
Combined Tractability of Query Evaluation
via Tree Automata and Cycluits
(Extended Version)
Antoine Amarilli1, Pierre Bourhis2, Mikaël Monet1,4, and
Pierre Senellart3,4

1 LTCI, Télécom ParisTech, Université Paris-Saclay; Paris, France
2 CRIStAL, CNRS & Université Lille 1; Lille, France
3 DI, École normale supérieure, PSL Research University; Paris, France
4 Inria Paris; Paris, France

Abstract
We investigate parameterizations of both database instances and queries that make query evalu-
ation fixed-parameter tractable in combined complexity. We introduce a new Datalog fragment
with stratified negation, intensional-clique-guarded Datalog (ICG-Datalog), with linear-time eval-
uation on structures of bounded treewidth for programs of bounded rule size. Such programs cap-
ture in particular conjunctive queries with simplicial decompositions of bounded width, guarded
negation fragment queries of bounded CQ-rank, or two-way regular path queries. Our result
is shown by compiling to alternating two-way automata, whose semantics is defined via cyclic
provenance circuits (cycluits) that can be tractably evaluated. Last, we prove that probabilistic
query evaluation remains intractable in combined complexity under this parameterization.

1 Introduction

Arguably the most fundamental task performed by database systems is query evaluation,
namely, computing the results of a query over a database instance. Unfortunately, this task
is well-known to be intractable in combined complexity [54] even for simple query languages.

To address this issue, two main directions have been investigated. The first is to restrict
the class of queries to ensure tractability, for instance, to α-acyclic conjunctive queries [56],
this being motivated by the idea that many real-world queries are simple and usually small.
The second approach restricts the structure of database instances, e.g., requiring them to have
bounded treewidth [51] (we call them treelike). This has been notably studied by Courcelle [23],
to show the tractability of monadic-second order logic on treelike instances, but in data
complexity (i.e., for fixed queries); the combined complexity is generally nonelementary [48].

This leaves open the main question studied in this paper: Which queries can be efficiently
evaluated, in combined complexity, on treelike databases? This question has been addressed
by Gottlob, Pichler, and Fei [35] by introducing quasi-guarded Datalog; however, an unusual
feature of this language is that programs must explicitly refer to the tree decomposition of
the instance. Instead, we try to follow Courcelle’s approach and investigate which queries
can be efficiently compiled to automata. Specifically, rather than restricting to a fixed class
of “efficient” queries, we study parameterized query classes, i.e., we define an efficient class
of queries for each value of the parameter. We further make the standard assumption that
the signature is fixed; in particular, its arity is constant. This allows us to aim for low
combined complexity for query evaluation, namely, fixed-parameter tractability with linear
time complexity in the product of the input query and instance, called FPT-linear complexity.

Surprisingly, we are not aware of further existing work on tractable combined query
evaluation for parameterized instances and queries, except from an unexpected angle: the

© Antoine Amarilli; Pierre Bourhis; Mikaël Monet; Pierre Senellart;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

61
2.

04
20

3v
2

 [
cs

.D
B

]
 1

5
Ja

n
20

17

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

compilation of restricted query fragments to tree automata on treelike instances was used in the
context of guarded logics and other fragments, to decide satisfiability [12] and containment [10].
To do this, one usually establishes a treelike model property to restrict the search to models of
low treewidth (but dependent on the formula), and then compiles the formula to an automaton,
so that the problems reduce to emptiness testing: expressive automata formalisms, such as
alternating two-way automata, are typically used. One contribution of our work is to notice
this connection, and show how query evaluation on treelike instances can benefit from these
ideas: for instance, as we show, some queries can only be compiled efficiently to such concise
automata, and not to the more common bottom-up tree automata.

From there, the first main contribution of this paper is to define the language of intensional-
clique-guarded Datalog (ICG-Datalog), and show an efficient FPT-linear compilation pro-
cedure for this language, parameterized by the body size of rules: this implies FPT-linear
combined complexity on treelike instances. While we present it as a Datalog fragment, our
language shares some similarities with guarded logics; yet, its design incorporates several
features (fixpoints, clique-guards, guarded negation, guarding positive subformulae) that are
not usually found together in guarded fragments, but are important for query evaluation.
We show how the tractability of this language captures the tractability of such query classes
as two-way regular path queries [9] and α-acyclic conjunctive queries.

Already for conjunctive queries, we show that the treewidth of queries is not the right
parameter to ensure efficient compilability. In fact, a second contribution of our work is
a lower bound: we show that bounded treewidth queries cannot be efficiently compiled to
automata at all, so we cannot hope to show combined tractability for them via automata
methods. By contrast, ICG-Datalog implies the combined tractability of bounded-treewidth
queries with an additional requirement (interfaces between bags must be clique-guarded),
which is the notion of simplicial decompositions previously studied by Tarjan [52]. To our
knowledge, our paper is the first to introduce this query class and to show its tractability
on treelike instances. ICG-Datalog can be understood as an extension of this fragment to
disjunction, clique-guarded negation, and inflationary fixpoints, that preserves tractability.

To derive our main FPT-linear combined complexity result, we define an operational
semantics for our tree automata by introducing a notion of cyclic provenance circuits, that
we call cycluits. These cycluits, the third contribution of our paper, are well-suited as a
provenance representation for alternating two-way automata encoding ICG-Datalog programs,
as they naturally deal with both recursion and two-way traversal of a treelike instance, which
is less straightforward with provenance formulae [36] or circuits [25]. While we believe that
this natural generalization of Boolean circuits may be of independent interest, it does not
seem to have been studied in detail, except in the context of integrated circuit design [44, 50],
where the semantics often features feedback loops that involve negation; we prohibit these by
focusing on stratified circuits, which we show can be evaluated in linear time. We show that
the provenance of alternating two-way automata can be represented as a stratified cycluit in
FPT-linear time, generalizing results on bottom-up automata and circuits from [5].

