let W := W Uggy W> and W’ := W{ Ux W,. By induction hypothesis we have W, C W; and W, C W, and we
wish to show that W/ C W. Let L be one of the possible worlds of W’. By the consistency axiom, there exists a possible world L; of W] and
Ly of W2’ such that L € L{ ULy, and as WI’ C W and W2’ C W, we have L € W and L, € W,. Also, by the union axiom, L is an interleaving
of L and L,. Since the GEN semantics of union consists of all interleavings of the operands, in particular, L € W.

Now assume that Q = Q| X Q», and define W, W, Wl’ R Wz’, W, and W, similarly as above, replacing unions by products. As above, let L
be a possible world of W/, and we must show that it is a possible world of W; define L1 and L, as above. The axiom product requires the
existence of a mapping y from pairs of positions on L1, L, to positions on L. As there may be several of them, we choose y to be one that
maximizes the following quantity: ¥ <<z, Xi<i<ir, K X I X W(k,I).

We first note that for any 1 < k < |Lq|, 1 <1 < |L,], the tuple at position y(k,/) in L is (zlgl),tl(z)

This is a direct consequence of two applications of the product axioms.

Let 1 <k <K <|Li|, 1 <1<l <|Ly|. We show that w(k,I) < w(k',I"), which will conclude the proof since W contains all such lists.
Assume this is not the case, i.e., y(k,1) > y(k',I').

First, consider the case where k =k, and let 1,1’ be the lowest two positions such that I <!’ and y(k,[) > y(k,I’), which means y(k,l’)
is the /-th position among all y(k,m) for 1 < m < |L|.

Then by the axiom product, the sublist of L with positions {y(k,m) | 1 < m < |Ly|} is equal (once projected on the last a(L;) attributes)

to L. In particular, this means (tlgl),tf,l)> (the tuple at position y(k,")) is equal to (t,El) , t[(l)> (the [-th tuple in the sublist of L) with positions

{y(k,m) |1 <m < |L,|} and therefore tl(,z) = tl(z).

Now, consider the mapping ' : [1;|L;]] x [1;|L2]] — [1;|L1] - |L2|], defined to be identical to y except that y’'(k,l) := w(k,l’) and
v/ (k,I") == y(k,I). y is obviously one-to-one. Furthermore, y’ satisfies the conditions of the product axiom: the sublist of L of positions
{y/(k,m) | 1 <m < |Ly|} is the same as for y, and since tl(,z) = tl(z) the sublist of L of positions {y’'(m,l) | | <m < |L{|} and {y/'(m,]) | 1<
m < |Lp|} are equal. Now:

()

) where ¢ jl is the tuple at position j in L;.

pmy' (p,m)

1<p<|Ly | 1<m<|Ly |
1<p<|Ly | 1<m<| Ly |

> Z Z pmy(m,m)

1<p<|Ly | 1<m< Ly |



which contradicts the maximality of y and concludes the case k = k.

The case where [ = I’ is exactly symmetrical and we show in the same way that y cannot reach the maximal value of the sum.

In the case where k < k', I <!’ and w(k',I') < y(k,I), consider y(k,l'): either we have y(k,!') < y(k',I"), which means y(k,!") < y(k,/)
and we are back in the case k = k/, or w(k',I') < y(k,!’) and we are back in the case [ =I'. O

PROPOSITION 3.12. Xgx satisfies product.

Proof. The possible worlds of a xpgx expression are always a subset of the same expression for the xggy product, so we conclude because
X gen satisfies product by Proposition 3.9 and removing possible worlds cannot make product false. O

PROPOSITION 3.14. The following properties hold:

(i) selection-projection in any semantics that satisfies Ax;

(ii) union-associative, union-commutative, as well as projection-union for Uggy,
(iii) product-associative, selection-product, as well as projection-product for X ey and XLgx;
(iv) union-distributive in GEN but not in LEX;

(v) value-genericity in GEN+LEX.

Proof. First observe that it suffices to show all properties but value-genericity hold when Wi, W, and W3 are totally ordered relations.
Indeed, all properties are of the form Q1 (D) = Q,(D) for a database D containing oi-relations Wi, W, and W5 and Q1, O, some queries;
by axiom consistency, Q1 (D) is the union over all possible worlds Ly, Ly, L3 of Wy, W, and W3 of Q1 (D, 1,,1,) Where Dy, 1, 1, is like D
except that W; is replaced with L;. If the properties holds for lists, we thus have that Q1 (D) is the union over all possible worlds Ly, L, L3 of
02(Dy, 1,,1,), which is by axiom consistency again Q> (D).

We now consider each property in turn, for totally ordered relations L, L,, and L3, and ¢, ¢', K|, K3 as in the statement of every property.
Note that by the bag property, which holds in any semantics that satisfies Ax, the underlying bag relation on the left-hand side and right-hand
side of the equation of every property are the same.

union-associative: Let L € Lj Uggy (L, Ugen L3). L can be partitioned into sublists L’l and L', which can in turn be partitioned into sublists
L} and L}, with Ly = L}, L, = L}, L3 = L. Calling L” the merging of the sublists L} and L}, L can thus be partitioned into sublists L”
and LY, which means L € (L; UGENL,) UGENL3).

union-commutative: An interleaving of L; and L, is also an interleaving of L, and L;.

union-distributive: Let us first show this does not hold in LEX. Consider totally ordered relations L; = (0), L, = (1), and L3 = (2,3).
Then (Ll U(;ENLQ) XLE)(L3 = {(0, 1), (1,0)} XLEX (2,3) = {((0,2>, <0,3>, <12>7 <1,3>), (<1,2>, <1,3>7 <0,2>, <O,3>), } On the other hand,
(Ly xwex L3) U (Ly x1ex L3) = {((0,2),(0,3))} U{((1,2),(1,3)}. Thus, for example, the possible order ((0,2),(1,2),(0,3),(1,3)) is
in (L] XLEX L3) @] (Lz X LEX L3) but not in (L1 UgEN Lz) X1ex L3.

Let us now show that for any three lists, (L; Ugen L2) Xeen L3 = (L1 Xgen L3) Ugen (L X gen L3 ). The symmetric property is proved in
a completely symmetric manner.

Let L be a possible order of (L Ugen L) Xgen L3. Let v : [15|L1| +|L2|] % [1;|L3]] = [1; (|L1] +|L2])|L3|] be the mapping from the
product axiom. Let (K, K3) the partition of [1;|L;|+|L;|] that indicates the position, in L; Uggy Ly, of the tuples from L; and L, given
by the union axiom. Consider the sublist L3 of L of the positions in y(Kj,[1;|L3|]) and Ly3 the sublist of all other tuples of L. L;3
and Ly, are possible orders of L; x¢gen Ly and L Xgey L3, respectively, as they satisfy the conditions of Xggy. Since Lj3 and Ly3 are
disjoint sublists of L, we have L € Li3ULys C (Lj Xy L3) Ugen (L2 Xgen L3) by the consistency axiom.