Since cycluits directly give us a provenance representation of the query, we then investigate
probabilistic query evaluation, which we showed in [5] to be linear-time in data complexity
through the use of provenance circuits. We show how to remove cycles, so as to apply message-
passing methods [41], yielding a 2EXPTIME upper bound for the combined complexity
of probabilistic query evaluation. While we do not obtain tractable probabilistic query
evaluation in combined complexity, we give lower bounds showing that this is unlikely.

Outline. We give preliminaries in Section 2, and then position our approach relative to
existing work in Section 3. We then present our tractable fragment, first for bounded-

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 3

simplicial-width conjunctive queries in Section 4, then for our ICG-Datalog language in
Section 5. We then define our automata and compile ICG-Datalog to them in Section 6,
before introducing cycluits and showing our provenance computation result in Section 7. We
last study the conversion of cycluits to circuits, and probability evaluation, in Section 8. Full
proofs are provided in appendix.

2 Preliminaries

A relational signature σ is a finite set of relation names written R, S, T , . . . , each with its
associated arity arity(R) ∈ N. Throughout this work, we always assume the signature σ to be
fixed: hence, its arity arity(σ) (the maximal arity of relations in σ) is constant, and we further
assume it is > 0. A (σ-)instance I is a finite set of ground facts on σ, i.e., R(a1, . . . , aarity(R))
with R ∈ σ. The active domain dom(I) consists of the elements occurring in I.

We study query evaluation for several query languages that are subsets of first-order (FO)
logic (e.g., conjunctive queries) or of second-order (SO) logic (e.g., Datalog). Unless otherwise
stated, we only consider queries that are constant-free, and Boolean, so that an instance I
either satisfies a query q (I |= q), or violates it (I 6|= q), with the standard semantics [1].

We study the query evaluation problem (or model checking) for a query class Q and
instance class I: given an instance I ∈ I and query Q ∈ Q, check if I |= Q. Its combined
complexity for I and Q is a function of I and Q, whereas data complexity assumes Q to
be fixed. We also study cases where I and Q are parameterized: given infinite sequences
I1, I2, . . . and Q1,Q2, . . ., the query evaluation problem parameterized by kI, kQ applies to IkI

and QkQ . The parameterized problem is fixed-parameter tractable (FPT), for (In) and (Qn),
if there is a constant c ∈ N and computable function f such that the problem can be solved
with combined complexity O (f(kI, kQ) · (|I| · |Q|)c). For c = 1, we call it FPT-linear (in
|I| · |Q|). Observe that calling the problem FPT is more informative than saying that it is in
PTIME for fixed kI and kQ, as we are further imposing that the polynomial degree c does
not depend on kI and kQ: this follows the usual distinction in parameterized complexity
between FPT and classes such as XP [29].

Query languages. We first study fragments of FO, in particular, conjunctive queries (CQ),
i.e., existentially quantified conjunctions of atoms. The canonical model of a CQ Q is the
instance built from Q by seeing variables as elements and atoms as facts. The primal graph
of Q has its variables as vertices, and connects all variable pairs that co-occur in some atom.

Second, we study Datalog with stratified negation. We summarize the definitions here,
see [1] for details. A Datalog program P (without negation) over σ (called the extensional
signature) consists of an intensional signature σint disjoint from σ (with the arity of σint
being possibly greater than that of σ), a 0-ary goal predicate Goal in σint, and a set of rules:
those are of the form R(x)← ψ(x,y), where the head R(x) is an atom with R ∈ σint, and
the body ψ is a CQ over σint t σ where each variable of x must occur. The semantics P (I)
of P over an input σ-instance I is defined by a least fixpoint of the interpretation of σint:
we start with P (I) := I, and for any rule R(x) ← ψ(x,y) and tuple a of dom(I), when
P (I) |= ∃yψ(a,y), then we derive the fact R(a) and add it to P (I), where we can then
use it to derive more facts. We have I |= P iff we derive the fact Goal(). The arity of P is
max(arity(σ), arity(σint)). P is monadic if σint has arity 1.

Datalog with stratified negation [1] allows negated intensional atoms in bodies, but
requires P to have a stratification, i.e., an ordered partition P1 t · · · t Pn of the rules where:
(i) Each R ∈ σint has a stratum ζ(R) ∈ {1, . . . , n} such that all rules with R in the head

are in Pζ(R);

4 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

(ii) For any 1 6 i 6 n and σint-atom R(z) in a body of a rule of Pi, we have ζ(R) 6 i;
(iii) For any 1 6 i 6 n and negated σint-atom R(z) in a body of Pi, we have ζ(R) < i.
The stratification ensures that we can define the semantics of a stratified Datalog program by
computing its interpretation for strata P1, . . . , Pn in order: atoms in bodies always depend
on a lower stratum, and negated atoms depend on strictly lower strata, whose interpretation
was already fixed. Hence, there is a unique least fixpoint and I |= P is well-defined.

I Example 1. The following stratified Datalog program, with σ = {R} and σint = {T,Goal},
and strata P1, P2, tests if there are two elements that are not connected by a directed R-path:

P1 : T (x, y)← R(x, y), T (x, y)← R(x, z) ∧ T (z, y) P2 : Goal()← ¬T (x, y)

Treewidth. Treewidth is a measure quantifying how far a graph is to being a tree, which
we use to restrict instances and conjunctive queries. The treewidth of a CQ is that of its
canonical instance, and the treewidth of an instance I is the smallest k such that I has a tree
decomposition of width k, i.e., a finite, rooted, unranked tree T , whose nodes b (called bags)
are labeled by a subset dom(b) of dom(I) with |dom(b)| 6 k + 1, and which satisfies:
(i) for every fact R(a) ∈ I, there is a bag b ∈ T with a ⊆ dom(b);
(ii) for all a ∈ dom(I), the set of bags {b ∈ T | a ∈ dom(b)} is a connected subtree of T .