In the other direction, let L € (L Xggy L3) Ugen (L2 Xgen L3). L is an interleaving between a list L13 from L X gy L3 and a list Lp3 from
Ly xggy L3 by the union axiom. Let y; and y; be the mappings given by the product axiom for L3 and L3 respectively. If Lz = 0,
the result trivially holds. Otherwise, observe that L; is the projection on the first a(L) attributes of the elements of L;3 at positions
w1 ([1;]L1|]1). Similarly, L, is the projection on the first a(L;) attributes of the elements of Ly3 at positions W, ([[1;|Lz|],1). Thus, the
projection on the first a(L;) attributes of the elements of L corresponding to that of L; and L in L3 and L3 is a list L}, that is an
interleaving between L and Ly, thus in L Uggy L. Now, L3 X gey L3 is exactly L, which means L € (L Uggy L2) X L.

product-associative: Let L € (L; gy L) X ey L3. Two arbitrary tuples of L of the form ¢ = (11,,,13), ' = (t],15,5) with t <g ¢’ satisfy
13 <, By or (11,1) <p,, (t],25) for some Lis € Ly Xgen Lo. But (t1,1) <g,, (1{,%}) means that r{ <, t] ortp <z, #5. Thus, tuples r <z ¢/
satisfy 1 <g, t], 12 <y, 1, or 13 <, #5. But then, Ly x (Lp X ggn L3) is similarly all lists L’ such that whenever ¢ <z ¢/, meaning t; <z, |
orty <y, té ort3 <p, tg. Thus L € Ly X (L Xgey L3). The other direction is exactly symmetric.
Now, let L = (L; Xrgx L2) Xrgx L3 and 1 <p t'. We decompose 7 and ¢’ as above. We have either (t1,12) =1, x e, (11,85) and 3 <g;;
or (t1,1) <f,xumL, t],t5. In the former case, this means that r; =, 7| and #, =, #,, which, together with 73 <z, #; means that
(t2,83) <Lpxuels (th,15) and thus ¢ <Ly eex (Lo xeexls) ¢'. In the latter case, this means that #; <z, 7] or t; =, t and 1, <z, t5. But
then if 11 <p, 1], 1 <z, sy (L xpmls) 1 AN i 12 <1, 15, (12,13) SLyxpeyly (15,13) and thus since 1 =1, 11,1 <p oo (1 xoeels) £ We thus
have the fact that in all cases t <p t' =t < Ly xuex (L X exLa) t'. Since <z and < Ly xuex (L xeexLy) @€ total orders over the same set of
elements, they are the same and L = L} Xrgx (L X1Ex L3).

selection-product: Let L € 6¢(L; XgenLo) and 7 <z ¢ in L. We pose t = (t1,1), t’ = (1],1}). By axiom select, there exists a list L’ €
Ly Xgen Ly such that L is the sublist of L’ of all tuples where ¢ holds. This means ¢ <y ¢" and thus either t; <z, #] or 1y <y, #}. Since
both @(¢) and (') hold, by definition of ¢’, both ¢'(r;) and ¢'(}) also hold, thus #, and } are kept in 0y(L,). Since for arbitrary
(t1,1p) <p (t],15) we have either 1] <z, 1" or1p <oy (L) 15, by the definition of X gy, L is a sublist of a list in Lj X gen Oy (L2). But since
both lists have the same underlying relation, they are equal.



Conversely, let L € Ly X ¢en Og (Lp) and 1 <p ¢’ in L with t = (t;,15), ' = (t],#5). Then either t; <z, t] or <oy (L) (t3). But 64 (L)
is a sublist of L, by axiom select. This means 1, <z, té. Thus, L is a sublist of a list in L; x Lp. Since all tuples of L satisfy ¢, it is also
a sublist of a list in 6 (L1 Xgen Lo). But since both lists have the same underlying relation, they are equal.
We now move to xpgx and consider L = G (Ly Xgen Lp), lett <z, ¢ with the same notations as before. Thus either either ¢; < L ti or
1y =1, 1] and t <z, t5. But then as before #, and #} are kept in Gy (Lp). We thus have either 1) <p, ] or t; =, #{ and 1 <o, (L) th.
Thus 11 <z, *imx Oy (L) 12- Since <z, and <, X151y (Ly) AT€ total orders over the same set of elements, they are the same and L =
Ly X1ex Ogr (L2).
We show the symmetric property for GEN and LEX in the exact same manner.

selection-projection: the fact that selection-projection is implied by Ax, precisely by consistency, select, and project is clear. Indeed, the
underlying relations are the same and neither selection nor projection changes the order between tuples.

projection-union: This is a simple consequence of the fact that an interleaving of projections is a projections of the interleavings; order is
not changed by projection.

projection-product: Welet K| = Kj,a(W;)+1,...,a(W;)+a(W,). We show g, (Ly x Ly) =TIk, (Ly) X Ly, the symmetric property being
proved analogously.
Let L € g (L1 Xgen Lp). There exists L' € Ly Xggn Lo such that L =g/ (L'). Lett = (11,1),t' = (1},15) € L, with t </ ¢, meaning
g, (1) <p Mg (¢'). We have either 1 <y, 1] or t <, t;. By axiom project, we thus have either Ik, (1) <ny, (L) Mk, (1) ortp <g, 5.
Thus L € HKl (L]) X Ly.
Conversely, let L € T, (L1 ) Xgen Lp. We take 1 <g ' with r = (t1,12), ' = (1{,}) € L. There exists fo,#, € L; such that #; = HKI_ (t0)
and 1 =Tk, (t9). Now, either t; <y, (1, #] and then #g <y, fg, or & <z, #5. Thus, (f0,12) <L xgeyL, (fg,13)- By axiom project,
t SHK; (Ly xcenla) t'. Thus L € HK]r (Ll X GEN Lz).
Letnow L € I, (Ly X1gx Lp). There exists L € Ly X1gx L, such that L = g, (L)). Lett = (t1,tp),t' = (t],1}) € L, with # <z, ¢, meaning
g (1) <p Mg (t'). We have either 1 <y, 1] or t; =, #; and 15 <y, #. Thus, either Ik, (1) <ng, (L) Mk, (1) or Ik, (11) =TIk, (L)
HK| (l‘i) and tp <L2 Zé. Thus L = IIK1 (Ll) X Ly.

value-genericity: We prove this axiom by induction on the structure of Q. The definition requires value-genericity to hold for constants
and selections, value-genericity clearly holds for projection, and trivially holds for relation names. We now show that Uggy, Xgen, and
X gx also satisfy value-genericity.

Assume that Q = Q| © Q5 for ® € {Uggn, Xcen, X1Lex } and let Q;, Q, be the oi-relations obtained by evaluating O}, Q> on the input
relations. We have, using the fact that A (Q) only impacts selection and constants, and using the induction hypothesis:
=(A(Q1) ©A(22))(A(W1),..., A(Wp))
=2A(Q1)(AW1),...,A(Wa)) ©A(Q2)(A(W1),..., A (Wn))
=2QW,....Wn)) ©A(Q(W2, ..., Wp))) = A(Q1) © A(Q2).
We thus simply need to verify that A (Q1) ®A(Qy) = A(Q] ©Qy).
Union only looks at the order of tuples: a list L is an interleaving of L; and L, if and only if the list A(L) is an interleaving of A(L;)

and A (Ly).
For xgey and Xpgx, observe that they are defined in terms of order among tuples, not in term of values: L is a possible world of
Ly xggy Ly or Ly X1 gx Ly if and only if A (L) is a possible world of A (L;) xgen A (Ly) or A(L1) X1gx A(Ly), respectively. O

As a complement to Proposition 3.14, we show an example where value-genericity is violated:

EXAMPLE A.2. Consider again the query Rest URest,. We give the following semantics to union: Ly ULy is the single list where all tuples
that are at the top of list Ly and satisfy “.2 = 6" come first, followed by tuples of Ly, followed by all other tuples of L. This semantics
would correspond to the (bizarre) preference of a user for international restaurants only if they are close to the user’s home (hence, in the
6th district) and better than any farther international restaurants, French restaurants being preferred to international restaurants otherwise.
This is reminiscent of the preference rules of [ART14]. As it results in an interleaving of L1 and Lo, the union axiom is satisfied. However,
the value-genericity axiom is clearly violated, since the special treatment of the value “6” does not appear in the query but is hidden in the
semantics of union.