A family of instances is treelike if their treewidth is bounded by a constant.

3 Approaches for Tractability

We now review existing approaches to ensure the tractability of query evaluation, starting by
query languages whose evaluation is tractable in combined complexity on all input instances.
We then study more expressive query languages which are tractable on treelike instances,
but where tractability only holds in data complexity. We then present the goals of our work.

3.1 Tractable Queries on All Instances
The best-known query language to ensure tractable query complexity is α-acyclic queries [27],
i.e., those that have a tree decomposition where the domain of each bag corresponds exactly
to an atom: this is called a join tree [33]. With Yannakakis’s algorithm [56], we can evaluate
an α-acyclic conjunctive query Q on an arbitrary instance I in time O(|I| · |Q|).

Yannakakis’s result was generalized in two main directions. One direction [32], moving
from linear time to PTIME, has investigated more general CQ classes, in particular CQs of
bounded treewidth [28], hypertreewidth [33], and fractional hypertreewidth [37]. Bounding
these query parameters to some fixed k makes query evaluation run in time O((|I|·|Q|)f(k)) for
some function f , hence in PTIME; for treewidth, since the decomposition can be computed in
FPT-linear time [18], this goes down to O(|I|k · |Q|). However, query evaluation on arbitrary
instances is unlikely to be FPT when parameterized by the query treewidth, since it would
imply that the exponential-time hypothesis fails (Theorem 5.1 of [46]). Further, even for
treewidth 2 (e.g., triangles), it is not known if we can achieve linear data complexity [2].

In another direction, α-acyclicity has been generalized to queries with more expressive
operators, e.g., disjunction or negation. The result on α-acyclic CQs thus extends to the
guarded fragment (GF) of first-order logic, which can be evaluated on arbitrary instances in
time O(|I| · |Q|) [43]. Tractability is independently known for FOk, the fragment of FO where
subformulae use at most k variables, with a simple evaluation algorithm in O(|I|k · |Q|) [55].

Another important operator are fixpoints, which can be used to express, e.g., reachability
queries. Though FOk is no longer tractable when adding fixpoints [55], query evaluation is
tractable [16, Theorem 3] for µGF, i.e., GF with some restricted least and greatest fixpoint

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 5

operators, when alternation depth is bounded; without alternation, the combined complexity
is in O(|I| · |Q|). We could alternatively express fixpoints in Datalog, but, sadly, most
known tractable fragments are nonrecursive: nonrecursive stratified Datalog is tractable
[28, Corollary 5.26] for rules with restricted bodies (i.e., strictly acyclic, or bounded strict
treewidth). This result was generalized in [34] when bounding the number of guards: this
nonrecursive fragment is shown to be equivalent to the k-guarded fragment of FO, with
connections to the bounded-hypertreewidth approach. One recursive tractable fragment is
Datalog LITE, which is equivalent to alternation-free µGF [31]. Fixpoints were independently
studied for graph query languages such as reachability queries and regular path queries (RPQ),
which enjoy linear combined complexity on arbitrary input instances: this extends to two-way
RPQs (2RPQs) and even strongly acyclic conjunctions of 2RPQs (SAC2RPQs), which are
expressible in alternation-free µGF. Tractability also extends to acyclic RPQs but with
PTIME complexity [9].

3.2 Tractability on Treelike Instances
We now study another approach for tractable query evaluation: this time, we restrict the
shape of the instances, using treewidth. This ensures that we can translate them to a
tree for efficient query evaluation. Informally, having fixed the signature σ, for a fixed
treewidth k ∈ N, there is a finite tree alphabet Γkσ such that σ-instances of treewidth 6 k

can be translated in FPT-linear time (parameterized by k), following the structure of a tree
decomposition, to a Γkσ-tree, i.e., a rooted full ordered binary tree with nodes labeled by Γkσ,
which we call a tree encoding. We omit the formal construction: see Appendix C.1 for more
details.

We can then evaluate queries on treelike instances by running tree automata on the tree
encoding that represents them. Formally, given an alphabet Γ, a bottom-up nondeterministic
tree automaton on Γ-trees (or Γ-bNTA) is a tuple A = (Q,F, ι,∆), where:
(i) Q is a finite set of states;
(ii) F ∈ Q is a subset of accepting states;
(iii) ι : Γ→ 2Q is an initialization function determining the state of a leaf from its label;
(iv) ∆ : Γ×Q2 → 2Q is a transition function determining the possible states for an internal

node from its label and the states of its two children.
Given a Γ-tree 〈T, λ〉 (where λ : T → Γ is the labeling function), we define a run of A
on 〈T, λ〉 as a function ϕ : T → Q such that (1) ϕ(l) ∈ ι(λ(l)) for every leaf l of T ; and
(2) ϕ(n) ∈ ∆(λ(n), ϕ(n1), ϕ(n2)) for every internal node n of T with children n1 and n2. The
bNTA A accepts 〈T, λ〉 if it has a run on T mapping the root of T to a state of F .

We say that a bNTA A tests a query Q for treewidth k if, for any Γkσ-encoding 〈E, λ〉
coding an instance I (of treewidth 6 k), A accepts 〈E, λ〉 iff I |= Q. By a well-known result
of Courcelle [23] on graphs (extended to higher-arity in [28]), we can use bNTAs to evaluate
all queries in monadic second-order logic (MSO), i.e., first-order logic with second-order
variables of arity 1. MSO subsumes in particular CQs and monadic Datalog (but not general
Datalog). Courcelle showed that MSO queries can be compiled to a bNTA that tests them:

I Theorem 2 [23, 28]. For any MSO query Q and treewidth k ∈ N, we can compute a
bNTA that tests Q for treewidth k.