B. PROOFS FOR SECTION 4 (PARTIALLY-ORDERED DATABASES)

PROPOSITION 4.1. The number of possible worlds of R Ugex S applied to totally ordered relations R and S can be exponential in the number
of tuples of the input relations.

Proof. Let R and S be totally ordered relations with n tuples. The number of possible worlds of the result is the number of possible
interleavings, namely, (2}1"), which is (by Stirling’s formula) asymptotically equivalent to % =Q(2"). O
THEOREM 4.7. Let Q be a fixed PosRA query. Given a po-database D, we can compute in polynomial time a po-relation Q(D) such that
pw(Q(D)) = Q(pw(D)) under the GEN+LEX semantics.



Proof. We show this by induction on the structure of Q.

If Q is a relation name R, Q(D) := D(R) is a po-relation that can be obtained in time linear in D.

If O = 0, we let Q(D) be the empty po-relation.

If Q = [t], Q(D) is the po-relation on the singleton tuple ().

If 0 = NS, O(D) := ([0;n],k — (k),<) where < is the total order over integers. This has size constant in D.

If 0= 0yp(Q') and Q'(D) = (ID',T', <), let ID be the set of all 1 € ID’ such that @(7”(1)) holds. Then Q(D) = (ID, T‘}D7

<"1D), which
is constructible in time linear in Q' (D).

If Q =TI}, 4,(Q') and Q'(D) = (ID',T',<'), let T : 1 += I, (T"(1)). Then Q(D) := (ID', T,<') is constructible in time linear in
Q' (D).

If Q = Q) Ugen O, let, fori € {1,2}, Q;(D) = (ID;,T;,<;). If ID| and ID; are not disjoint, we rename identifiers from one of them to
fresh identifiers, redefining 7; and <; accordingly, which is linear in D. Hence, we assume without loss of generality that /D and ID,
are disjoint. We define Q(D) = (ID; UID,, Ty UT,, <] U<>). This construction is linear in Q1 (D) and Q> (D). We will now prove that
this gives the right semantics, using the fact that a linear extension of the union of two disjoint partial orders is an arbitrary interleaving
of linear extensions of the two partial orders.

For the forward direction, let L be a possible world of Q(D). By our remark above Q(D), there is a possible world L; of Q(D;) and
Ly of Q(Dy) such that L is an interleaving of L; and L,. By the induction hypothesis, L; € Q(pw(D)) and L, € Q»(pw(D)). Since
(Q1 Ugen Q2) (pw(D)) is formed of all interleavings of Q; (pw(D)) and Q,(pw(D)), L € (Q Ugen O2) (pw(D)) = Q(pw(D)).

For the backward direction, let L € Q(pw(D)). This is an interleaving of a L; € Q1 (pw(D)) and a L, € Q,(pw(D)). By the induction
hypothesis, L; € pw(Q;) and L, € pw(Q5), which means L; is a possible world of Q; (D) and L, is a possible world of Q»(D). Thus,
L is a possible world of Q(D).

o If O = Q1 Xgen O, let, for i € {1,2}, Q;(D) = (ID;,T;,<;) as given by the induction hypothesis. We define Q(D) := (ID| X ID;,T, <)
where T : (11,12) — (T(11),T(12)) and < is defined as the minimal order relation such that (1;,12) < (1{,1}) whenever there are
i# j€{1,2} suchthat ; <1/ and 1; < l;. This can be constructed in time polynomial in the product of the size of Q1 (D) and Q,(D),
hence, in time polynomial in D: to construct the order, enumerate all pairs that are as above, and then complete the set of constraints

into an order via transitive closure.

Now, to prove correctness, let L be a possible world of Q(D). For arbitrary i € {1,2}, the definition of < ensures there is no (11,1;) <
(1],1) if ¢/ <. This means L € Q(pw(D)). Conversely, if L € Q(pw(D)), L does not violate any of the constraints of <, and is
therefore a possible world of Q(D).

o If 0= Q) x1gx Os, fori € {1,2}, 0;(D) = (ID;, T;, <;). We define Q(D) := (ID| x ID,,T,<) where T is as in the previous case and
< is the lexicographic product of the orders <; and <j. This is constructible in linear time in the size of the product of Q;(D) and
0>(D), and the definition of the LEX semantics of product ensures that possible worlds of Q(D) are exactly possible outcomes of Q
over pw(D). O

C. PROOFS FOR SECTION 5 (EXPRESSIVENESS)
C.1 Possible Outputs (Section 5.1)

PROPOSITION 5.3. For any po-relation R, there is a PosRA query Q with no inputs such that the result of evaluating Q using the GEN
semantics is R.

We use the definitions of Definition 5.2. We first state the following useful lemma (Theorem 9.6 of [Hir55], see also [@re62]) that we will
use throughout, and restate its proof in our terms, for the sake of being self-contained:

LEMMA C.1. A poset (P,<p) has a realizer (Ly,...,Ly,) of size n iff P is isomorphic to a subset S of R = Nk XGEN * ** X GEN Nk for some
integers ky, ...,k (the order on S being the restriction on that of R).

Proof. For the forward direction, we identify each element x of P to f(x) := (n},...,n};), where n} is the position where x occurs in L;, and
take k; := |P| for all i. Now, for any x,y € P, we have x <p y iff n} < nf for all 1 <i<n (thatis, x <y, y), hence iff f(x) <g f(y). Hence,
taking S to be the image of f (which is injective), S is indeed isomorphic to P.

For the converse direction, let ky,...,k, be the integers, R be as defined, and S be the subset. For each 1 < i < n, we construct L; that
enumerates the elements of P as follows: take for L; the reverse image by the isomorphism from P to S of the total order on S obtained by
sorting the elements of S by their i-th coordinate, and then by their coordinates 1,2,...,i—1,i+1,...,n, in lexicographic order. To see that
(L1,...,Ly) is indeed a realizer of P, consider x,y € P, we have x <p y iff, letting #* and #’ be the corresponding elements in S, tj‘ <5 t; for
all 1 <i<nbuttf <gt for some 1 < j < n. If this holds, then indeed x <y, y: it is obviously true if they differed for coordinate i, otherwise
they were tied for all coordinates until one coordinate differed and broke the tie in the correct direction. Conversely, if this does not hold then
¥ <g; x , where j is the coordinate where it does not hold. O

We now prove the main claim:



Proof. We first argue that to prove the claim, it suffices to show that for any poset (P, <), there exists a query Q such that the tuples of O()
(the result of evaluating Q) all have unique values, and the underlying order of the po-relation Q() is (P,<). Indeed, to prove the desired
result from this claim, first build a po-relation Q() with the desired partial order and unique values, and then replace the values by the desired
values by performing the join (i.e., product, selection, projection) with a union of singleton constant expressions that map each unique tuple
value of Q() to the desired value of the corresponding tuple in the desired po-relation R.

We now prove the weaker claim. Fix the desired poset (P,<). Let d be the order dimension of P (it is necessarily finite). We now use
Lemma C.1 to argue that, for some tuple predicate ¢, P can be obtained (up to the tuple values) as oy (N <Kt gy - - X gy NS4 for some
kiy... ky. O

PROPOSITION 5.5. For any series-parallel po-relation R, there exists a PosRA query Q with no inputs such that the result of evaluating Q
under the LEX semantics is R.

Proof. We prove the claim by a straightforward induction on R:

e If R is a singleton (¢), then we take Q := 1]

e If R is the parallel composition of R and R, then, applying the induction hypothesis to obtain Q; and Q5 such that R| = Q;() and
Ry, = Qz(), we take Q := Q1 UQ».
o If R is the series composition of R; and R, with the same notations and reasoning we take Q := Q1 UcaT Q». O

PROPOSITION 5.6. (Follows from [GM99].) For any query Q and po-database D of series-parallel po-relations, Q(D) under the LEX
semantics is either series-parallel or empty.