This implies that evaluating any MSO query Q has FPT-linear data complexity when
parameterized by Q and the instance treewidth [23, 28], i.e., it is in O (f(|Q| , k) · |I|) for
some computable function f . However, this tells little about the combined complexity, as
f is generally nonelementary in Q [48]. A better combined complexity bound is known for

6 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

unions of conjunctions of two-way regular path queries (UC2RPQs) that are further required
to be acyclic and to have a constant number of edges between pairs of variables: these can
be compiled into polynomial-sized alternating two-way automata [10].

3.3 Restricted Queries on Treelike Instances

Our approach combines both ideas: we use instance treewidth as a parameter, but also
restrict the queries to ensure tractable compilability. We are only aware of two approaches
in this spirit. First, Gottlob, Pichler, and Wei [35] have proposed a quasiguarded Datalog
fragment on relational structures and their tree decompositions, with query evaluation is in
O(|I| · |Q|). However, this formalism requires queries to be expressed in terms of the tree
decomposition, and not just in terms of the relational signature. Second, Berwanger and
Grädel [16] remark (after Theorem 4) that, when alternation depth and width are bounded,
µCGF (the clique-guarded fragment of FO with fixpoints) enjoys FPT-linear query evaluation
when parameterized by instance treewidth. Their approach does not rely on automata
methods, and subsumes the tractability of α-acyclic CQs and alternation-free µGF (and
hence SAC2RPQs), on treelike instances. However, µCGF is a restricted query language
(the only CQs that it can express are those with a chordal primal graph), whereas we want a
richer language, with a parameterized definition.

Our goal is thus to develop an expressive parameterized query language, which can be
compiled in FPT-linear time to an automaton that tests it (with the treewidth of instances
also being a parameter). We can then evaluate the automaton, and obtain FPT-linear
combined complexity for query evaluation. Further, as we will show, the use of tree automata
will yield provenance representations for the query as in [5] (see Section 7).

4 Conjunctive Queries on Treelike Instances

To identify classes of queries that can be efficiently compiled to tree automata, we start by
the simplest queries: conjunctive queries.

α-acyclic queries. A natural candidate for a tractable query class via automata methods
would be α-acyclic CQs, which, as we explained in Section 3.1, can be evaluated in time
O(|I| · |Q|) on all instances. Sadly, we show that such queries cannot be compiled efficiently
to bNTAs, so our compilation result (Theorem 2) does not extend directly:

I Proposition 3. There is an arity-two signature σ and an infinite family Q1, Q2, . . . of
α-acyclic CQs such that, for any i ∈ N, any bNTA that tests Qi for treewidth 1 must have
Ω(2|Qi|1−ε) states for any ε > 0.

The intuition of the proof is that bNTAs can only make one traversal of the encoding
of the input instance. Faced by this, we propose to use different tree automata formalisms,
which are generally more concise than bNTAs. There are two classical generalizations of
nondeterministic automata, on words [17] and on trees [22]: one goes from the inherent
existential quantification of nondeterminism to quantifier alternation; the other allows two-
way navigation instead of imposing a left-to-right (on words) or bottom-up (on trees) traversal.
On words, both of these extensions independently allow for exponentially more compact
automata [17]. In this work, we combine both extensions and use alternating two-way tree
automata [22, 19], formally introduced in Section 6, which leads to tractable combined
complexity for evaluation. Our general results in the next section will then imply:

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 7

I Proposition 4. For any treewidth bound kI ∈ N, given an α-acyclic CQ Q, we can compute
in FPT-linear time in O(|Q|) (parameterized by kI) an alternating two-way tree automaton
that tests it for treewidth kI.

Hence, if we are additionally given a relational instance I of treewidth 6 kI, one can
determine whether I |= Q in FPT-linear time in |I| · |Q| (parameterized by kI).

Bounded-treewidth queries. Having re-proven the combined tractability of α-acyclic queries
(on bounded-treewidth instances), we naturally try to extend to bounded-treewidth CQs.
Recall from Section 3.1 that these queries have PTIME combined complexity on all instances,
but are unlikely to be FPT when parameterized by the query treewidth [46]. Can they be
efficiently evaluated on treelike instances by compiling them to automata? We answer in the
negative: that bounded-treewidth CQs cannot be efficiently compiled to automata to test
them, even when using the expressive formalism of alternating two-way tree automata [22]:

I Theorem 5. There is an arity-two signature σ for which there is no algorithm A with
exponential running time and polynomial output size for the following task: given a conjunctive
query Q of treewidth 6 2, produce an alternating two-way tree automaton AQ on Γ5

σ-trees
that tests Q on σ-instances of treewidth 6 5.

This result is obtained from a variant of the 2EXPTIME-hardness of monadic Datalog
containment [11]. We show that efficient compilation of bounded-treewidth CQs to automata
would yield an EXPTIME containment test, and conclude by the time hierarchy theorem.

Bounded simplicial width. We have shown that we cannot compile bounded-treewidth
queries to automata efficiently. We now show that efficient compilation can be ensured with an
additional requirement on tree decompositions. As it turns out, the resulting decomposition
notion has been independently introduced for graphs:

I Definition 6 [26]. A simplicial decomposition of a graph G is a tree decomposition T

of G such that, for any bag b of T and child bag b′ of b, letting S be the intersection of the
domains of b and b′, then the subgraph of G induced by S is a complete subgraph of G.

We extend this notion to CQs, and introduce the simplicial width measure:

I Definition 7. A simplicial decomposition of a CQ Q is a simplicial decomposition of its
primal graph. Note that any CQ has a simplicial decomposition (e.g., the trivial one that
puts all variables in one bag). The simplicial width of Q is the minimum, over all simplicial
tree decompositions, of the size of the largest bag minus 1.