Proof. We prove the claim by induction (in fact we prove a slightly stringer claim, allowing for relations of D to also be empty). The relations
of D are either series-parallel po-relations or are empty, and the expressions 0, [¢] and NS” are series-parallel or empty, which proves the base
case. For the induction, the union of two series-parallel or empty po-relations of compatible arity is a series-parallel or empty po-relation
(and the underlying poset is the parallel composition of the two original posets), the projection of a series-parallel or empty po-relation is
still series-parallel or empty (the underlying poset does not change), and the selection of a series-parallel or empty po-relation is either the
empty po-relation or its underlying poset is a non-empty restriction of a series-parallel poset, which is still series-parallel [BGR97].

It remains to show the claim for R X gx S. If either of R or S are empty, then the resulting po-relation is empty as well. Otherwise, its
underlying poset P is defined as the lexicographic product of Py and P>, which are that of R and S, and are series-parallel. To see why P is
series-parallel, consider any sp-trees 77 and 7, representing P and P> (see Definition 5.8). Clearly, the result of replacing every “singleton”
node of 71 by a copy of 75 is an sp-tree for P. Hence, P is series-parallel. O

PROPOSITION 5.7. For any k > 1, for any fixed query Q with no more than k product signs, for any input po-database D where each
po-relation is a union of totally ordered relations, the dimension of the underlying poset of Q(D) (under the GEN semantics) is at most (k+1).

Conversely, for any k-dimensional poset (P, <) there exists a query Q with no more than k product signs, and a po-database D of totally
ordered po-relations such that the underlying poset of Q(D) (under the GEN semantics) is (P, <).

Proof. Let us first deal with the case of totally ordered input relations. Use properties selection-projection, projection-union, and projection-
product to rewrite Q so that projections are the outermost operators. Use properties selection-product and selection-union to move selections
outwards. Now, use union-distributive so that Q is rewritten to an equivalent projection of selections of unions of products of the base
relations and constant relations.

Clearly the products in this form cannot be more than k-ary. Hence, the resulting partial order is a union of products of (at most) k + 1
po-relations which are totally ordered (whether they are the input relations or constant relations).

We now use Lemma C.1 for each product in the union to argue that its dimension is at most k + 1, and conclude using the fact that, for
any d > 2, any finite union R = R{ Uggy - - - Ugex R, of po-relations of dimension < d has dimension < d. Indeed, create a realizer Z for the
union by making the first total order of Z a concatenation of the first total order of the realizers for each R; for 1 < i < n in increasing order,
and making the other total orders of Z the concatenation of the other total orders of the realizers for each R; for n > i > 1 in decreasing order.
The correctness of this construction is immediate as order between two elements in any unioned relation R; are correctly represented by the
realizer of the union as they were correctly represented in the realizer for R;; and any two elements in R; and R; for i # j are incomparable
as evidenced by the first and second total orders of Z (this is where we use the fact that d > 2).

If the input relations are unions of total orders instead of total orders, we can rewrite Q to replace the input relations with unions of input
relations which we assume are total, and the same proof works.

Conversely, the fact that any such poset can be realized is a direct consequence of Lemma C.1. O

PROPOSITION 5.9. For any k € N and query Q, there is k' € N (depending only on k and Q) such that for any po-database D of series-
parallel po-relations of sp-height at most k, the underlying poset of Q(D) (under the LEX semantics) is series-parallel with sp-height at most
K, or empty.

Proof. This claim follows immediately from the proof of Proposition 5.6, noting that an sp-tree T for the result of query evaluation can be
obtained from sp-trees 71,..., 7, from the input po-relations, and that the sp-height of T depends only on that of the 7; and on the query Q
(and not, e.g., on the size of the T;). O



C.2 Possible Transformations (Section 5.2)

COROLLARY 5.11. There are transformations expressible in GEN but not in LEX.

Proof. By Proposition 5.6 any transformation expressed by a LEX query is such that the image of a po-database of totally ordered relations is
a series-parallel po-relation. So, to show that some transformations can be expressed by GEN but not by LEX, it suffices to provide an example
of a query Q and po-database D such that Q(D) is not a series-parallel po-relation when evaluated under the GEN semantics.

Consider Q the query G(p(Ngl % gexn NS2) and D the empty po-database, where @ is the tuple predicate:

(1=1A2=0)V(1=1A2=1)V(I1=0A2=1)V(1=0A2=2)

It is easily verified that Q(D) is a po-relation with four tuples 71, t,, f3 and 4, with respective values (1,0), (1,1), (0,1) and (0,2), such
that exactly the following comparability relations hold: #; < 7, t3 < 1, 3 < t4. But this is exactly the N-shaped poset of [M6h89] which is
an example of a non-series-parallel poset. Hence, Q(D) is not series-parallel, proving the desired result. O

PROPOSITION 5.12. For any distinguished relation names R and S, there is no query Q such that, for any po-database D, Q(D) evaluates to
RUcat S under the GEN semantics.

To prove Proposition 5.12, we first show the following lemma:

LEMMA C.2. Let v € Z\N be a value. For any query Q that does not mention v, the following holds. Assume that no relation of a po-
database D contains two tuples t| < t such that either ty.i =v and ty.i £ v, or t.i # v and ty.i = v. Then Q(D) under the GEN semantics has
the same property.

Proof. Let vy be any value of Z\N that does not occur in Q We show the claim by induction on the query Q.
The base cases are the following:

e For the base relations, the claim is trivial by our hypothesis on D.
e For the empty and singleton constant expressions, the claim is trivial as they contain less than two tuples.
e For the N¥ constant expressions, the claim is immediate as v ¢ N.

Now for the induction step:

e For selection, the claim is immediate as the property to prove is maintained when taking subsets of tuples
e For projection, the claim is also immediate as the property to prove is maintained when reordering, copying or deleting attributes

e For union, the property is preserved as any comparability relation between tuples in the union implies that the two tuples must come
from the same input relation, where the comparability relation preexists between the same tuples.

e We now show that the property is preserved for product (under the GEN semantics). Consider Q(D) = Q1 (D) Xgey Q2(D) where
Qi (D) and O, (D) satisfy the conditions, and assume that there are two tuples (1,%,) < (¢],#5) in Q(R). We distinguish on whether
1 <i<a(Q))ora(Q) <i<a(Q;)—+a(Qy). For the first case, we thus have 71.i # ¢{.i, as one of them is v and the other is # v.
Thus, by definition of the product order in the GEN semantics, as (f1,72) < ({,#;) we must have #; <#{, so necessarily #; <] in Q; (D),
contradicting our assumption about Q; (D). The second case is symmetric. O

We now conclude with the proof of Proposition 5.12.

Proof. Let us assume that there exists a query Q capturing Ucar. Consider a po-database D formed of R = ((r)) and S = ((s)) where r and
s are distinct values of 2 that do not occur in Q. By our assumption about O, we know that Q(D) has only one possible world, namely
((r),(s)). However, by Lemma C.2, taking v = r, D had the desired property, but Q(D) does not. So we have a contradiction, and Ucat
cannot be thus captured. O

PROPOSITION 5.16. For any finite sort Sort; ,,, there is a PosRA query Q with distinguished relation name R such that, for any po-
database D, Q(D) under the LEX semantics evaluates to Sort; <, (R) when it is defined.

Proof. Consider a totally ordered relation Ry that describes the total order (U,<p). As U is finite, Ry is finite, and it is series-parallel
because it is totally ordered, so by Proposition 5.5 there is a query Qp with no inputs whose output is Ry .