Bounding the simplicial width of CQs is of course more restrictive than bounding their
treewidth, and this containment relation is strict: cycles have treewidth 6 2 but have
unbounded simplicial width. This being said, bounding the simplicial width is less restrictive
than imposing α-acyclicity: the join tree of an α-acyclic CQ is in particular a simplicial
decomposition, so α-acyclic CQs have simplicial width at most arity(σ)−1, which is constant
as σ is fixed. Again, the containment is strict: a triangle has simplicial width 2 but is not
α-acyclic.

To our knowledge, simplicial width for CQs has not been studied before. Yet, we show
that bounding the simplicial width ensures that CQs can be efficiently compiled to automata.
This is unexpected, because the same is not true of treewidth, by Theorem 5. Hence:

I Theorem 8. For any kI, kQ ∈ N, given a CQ Q and a simplicial decomposition T of
simplicial width kQ of Q, we can compute in FPT-linear in |Q| (parameterized by kI and kQ)
an alternating two-way tree automaton that tests Q for treewidth kI.

8 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Hence, if we are additionally given a relational instance I of treewidth 6 kI, one can
determine whether I |= Q in FPT-linear time in |I| · (|Q|+ |T |) (parameterized by kI and kQ).

Notice the technicality that the simplicial decomposition T must be provided as input to
the procedure, because it is not known to be computable in FPT-linear time, unlike tree
decompositions. While we are not aware of results on the complexity of this specific task,
quadratic time algorithms are known for the related problem of computing the clique-minimal
separator decomposition [42, 15].

The intuition for the efficient compilation of bounded-simplicial-width CQs is as follows.
The interface variables shared between any bag and its parent must be “clique-guarded”
(each pair is covered by an atom). Hence, consider any subquery rooted at a bag of the
query decomposition, and see it as a non-Boolean CQ with the interface variables as free
variables. Each result of this CQ must then be covered by a clique of facts of the instance,
which ensures [30] that it occurs in some bag in the instance tree decomposition and can be
“seen” by a tree automaton. This intuition can be generalized, beyond conjunctive queries, to
design an expressive query language featuring disjunction, negation, and fixpoints, with the
same properties of efficient compilation to automata and FPT-linear combined complexity of
evaluation on treelike instances. We introduce such a Datalog variant in the next section.

5 ICG-Datalog on Treelike Instances

To design a Datalog fragment with efficient compilation to automata, we must of course
impose some limitations, as we did for CQs. In fact, we can even show that the full Datalog
language (even without negation) cannot be compiled to automata, no matter the complexity:

I Proposition 9. There is a signature σ and Datalog program P such that the language of
Γ1
σ-trees that encode instances satisfying P is not a regular tree language.

Hence, there is no bNTA or alternating two-way tree automaton that tests P for
treewidth 1. To work around this problem and ensure that compilation is possible and
efficient, the key condition that we impose on Datalog programs, pursuant to the intuition of
simplicial decompositions, is that intensional predicates in rule bodies must be clique-guarded,
i.e., their variables must co-occur in extensional predicates of the rule body. We can then
use the body size of the program rules as a parameter, and will show that the fragment can
then be compiled to automata in FPT-linear time.

I Definition 10. Let P be a stratified Datalog program. An intensional literal A(x) or
¬A(x) in a rule body ψ of P is clique-guarded if, for any two variables xi 6= xj of x, xi and
xj co-occur in some extensional atom of ψ. P is intensional-clique-guarded (ICG) if, for any
rule R(x)← ψ(x,y), every intensional literal in ψ is clique-guarded in ψ. The body size of P
is the maximal number of atoms in the body of its rules, multiplied by its arity.

The main result of this paper is that evaluation of ICG-Datalog is FPT-linear in combined
complexity, when parameterized by the body size of the program and the instance treewidth.

I Theorem 11. Given an ICG-Datalog program P of body size kP and a relational instance I
of treewidth kI, checking if I |= P is FPT-linear time in |I| · |P | (parameterized by kP and kI).

We will show this result in the next section by compiling ICG-Datalog programs in
FPT-linear time to a special kind of tree automata (Theorem 22), and showing in Section 7
that we can efficiently evaluate such automata and even compute provenance representations.
The rest of this section presents consequences of our main result for various languages.

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 9

Conjunctive queries. Our tractability result for bounded-simplicial-width CQs (Theorem 8),
including α-acyclic CQs, is shown by rewriting to ICG-Datalog of bounded body size:

I Proposition 12. There is a function fσ (depending only on σ) such that for all k ∈ N, for
any conjunctive query Q and simplicial tree decomposition T of Q of width at most k, we can
compute in O(|Q|+ |T |) an equivalent ICG-Datalog program with body size at most fσ(k).

This implies that ICG-Datalog can express any CQ up to increasing the body size
parameter, unlike, e.g., µCGF. Conversely, we can show that bounded-simplicial-width CQs
characterize the queries expressible in ICG-Datalog when disallowing negation, recursion
and disjunction. Specifically, a Datalog program is positive if it contains no negated atoms.
It is nonrecursive if there is no cycle in the directed graph on σint having an edge from R

to S whenever a rule contains R in its head and S in its body. It is conjunctive [13] if each
intensional relation R occurs in the head of at most one rule. We can then show:

I Proposition 13. For any positive, conjunctive, nonrecursive ICG-Datalog program P with
body size k, there is a CQ Q of simplicial width 6 k that is equivalent to P .

However, our ICG-Datalog fragment is still exponentially more concise than such CQs:

I Proposition 14. There is a signature σ and a family (Pn)n∈N of ICG-Datalog programs with
body size at most 9 which are positive, conjunctive, and nonrecursive, such that |Pn| = O(n)
and any CQ Qn equivalent to Pn has size Ω(2n).