Consider now the query Q: ITp 4 r)+1 (0_1:_(,- +1) (Qu XLEx R)). It is straightforward that Q(D) is the desired relation: the selection and
product (corresponding to a join) sort tuples first by their values at position i according to Qy () (under the assumption that the sort is defined),
that is, Ry, with a stable order in case of ties, and the projection ensures that the tuples values are correct. O

COROLLARY 5.17. For any domain U of size > 2 and total order <y on U, for any distinguished relation name R with arity n > 2 and
position 1 < i < n, there is no query Q such that, for any po-database D, Q(D) under the GEN semantics evaluates to Sort; -, (R) when it is
defined.

Proof. Fix U, <y, n, and i. We show how Ucar on input relations of arity 1 can be implemented using Q, so the impossibility of imple-
menting Ucat in the GEN semantics (Proposition 5.12) implies a contradiction (noting that, from the proof of this proposition, Ugat cannot be
implemented even if we assume that the input relations have arity 1).

Indeed, let R and S be two relation names with arity 1, and let a < b be two distinct values of U, and consider the query Q": TT4 (Q(IT4([a] x
R) Ugen 14 ([b] % S))), where A is the sequence s1,...,s, with s; =2 for all j # i and s; = 1, and A’ is the singleton sequence iy for some



ig # i. It is easy to see that Q(D) under the GEN semantics evaluates to R Ucat S. Indeed, IT4 ([a] X R) is the relation R except that each tuple
t = (v) is replaced by (v,...,v,a,v,...,v) with a at position i, and likewise for II4([b] x S). Now sorting ensures that we obtain R Ucat S up

to the change of values, and the right values are recovered thanks to IT4.
Hence, we have implemented Ugat in GEN, and reached the desired contradiction. O

PROPOSITION 5.19. For any semantics X satisfying Ax and PosRA query Q, if a transformation f is expressed by Q under semantics X, then
f is monotone.

Proof. Immediate by induction and by axiom consistency. O

PROPOSITION 5.20. There is no semantics X satisfying Ax and query Q that capture the following monotone, generic transformation f:
letting R be a distinguished relation name, for any po-database D, f(D) = Rel(R).

Proof. Let us fix X and Q, assuming by contradiction that they have the desired property, and let us construct a counterexample po-database
D consisting of a single relation R. We let R be the totally ordered relation ({a), (a)) where a is a constant not in N and that does not occur
in Q.

We now show by induction that in the po-relation which is the result of evaluating any subexpression of Q, either a does not occur, or there
are two comparable tuples that have the same value. For the base cases:

e The claim holds for the input relations: R has two comparable tuples that have the same value.

e The claim holds for the constant expressions, as a does not occur in them (remember that Q does not contain a).
Now, for the induction:

e The claim is immediate for the one possible semantics for projection dictated by axiom project: if a does not occur then a still does not
occur after projection; if there are two comparable tuples with the same value then this is still the case after projection.

e The claim is immediate for the one possible semantics for selection dictated by axiom select: if a does not occur then this is preserved
by selection, otherwise the two comparable tuples with the same value are treated in the same way by the selection.

o For the union R| UR;, assuming that Ry and R, satisfy the induction hypothesis, either a occurs in none of R and R, and, by prop-
erty bag, this is still true of the result. Otherwise, considering the two comparable tuples with the same value in one of the input
relations (say R;), we observe that by axiom union those two tuples must still be comparable (and have the same value) in the union,
so R; U Ry satisfies the property.

e For the product R| X Ry, assuming again the induction hypothesis on R| and R», if neither of R and R contains a then the product
does not by property bag. If one of them does, then if the other relation is empty, the output does not mention a by property bag.
We distinguish on whether R| or R, contains a (and thus contains two comparable tuples with the same value); we assume it is Ry,
as the case where it is R, is symmetric. Let ky, kp be the position of the two comparable tuples of R;. Consider the mapping y of
axiom product: in every possible world of Ry x R, we must have y(k;, 1) < y(kp, 1) and those two tuples have the same value. Hence,
R\ X R, satisfies the property.

This proves that Q(D) under X is not suitable, as Q(D) should be Rel(R), which should both contain a and not have two comparable
tuples. O

D. PROOFS FOR SECTION 6 (TOP-x)
D.1 Definition and General Results (Section 6.1)

PROPOSITION 6.3. For any fixed query Q := top(Q') with Q' in the GEN+LEX semantics, one can compute the possible results of Q(D) in
PTIME in the input po-database D.

Proof. Compute the po-relation R := Q' (D) in PTIME (Theorem 4.7). Now, consider every list L of k tuples of R; for fixed Q and k, the
number of such lists is polynomial in D. Now, for every such list, we can decide in PTIME if there is a linear extension of R whose first k
elements match L, by adding the order constraints [; < lp, Iy < I3, ..., [y < I, and [; < x for all x in the domain of R that is not in L, and
checking if the result is still a poset (i.e., if there is no cycle, which can be done in PTIME). O

THEOREM 6.5. Top-k certainty is in PTIME for GEN+LEX.

Proof. We compute in PTIME R := Q(D) using Theorem 4.7 and we show that we can determine in PTIME whether L is the only possible
world of top, (R).

We say that the po-relation R is serial if there are two po-relations R} and R; such that R is the series composition of R; and R;. We use
Proposition 4.6 of [GM99] to compute in polynomial time a decomposition of R as the series composition of Ry, ...,R,, where the R; are
non-serial po-relations. In particular, if R was not serial, we have n = 1 and the decomposition is just Ry = R.

Now, following this decomposition, write L as the series composition of Ly,...,L,, such that each L; contains as many elements as R;
(except for L, which may contain strictly less, but at least one). Clearly, to solve the certainty problem for R and L, it suffices to solve it for
each R; and L;. So we may assume without loss of generality that R is non-serial and |L| contains at most as many elements as R.



Write R = (ID,T,<). We say that an element x € ID is a root of R if there is no y € ID such that y < x. Let [ := T (r) be the value of a
root r of R. If the value of all elements of R by T is [ (in particular, if ID = {r}), it is easy to solve certainty: just check if L contains only
value /. Otherwise, define the ancestors of an element x € ID as the set A, of the elements of ID that precede them, and define the ancestor
number of x as ny := |Ay|. Let y € ID be an element with value I’ := T (y) such that I’ # [, whose ancestor number 7, is minimal. We now
prove that L is the only possible world for top; | (R) iff L contains only / and |L| < ny.

Clearly, if L is of the prescribed form, then it is a possible world (obtained by enumerating the ancestors of y in a suitable order), and it
is the only possible world (if a different possible world can be achieved, then the first enumerated element whose value is not / violates the
minimality of y). Conversely, assume that L is not of the prescribed form. If the first min(ny, |L|) positions of L contain a different value than
[, then it is not a possible world by minimality of ny, as before. Otherwise, if |L| > ny, we claim that L is not the only possible world, because
there are two different possible worlds for top) (R), as follows.

We first deal with the case where n, = 0. This means y is a root of R, so that R has one root with value / and one root with value U Ttis
then clear that if |L| > 0 then L is not the only possible world.

Hence, assume that Ay is non-empty. We now justify that the set Sy of elements incomparable to y is not empty. Indeed, if it were, then R
would be serial: it would be the serial composition of Ay, y itself, and its descendants if any. Now consider the set S’y of the minimal elements
of Sy, which is also non-empty; all immediate predecessors of elements of S; must be ancestors of y. We now claim that there is z € S; whose
value T'(z) is /. To see why, assume by contradiction that it is not the case. By minimality of y, the ancestor number of all elements of S{,
must be at least n,. But then, as all ancestors of elements of S; are in Ay, this means that for all z € S;, A; = A,. This implies that R is serial,
as it is the serial composition of the non-empty A, on the one hand, and {y} U S; and their descendants on the other hand: any element of A,
is less than y, less than elements of S;, less than descendants of {y} because it is less than {y}, and less than elements of S, because it is less
than the elements of S;, which are the minimal elements of Sy.