Guarded negation fragments. Having explained the connections between ICG-Datalog
and CQs, we now study its connections to the more expressive languages of guarded logics,
specifically, the guarded negation fragment (GNF), a fragment of first-order logic [8]. Indeed,
when putting GNF formulae in GN-normal form [8] or even weak GN-normal form [14],
we can translate them to ICG-Datalog, and we can use the CQ-rank parameter [14] (that
measures the maximal number of atoms in conjunctions) to control the body size parameter.

I Proposition 15. There is a function fσ (depending only on σ) such that, for any weak
GN-normal form GNF query Q of CQ-rank r, we can compute in time O(|Q|) an equivalent
nonrecursive ICG-Datalog program P of body size fσ(r).

In fact, the efficient compilation of bounded-CQ-rank normal-form GNF programs (using
the fact that subformulae are “answer-guarded”, like our guardedness requirements) has
been used recently (e.g., in [12]), to give efficient procedures for GNF satisfiability, compiling
them to automata (to a treewidth which is not fixed, unlike in our context, but depends on
the formula). ICG-Datalog further allows clique guards (similar to CGNFO [8]), can reuse
subformulae (similar to the idea of DAG-representations in [14]), and supports recursion
(similar to GNFP [8], or GN-Datalog [7] but whose combined complexity is intractable —
PNP-complete). ICG-Datalog also resembles µCGF [16], but remember that it is not a
guarded negation logic, so, e.g., µCGF cannot express all CQs.

Hence, the design of ICG-Datalog, and its compilation to automata, has similarities with
guarded logics. However, to our knowledge, the idea of applying it to query evaluation is new,
and ICG-Datalog is designed to support all relevant features to capture interesting query
languages (e.g., clique guards are necessary to capture bounded-simplicial-width queries).

Recursive languages. The use of fixpoints in ICG-Datalog, in particular, allows us to
capture the combined tractability of interesting recursive languages. First, observe that
our guardedness requirement becomes trivial when all intensional predicates are monadic
(arity-one), so our main result implies that monadic Datalog of bounded body size is tractable
in combined complexity on treelike instances. This is reminiscent of the results of [35]:

10 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

I Proposition 16. The combined complexity of monadic Datalog query evaluation on bounded-
treewidth instances is FPT when parameterized by instance treewidth and body size (as in
Definition 10) of the monadic Datalog program.

Second, ICG-Datalog can capture two-way regular path queries (2RPQs) [20, 9], a well-
known query language in the context of graph databases and knowledge bases:

I Definition 17. We assume that the signature σ contains only binary relations. A regular
path query (RPQ) QL is defined by a regular language L on the alphabet Σ of the relation
symbols of σ. Its semantics is that QL has two free variables x and y, and QL(a, b) holds on
an instance I for a, b ∈ dom(I) precisely when there is a directed path π of relations of σ
from a to b such that the label of π is in L. A two-way regular path query (2RPQ) is an
RPQ on the alphabet Σ± := Σt {R− | R ∈ Σ}, which holds whenever there is a path from a

to b with label in L, with R− meaning that we traverse an R-fact in the reverse direction. A
Boolean 2RPQ is a 2RPQ which is existentially quantified on its two free variables.

I Proposition 18 [47, 9]. 2RPQ query evaluation (on arbitrary instances) has linear time
combined complexity.

ICG-Datalog allows us to capture this result for Boolean 2RPQs on treelike instances. In
fact, the above result extends to SAC2RPQs, which are trees of 2RPQs with no multi-edges or
loops. We can prove the following result, for Boolean 2RPQs and SAC2RPQs, which further
implies compilability to automata (and efficient compilation of provenance representations).
We do not know whether this extends to the more general classes studied in [10].

I Proposition 19. Given a Boolean SAC2RPQ Q, we can compute in time O(|Q|) an
equivalent ICG-Datalog program P of body size 4.

6 Compilation to Automata

In this section, we study how we can compile ICG-Datalog queries on treelike instances to
tree automata, to be able to evaluate them efficiently. As we showed with Proposition 3,
we need more expressive automata than bNTAs. Hence, we use instead the formalism of
alternating two-way automata [22], i.e., automata that can navigate in trees in any direction,
and can express transitions using Boolean formulae on states. Specifically, we introduce for
our purposes a variant of these automata, which are stratified (i.e., allow a form of stratified
negation), and isotropic (i.e., no direction is privileged, in particular order is ignored).

As in Section 3.2, we will define tree automata that run on Γ-trees for some alphabet Γ:
a Γ-tree 〈T, λ〉 is a finite rooted ordered tree with a labeling function λ from the nodes of T
to Γ. The neighborhood Nbh(n) of a node n ∈ T is the set which contains n, all children of n,
and the parent of n if it exists.

Stratified isotropic alternating two-way automata. To define the transitions of our alter-
nating automata, we write B(X) the set of propositional formulae (not necessarily monotone)
over a set X of variables: we will assume w.l.o.g. that negations are only applied to variables,
which we can always enforce using de Morgan’s laws. A literal is a propositional variable
x ∈ X (positive literal) or the negation of a propositional variable ¬x (negative literal).

A satisfying assignment of ϕ ∈ B(X) consists of two disjoint sets P,N ⊆ X (for “positive”
and “negative”) such that ϕ is a tautology when substituting the variables of P with 1 and
those of N with 0, i.e., when we have ν(ϕ) = 1 for every valuation ν of X such that ν(x) = 1
for all x ∈ P and ν(x) = 0 for all x ∈ N . Note that we allow satisfying assignments with
P tN (X, which will be useful for our technical results. We now define our automata:

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 11

I Definition 20. A stratified isotropic alternating two-way automata on Γ-trees (Γ-SATWA)
is a tuple A = (Q, qI,∆, ζ) with Q a finite set of states, qI the initial state, ∆ the transition
function from Q× Γ to B(Q), and ζ a stratification function, i.e., a surjective function from
Q to {0, . . . ,m} for some m ∈ N, such that for any q, q′ ∈ Q and f ∈ Γ, if ∆(q, f) contains q′
as a positive literal (resp., negative literal), then ζ(q′) 6 ζ(q) (resp. ζ(q′) < ζ(q)).

We define by induction on 0 6 i 6 m an i-run of A on a Γ-tree 〈T, λ〉 as a finite tree
〈Tr, λr〉, with labels of the form (q, w) or ¬(q, w) for w ∈ T and q ∈ Q with ζ(q) 6 i, by the
following recursive definition for all w ∈ T :

For q ∈ Q such that ζ(q) < i, the singleton tree 〈Tr, λr〉 with one node labeled by (q, w)
(resp., by ¬(q, w)) is an i-run if there is a ζ(q)-run of A on 〈T, λ〉 whose root is labeled
by (q, w) (resp., if there is no such run);
For q ∈ Q such that ζ(q) = i, if ∆(q, λ(w)) has a satisfying assignment (P,N), if we have
a ζ(q′)-run Tq− for each q− ∈ N with root labeled by ¬(q−, w), and a ζ(q+)-run Tq+

for each q+ ∈ P with root labeled by (q+, wq+) for some wq+ in Nbh(w), then the tree
〈Tr, λr〉 whose root is labeled (q, w) and has as children all the Tq− and Tq+ is an i-run.

A run of A starting in a state q ∈ Q at a node w ∈ T is a m-run whose root is labeled (q, w).
We say that A accepts 〈T, λ〉 (written 〈T, λ〉 |= A) if there exists a run of A on 〈T, λ〉 starting
in the initial state qI at the root of T .

Observe that the internal nodes of a run starting in some state q are labeled by states q′
in the same stratum as q. The leaves of the run may be labeled by states of a strictly
lower stratum or negations thereof, or by states of the same stratum whose transition
function is tautological, i.e., by some (q′, w) such that ∆(q′, λ(w)) has ∅, ∅ as a satisfying
assignment. Intuitively, if we disallow negation in transitions, our automata amount to the
alternating two-way automata used by [19], with the simplification that they do not need
parity acceptance conditions (because we only work with finite trees), and that they are
isotropic: the run for each positive child state of an internal node may start indifferently
on any neighbor of w in the tree (its parent, a child, or w itself), no matter the direction.
(Note, however, that the run for negated child states must start on w itself.)

We will soon explain how the compilation of ICG-Datalog is performed, but we first note
that evaluation of Γ-SATWAs is in linear time:

I Proposition 21. For any alphabet Γ, given a Γ-tree T and a Γ-SATWA A, we can determine
whether T |= A in time O(|T | · |A|).

In fact, this result follows from the definition of provenance cycluits for SATWAs in the
next section, and the claim that these cycluits can be evaluated in linear time.

Compilation. We now give our main compilation result: we can efficiently compile any
ICG-Datalog program of bounded body size into a SATWA that tests it (in the same sense
as for bNTAs). This is our main technical claim, which is proven in Appendix C.3.

I Theorem 22. Given an ICG-Datalog program P of body size kP and kI ∈ N, we can build
in FPT-linear time in |P | (parameterized by kP, kI) a SATWA AP testing P for treewidth kI.

Proof sketch. The idea is to have, for every relational symbol R, states of the form qνR(x),
where ν is a partial valuation of x. This will be the starting state of a run if it is possible to
navigate the tree encoding from some starting node and build in this way a total valuation
ν′ that extends ν and such that R(ν′(x)) holds. When R is intensional, once ν′ is total on x,
we go into a state of the form qν

′,A
r where r is a rule with head relation R and A is the

set of atoms in the body of r (whose size is bounded by the body size). This means that

12 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

we choose a rule to prove R(ν′(x)). The automaton can then navigate the tree encoding,
build ν′ and coherently partition A so as to inductively prove the atoms of the body. The
clique-guardedness condition ensures that, when there is a match of R(x), the elements to
which x is mapped can be found together in a bag. The fact that the automaton is isotropic
relieves us from the syntactic burden of dealing with directions in the tree, as one usually
has to do with alternating two-way automata. J

7 Provenance Cycluits

In the previous section, we have seen how ICG-Datalog programs could be compiled efficiently
to tree automata (SATWAs) that test them on treelike instances. To show that SATWAs can
be evaluated in linear time (stated earlier as Proposition 21), we will introduce an operational
semantics for SATWAs based on the notion of cyclic circuits, or cycluits for short.

We will also use these cycluits as a new powerful tool to compute (Boolean) provenance
information, i.e., a representation of how the query result depends on the input data:

I Definition 23. A (Boolean) valuation of a set S is a function ν : S → {0, 1}. A Boolean
function ϕ on variables S is a mapping that associates to each valuation ν of S a Boolean
value in {0, 1} called the evaluation of ϕ according to ν; for consistency with further notation,
we write it ν(ϕ). The provenance of a query Q on an instance I is the Boolean function ϕ,
whose variables are the facts of I, which is defined as follows: for any valuation ν of the facts
of I, we have ν(ϕ) = 1 iff the subinstance {F ∈ I | ν(F) = 1} satisfies Q.