Hence we conclude that there is z € S}, with T(z) = [. We thus obtain two possible worlds of top|(R): [ repeated ny + 1 times, by
enumerating Ay U {z}, and [ repeated n, times and /', by enumerating A, U {y}. This concludes the proof. O

THEOREM 6.6. Top-k possibility is NP for GEN+LEX and NP-hard for both GEN and LEX, even assuming that each input po-relation is either
unordered or totally ordered.

Proof. We start by showing NP membership. Observe that we can just evaluate the fixed query Q on the input D, which is in PTIME by
Theorem 4.7, and then guess a permutation of the elements of the resulting po-relation R := Q(D) and check that it is indeed a linear extension
of R and that its first |L| values are exactly L. Of course the same argument applies if R is an arbitrary po-relation rather than the result of
evaluating a query.

We now show hardness, making the assumption that relations of D are either totally ordered or unordered. Further, in our constructions,
the candidate possible worlds L will always have a number of elements that is exactly the number of elements of Q(D), and not less (i.e.,
we are showing hardness of the instance possibility problem as in Definition 6.16, which implies that of the top-k possibility problem for
unbounded k).

We first assume that Q(D) is evaluated according to the GEN semantics. The reduction is from the UNARY-3-PARTITION problem [GJ79]:
given 3m integers E = (ny,...,n3,) written in unary and a number B, decide if the integers can be partitioned in triples such that the sum of
each triple is B. We reduce an instance .# of UNARY-3-PARTITION to an instance of the possibility problem for a certain po-relation R and
a certain totally ordered relation L.

Let s, n, e be three distinct values from & (they stand for start values, inner values, and end values). We set R’ to be a unary totally ordered
relation with tuples encoding E in the following fashion: for 1 < i < 3m, one tuple z{ with value s, n; tuples t;'» (with 2 < j < n;+ 1) with
value n, and one tuple tfli 1o with value e (R' is the total order formed by concatenating the 3m sequences of length n; + 2). We alternatively
B am TS We consider the query Q : TI, (NS¥"~1 x apy R'), and denote by R the po-relation obtained
by evaluating Q. Note that as all tuples of the unary query result have value in {s,n,e}.

We create a first totally ordered sequence L; in the following way: for 1 < i < 3m, 3m —i — 1 repetitions of the sublist formed of s, n;
tuples with value n, and one tuple with value e.

We write ngk for the prefix of L; of length k, for 0 < k < |L{|. We say that Lfk is a whole prefix if either k = O (that is, the empty prefix)

or the k-th symbol of L; has value e. We say that a linear extension L’ of R realizes Lfk if the sequence of its k-th first values is LT, and that

number the tuples of R as 7{,..

it realizes L, if it realizes LF‘L' |, When L realizes ngk, we call the matched elements the elements of R that occur in the first k positions of
L', and say that the other elements are unmatched. We call the group-i elements the elements whose first component before projection were
i—1.

We first observe that for any linear extension L’ realizing LSk, for all i, the group-i unmatched elements must be all of the form t} for j > k;
for some k;, with }; k; = k. Indeed, if they did not form a suffix, then some order constraint of R would have been violated in the construction
of L.

Second, we say that we are in a whole situation if for all i, the value of element t,’q .1 is either undefined (i.e., there are no group-i
unmatched elements, which means k; = |R'|) or it is s. In such a situation, we observe that k; is of the form Zle (nj +2) for some / and we
set S; := Wi <i/{{ni }} to be the bag of group-i consumed integers. The group-i remaining integers are E\S; (seeing E as a multiset).

We now prove the following claim: for any linear extension L’ realizing Ly, we are in a whole situation, and the multiset union W ¢;<3,, Si
is equal to the multiset obtained by repeating integer n; of E 3m — i times for all 1 < i < 3m.

We prove the first part of the claim by showing it for all whole prefixes L, by induction on k. It is certainly the case for Lfo (the empty

prefix). Now, assuming that it holds for prefixes of length up to /, to realize a whole prefix L with ' > 1, you must first realize a strictly



shorter whole prefix L<!" with I < I (take it to be of maximal length), so by induction hypothesis you are in a whole situation when realizing
LS. Now to realize the whole prefix LS the sequence of additional values to realize is s, a certain number of n’s, and e, and it is easily
seen that this must bring you from a whole situation to a whole situation: since there is only one s in this sequence of additional values, there
is only one group-i such that an s value becomes matched; now, to match the additional n’s and e, only this particular group-i can be used, as
any first unmatched element of a group-j with j # i is s. Hence the claim is proven.

To prove the second part of the claim, observe that whenever we go from a whole prefix to a whole prefix by additionally matching s, n;
times n, and e, then we add to S; the integer n;. So the claim holds by construction of L;.

We now create a second totally ordered sequence L, in the same way as L;, except we replace the 3m — i repetitions of the sublist by i — 1
repetitions. A similar argument shows that for any linear extension of R whose first |L;| tuples achieve L; and last |Ly| tuples achieve L;,
the group-i unmatched elements are a contiguous sequence t’ for k; < j < m; for some m;. In addition, if k; < m; — 1, t,i has value e and
tk has value e, and the unmatched values R; (defined in an analogous fashion) are a multiset corresponding exactly to {{n1,...,n3, }}. So
the unmatched elements are formed of 3m totally ordered sequences of length n; 42 for 1 < i < 3m, of the form s, n; times n, and e, with a
certain order relation between the sequences.

But we now notice that we can clearly achieve L; by picking the following, in that order: for I < j < 3m, for 1 <i< j—1, all the g s of

>i

the group-i. Similarly, for L,, we can pick the following, in reverse order: for 3m > j > 1, for 3m > i > 3m— j+2, all the ¢; s of the group-i.
When picking elements this way, the unmatched elements are 3m totally ordered sequences (one for each group-i, and one for each j) that
are incomparable with each other. We denote these elements u{ with 1 < j < 3m iterating over totally ordered sequences, and 1 </ <n;+2
iterating within each sequence. Let T be the sub-po-relation of R that consists of exactly these elements: it is the parallel composition of 3m
total orders, one for each j, consisting of the u{ ’S.

We claim that for any sequence L', L := L L'L, is a possible world of R if and only if L' is a possible world of T. The “only if” direction can
be proved with the construction above. The “if” direction comes from the fact that T is the least constrained po-relation for the unmatched
sequences, since the order within each sequence is known to be total.

We now consider the sequence L’ that consists of the following tuples, in order, repeated m times: three tuples with value s, B tuples
with value n, three tuples with value e. We claim that L’ is a possible world of T iff .# is a positive instance to the UNARY-3-PARTITION
problem, concluding the reduction. To see why, observe that there is a bijection between 3-partitions and linear extensions of 7 which achieve
L', in the following sense: from a 3-partition (s’1 , sé,sg) for 1 <i < m(with ngi +ns§ + ng = B for all i, and each n; being used exactly once),

realize L’ by picking successively, for 1 <i < n, usll, usl2 and u? that have value s, and then the B tuples for 1 < p <3,2<j<ng +1, u;”
°p
that have value n, and last the t;”, 4o for 1< p <3 that have value e. Conversely, it is easy to build a 3-partition from any linear extension to

achieve L' from T. The construction of L and R is clearly in polynomial time, which concludes the proof.

We last show that hardness also holds for LEX. The reduction is the same, except that we take relation R to be unordered rather than totally
ordered. The proof adapts, as in the proof for GEN we only used the fact that t;- < t; for j < k within a group-i, but never the comparability
across groups. O

D.2 Tractability for Possibility (Section 6.2)

PROPOSITION 6.8. For any poset (P, <), an ua-partition of minimal cardinality can be computed in PTIME.
We first show the following lemma:

LEMMA D.1. For any poset (P,<) and undistinguishable antichains A,A, such that A;,Ay C P and A{ NAy # 0, Ay UA; is an undistin-
guishable antichain.

Proof. We first show it is an antichain. Proceed by contradiction, and let x,y € A| UA; such that x < y. As A| and A, are antichains, we must
have x € Aj\A; and y € A5 \A{, or vice-versa. Assume the first case, the second case is symmetric. As A; is an undistinguishable set, letting
z € A1 NA; (which exists by our hypothesis), as x < y and x € A|, we have z < y. But z € A; and y € A,, which contradicts the fact that A; is
an antichain.

We next show it is an undistinguishable set. Let x,y € Aj UA, and 7 € P\(A] UA;), assume that x < 7’ and show that y < 7/. As A;
and A, are undistinguishable sets, this is immediate unless x € Aj\A; and y € Ap\A|, or vice-versa. We again assume the first case as the
second one is symmetric. Now considering again z € A| NA,, we know that 7 < 7’ as A| is an undistinguishable set, so that y < 7’ as A, is an
undistinguishable set, proving the result. The fact that 7/ < x implies 7’ < y is proved in a similar fashion. O

We now prove the main claim:

Proof. Start with the trivial partition, and for every pair of items, see if their current classes can be merged (i.e., merge them, and check in
PTIME if it is an antichain, and if it is an undistinguishable set). The process is in PTIME.

Now assume that there is a partition of strictly smaller cardinality. There has to be a class ¢ of this partition which intersects two different
classes ¢ # ¢ of the original partition, otherwise it is a refinement of the previous partition and so has a higher number of classes. But
now cUc; and cU ¢y, and thus cUcy Uy, hence ¢y U ¢y, are undistinguishable antichains, contradicting the fact that ¢ and ¢, could not be
merged. O

PROPOSITION 6.9. For any constant c, top-k possibility is in PTIME for the GEN+LEX semantics if we assume that all input po-relations
have ua-width at most c.



Proof. The proof is by observing that, for any such ¢ and Q, there is a constant cp depending only on Q and ¢ such that, for any input
po-database D whose relations have ua-width < ¢, Q(D) has ua-width at most cg.

We compute the bound by induction. For the base cases: the input relations have ua-width at most ¢, the constant relations have constant
ua-width with the trivial ua-partition. For the induction: projection clearly does not change anything, selection may only reduce the ua-width
as it removes tuples, the union of two relations with bounds ¢ and ¢, has bound ¢ + ¢;, and for product the bound is []¢; where ¢; is the
bound for the i-th input relation. (The observation is that the product can be computed on the relations quotiented by the indistinguishability
equivalence relation, and then re-populating the relations with the members of the classes; this works both for the GEN and LEX semantics.)

We now evaluate Q(D) in PTIME by Theorem 4.7, and it suffices to show we can solve the possibility problem in PTIME for a po-relation
R and candidate possible world L, under the assumption that R has ua-width at most c¢. Let P be a ua-partition of width ¢ of R. We complete L
using “wildcard” elements that can match any tuple, such that |L| is the number of elements of R. (Of course, if |L] is strictly larger than the
number of elements of R, we can immediately reject.)

If there is a way to realize L as a possible world of R, we call the finishing order the permutation 7 of {1,...,c} obtained by considering,
for each class ¢; of P, the largest position n; of {1,...,|L|} to which an element of ¢; is mapped, and sorting the class indexes by ascending
finishing order. We say we can realize L with finishing order 7 if there is a realization of L whose finishing order is . Hence, it suffices
to check, for every possible permutation 7, whether L can be realized from R with finishing order 7, and as the number of finishing orders
depends only on c, this is only a constant factor in the complexity in R.

We now claim that to determine whether L can be realized with finishing order 7, the following greedy approach works. Read L linearly.
At any point, maintain the set of elements of R which have already been used (distinguish the used and unused elements; initially all elements
are unused), and distinguish permutation classes in exhausted classes, the ones where all elements have been mapped; open classes, the ones
where all smaller elements have been mapped; and blocked classes, the ones where some smaller element is not mapped (initially the open
classes are those which are roots in the poset obtained from the underlying poset of R by quotienting by the equivalence relation induced by
P; and the others are blocked).

When reading a value v from L, consider all open classes. If none of these classes have an unused element with value v (or, if v is a
wildcard, any element), reject. Otherwise, take the open class with the lowest finishing time (i.e., appears the earliest in 7) that has such an
element, and use an arbitrary suitable element from it. (Update the class to be exhausted if it is, in which case update from blocked to open
the classes that must be). Once L is read, accept iff all elements are used (i.e., all classes are exhausted).

It is clear by construction that if this greedy algorithm accepts then it has found a way to match L in R; indeed all matches that it performs
satisfy the values and the order relations of R. It must now be proved that if L can be matched in R with finishing order 7, then the algorithm
accepts when considering 7. To do so, we must show that if there is such a match, then there is such a match where all elements are mapped,
following what the greedy algorithm does, to a suitable element in the open class with smallest finishing time (we call this a minimal element);
if we do, then we justify the existence of a match that the algorithm will construct.

Now, to see why this is possible, consider a match m and take the smallest element 7 of L mapped to a non-minimal element s in class
¢ in R. Consider a minimal element s in class ¢’ instead in R, with the same value, and ¢’ the element to which it is mapped (and ¢ <y t').
Consider the match m’ obtained by mapping ¢ to s’ and ¢’ to s. The new match n?’ still satisfies conditions on the values, now, let us assume
that an order constraint was violated. It must be for z <; t” < ', and s” in R to which 7" is mapped must be > s (this is the only possible
violation). Now if s was thus mapped it means that the class ¢ of s was exhausted when reaching " in L (so we could match ¢ to s”'), but
because ¢ was not reached yet, the class ¢’ of s’ was not exhausted yet, but this contradicts the fact that ¢’ finishes before ¢ (according to 7).
Hence, we can rewrite m to be of the form of what is performed by the greedy algorithm. This concludes the proof. O

PROPOSITION 6.11. Top-k possibility is NP-hard for the GEN semantics even if all input relations are assumed to be totally ordered.
Proof. The proof is the same as the hardness proof in Theorem 6.6, noting that all input relations used in the reduction are totally ordered. [

PROPOSITION 6.13. For any constant ¢ € N, top-k possibility is in PTIME for the LEX semantics if all input po-relations are series-parallel
and each of their underlying posets has an sp-tree with breadth at most c.

Proof. The first part of the claim is to observe that we can obtain in PTIME an sp-tree for Q(D) that has constant breadth (i.e., depending
only on Q and c). This is done as in the proof of Proposition 5.6.

The second part of the claim is to show that the possibility problem can be solved in PTIME on any input series-parallel po-relation
provided with an sp-tree T of constant breadth. Call “critical” a topmost node that has no “parallel” descendant. The order on the elements
of the subtree rooted at such nodes is therefore a total order, so we see T as a constant-size tree whose leaves are total orders.

We solve the possibility problem by a dynamic algorithm whose state is, for every such total order, the size of the prefix of the total order
that has already been matched to elements of L. At each state, we say the problem can be solved if it can be solved by matching the first
remaining element of L to some first remaining element in one of the total orders where this is possible according to the constraints of 7. [

PROPOSITION 6.15. Top-k possibility is in PTIME for the GEN+LEX semantics if we assume that all tuple values in Q(D) are unique.

Proof. We compute Q(D) in PTIME using Theorem 4.7. It suffices to test if L is a prefix of a linear extension of R := Q(D), and this can be
tested in linear time by creating R’ obtained by adding all the minimal comparability pairs imposed by L (of which there are linearly many)
to R, as in the proof of Proposition 6.3, noting that the unique values means that all comparability pairs of L can be matched in L in a unique
way. L is a possible world of R if and only if R’ has no cycles (= its transitive closure is still antisymmetric), which can be tested in linear
time by computing the strongly connected components of R” and checking that they are all trivial. O



D.3 Other Problems (Section 6.3)

PROPOSITION 6.17. The instance possibility problem is in PTIME for the GEN+LEX semantics assuming that all input relations are either
unordered or totally ordered, and that the fixed query does not use any product operator.

Proof. Use properties selection-union, selection-projection and projection-union to rewrite Q as a projection of a selection of a union of
relations of D and constant relations. Now, evaluate R := Q(D) in PTIME by Theorem 4.7, and represent it as a union of a constant number
of totally ordered relations L1, ..., Ly, and one unordered relation P.

We must now decide whether L is a possible world of the result of the query evaluation, namely, L € pw(R) (using the fact that |L| =

|Rel(R)|, so that top,(R) = R). We first check whether the domains of L and of R are the same (this is what would not work if we had
IL| < |Rel(R)]).
We now use a dynamic algorithm. The state of the algorithm is the position (py,..., ps,p) indicating the number of tuples of Ly,...,L,

matched to L and the number of tuples of L that have been considered. When reading one tuple from L, we increment p, and we can progress
in one of the L;’s the totally ordered relations if the tuple value matches (increasing the corresponding p;), or make no progress at all in the
R;’s (which corresponds to matching the tuple from L with an element of U). The initial state is (0,...,0,0): we have read no tuple from L
and matched none of the tuples in the L;’s. We succeed in the state (py,...,pn,p) With p = |L| and p; = |L;| for all i: this implies that all
tuples of L were read and all tuples of the L;’s were matched, and by cardinality and equality of the domains this implies that all tuples of
U were successfully matched to L as well. As the number of states is polynomial in the input L and Q(D) which is polynomial in D, the
dynamic algorithm runs in polynomial time. O

PROPOSITION 6.18. The problem of rank possibility and rank certainty on any po-relation R is in PTIME.

Proof. Given a po-relation R, we can compute in PTIME, for every element x, its earliest index i~ (x), which is its number of ancestors plus
one, and its latest index i* (x), which is the number of elements of R minus the number of descendants of x. It is easily seen that for any
element x, there is a linear extension of R where x appears at position i~ (x), or at position i " (x), or in fact at any position of [i~(x),i* (x)],
the interval of x.

Hence, rank possibility and rank certainty for tuple ¢ and rank k can be decided by checking whether some element of the order whose
interval contains k has value ¢, or whether all such elements have value ¢. O

PROPOSITION 6.19. The sublist possibility problem is NP-complete in the input po-relation R and candidate sublist L.

Proof. For NP membership, it suffices to guess a mapping from L to R, add the corresponding order constraints to R: letting 7y, ..., be the
elements of R to which elements 1,2,...,n of L are mapped, we add the order constraints #; < ... < t,. Now, check if the result is still a
poset. If it is, then it has a linear extension that witnesses that L is a sublist of a possible world of R.

For NP-hardness, considering an algorithm <7 to solve the sublist possibility problem for an input R and L, we can solve the instance
possibility problem for a fixed query Q and an input po-database D and L by computing R := Q(D) in PTIME by Theorem 4.7 and checking
whether L is a possible sublist of R using ¢ L is a possible sublist of R iff it is a possible world of R as |L| = |[Rel(R)|. O

PROPOSITION 6.20. We can solve the sublist possibility problem in PTIME in the input po-relation R and sublist L, if the length of L is
assumed to be bounded by a constant.

Proof. As in Proposition 6.3, there are polynomially many choices of tuples ¢1,...,#, in R to be matched to L, so we can test each one of
them, and it suffices to check whether the addition of the order constraints #; < --- < t, still yields a poset. O

E. PROOFS FOR SECTION 7 (DUPLICATE ELIMINATION)

PROPOSITION 7.6. For every oi-relation R, the following holds: dupElim(R) either completely fails or its result may be captured by a
non-empty oi-relation.

Proof. We need to show that the obtained possible worlds share an underlying (unordered) relation. Since every world in the result contains
exactly a single copy of every tuple in R, this property is clearly satisfied: for every W € R, Rel(W) is the result of “standard” duplicate
elimination on the domain of R. O

PROPOSITION 7.8. For any po-relation R, dupElim(pw(R)) completely fails iff Gg has a cycle.

Proof. We first show that the existence of a cycle implies complete failure of dupElim. Let id},...,id},, id} be a simple cycle of Gg. For all
1 <i < n, there exists idy;,idy; € id) such that idy; < idy(iy1) and T (id;) # T (id) (1)) (with the convention id (1) = id1).

Let L be a possible world of R. Assume by contradiction that for all 1 <i < n, idg forms a u-subset of L. Let us show by recurrence on j
that for all 1 < j < n, idy) <t idaj. The base case is trivial. Assume this holds for j and let us show it for j+1. Since idy; <idy(;1 1), we have
idy < idzj <L id1<j+1). If id2(j+l) < idy1, then id2(j+l) <pidy < idl(j+l) with T(l'd2<j+1)) = T(idl(j+1)) ;ﬁ T(idz]) (the non—equality

is because the cycle is simple), which contradicts the fact that id’(j +1) is a subset). This proves the induction case. Now idyy < idyj <p idy,,

which contradicts the fact that id} is a u-subset. Thus, dupElim fails in every possible world of R.
Conversely, let us assume G, is acyclic. Consider a topological sort of Gg as id, ... ,id,,. For 1 < j <n,let L j be a linear extension of the
poset (id’j7 <,z.)- Let L be the concatenation of Ly, ...L,. We claim L is a linear extension of R in which dupElim does not fail; this latter fact
J



is clear by construction of L. Now, let id; < id, in R. Either for some 1 < j < n, idy,idy € id; and then idy <r; id, by construction which
means id) <y idy; or they are in different classes iaf;-l and id’j2 and this is reflected in Gg, which means that j; < j, and id| <p id». O

COROLLARY 7.9. For every po-relation R, one can determine in PTIME if dupElim(pw(R)) completely fails; if it does not, one can compute
in PTIME a po-relation R' such that we have pw(R') = dupElim(pw(R)).

Proof. We first observe that Gg can be constructed in PTIME, and that testing that Gg is acyclic is also done in PTIME. Thus, we can
determine in PTIME whether dupElim(pw(R)) fails.

If it does not, we let Gg = (ID',E) and construct R’ as (ID',T’, <) where T'(id") is the unique 7" (id) for id € id' and <’ is the transitive
closure of E, which is asymmetric because Gg is acyclic. Observe that Rel(R') is the set of all tuples within the bag Rel(R).

Now, it is easy to check that pw(R’) = dupElim(pw(R)). Indeed, any possible world L of R’ can be achieved in dupElim(pw(R)) by
considering, as in the proof of Proposition 7.8, the possible world of R obtained following the topological sort of Gg defined by L. Conversely,
any possible world L of dupElim(pw(R)) is the result of dupElim on a possible world L’ of R where, for every tuple value, all occurrences
of that value in L’ are u-subsets; so, as they are contiguous and the order relations reflected in Gg must be respected, they are defined by a
topological sort of Gg, which can also be obtained as the corresponding linear extension of R'. O
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