We can represent Boolean provenance as Boolean formulae [38, 36], or (more recently)
as Boolean circuits [25, 5]. In this section, we first introduce monotone cycluits (monotone
Boolean circuits with cycles), for which we define a semantics (in terms of the Boolean
function that they express); we also show that cycluits can be evaluated in linear time,
given a valuation. Second, we extend them to stratified cycluits, allowing a form of stratified
negation. We conclude the section by showing how to construct the provenance of a SATWA
as a cycluit, in FPT-linear time. Together with Theorem 22, this claim implies our main
provenance result:

I Theorem 24. Given an ICG-Datalog program P of body size kP and a relational instance I
of treewidth kI, we can construct in FPT-linear time in |I| · |P | (parameterized by kP and kI)
a representation of the provenance of P on I as a stratified cycluit. Further, for fixed kI, this
cycluit has treewidth O(|P |).

Of course, this result implies the analogous claims for query languages that are captured
by ICG-Datalog parameterized by the body size, as we studied in Section 5. When combined
with the fact that cycluits can be tractably evaluated, it yields our main result, Theorem 11.
The rest of this section formally introduces cycluits and proves Theorem 24.

Cycluits. We define cycluits as Boolean circuits without the acyclicity requirement, as
in [50]. To avoid the problem of feedback loops, however, we first study monotone cycluits,
and then cycluits with stratified negation.

I Definition 25. A monotone Boolean cycluit is a directed graph C = (G,W, g0, µ) where
G is the set of gates, W ⊆ G2 is the set of directed edges called wires (and written g → g′),
g0 ∈ G is the output gate, and µ is the type function mapping each gate g ∈ G to one of inp
(input gate, with no incoming wire in W), ∧ (AND gate) or ∨ (OR gate).

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 13

We now define the semantics of monotone cycluits. A (Boolean) valuation of C is a
function ν : Cinp → {0, 1} indicating the value of the input gates. As for standard monotone
circuits, a valuation yields an evaluation ν′ : C → {0, 1}, that we will define shortly, indicating
the value of each gate under the valuation ν: we abuse notation and write ν(C) ∈ {0, 1} for
the evaluation result, i.e., ν′(g0) where g0 is the output gate of C. The Boolean function
captured by a cycluit C is thus the Boolean function ϕ on Cinp defined by ν(ϕ) := ν(C)
for each valuation ν of Cinp. We define the evaluation ν′ from ν by a least fixed-point
computation (see Algorithm 1 in Appendix D.1): we set all input gates to their value by ν,
and other gates to 0. We then iterate until the evaluation no longer changes, by evaluating
OR-gates to 1 whenever some input evaluates to 1, and AND-gates to 1 whenever all their
inputs evaluate to 1. The Knaster–Tarski theorem [53] gives an equivalent characterization:

I Proposition 26. For any monotone cycluit C and Boolean valuation ν of C, the set
S := {g ∈ C | ν′(g) = 1} is the minimal set of gates (under inclusion) such that:
(i) S contains the true input gates, i.e., it contains {g ∈ Cinp | ν(g) = 1};
(ii) for any g such that µ(g) = ∨, if some input gate of g is in S, then g is in S;
(iii) for any g such that µ(g) = ∧, if all input gates of g are in S, then g is in S.

We show that this definition is computable in linear time (Algorithm 2 in Appendix D.1):

I Proposition 27. Given any monotone cycluit C and Boolean valuation ν of C, we can
compute the evaluation ν′ of C in linear time.

Stratified cycluits. We now move from monotone cycluits to general cycluits featuring
negation. However, allowing arbitrary negation would make it difficult to define a proper
semantics, because of possible cycles of negations. Hence, we focus on stratified cycluits:

I Definition 28. A Boolean cycluit C is defined like a monotone cycluit, but further allows
NOT-gates (µ(g) = ¬), which are required to have a single input. It is stratified if there
exists a stratification function ζ mapping its gates surjectively to {0, . . . ,m} for some m ∈ N
such that ζ(g) = 0 iff g ∈ Cinp, and ζ(g) 6 ζ(g′) for each wire g → g′, the inequality being
strict if µ(g′) = ¬.

Equivalently, C contains no cycle of gates involving a ¬-gate. If C is stratified, we can
compute a stratification function in linear time by a topological sort, and use it to define the
evaluation of C (which will clearly be independent of the choice of stratification function):

I Definition 29. Let C be a stratified cycluit with stratification function ζ : C → {0, . . . ,m},
and let ν be a Boolean valuation of C. We inductively define the i-th stratum evaluation νi,
for i in the range of ζ, by setting ν0 := ν, and letting νi extend the νj (j < i) as follows:
1. For g such that ζ(g) = i with µ(g) = ¬, set νi(g) := ¬νζ(g′)(g′) for its one input g′.
2. Evaluate all other g with ζ(g) = i as for monotone cycluits, considering the ¬-gates of

point 1. and all gates of lower strata as input gates fixed to their value in νi−1.
Letting g0 be the output gate of C, the Boolean function ϕ captured by C is then defined as
ν(ϕ) := νm(g0) for each valuation ν of Cinp.

I Proposition 30. We can compute ν(C) in linear time in the stratified cycluit C and in ν.

Building provenance cycluits. Having defined cycluits as our provenance representation,
we compute the provenance of a query on an instance as the provenance of its SATWA on a
tree encoding. To do so, we must give a general definition of the provenance of SATWAs.
Consider a Γ-tree T := 〈T, λ〉 for some alphabet Γ, as in Section 6. We define a (Boolean)

14 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

valuation ν of T as a mapping from the nodes of T to {0, 1}. Writing Γ := Γ× {0, 1}, each
valuation ν then defines a Γ-tree ν(T) := 〈T, (λ × ν)〉, obtained by annotating each node
of T by its ν-image. As in [5], we define the provenance of a Γ-SATWA A on T , which
intuitively captures all possible results of evaluating A on possible valuations of T :

I Definition 31. The provenance of a Γ-SATWA A on a Γ-tree T is the Boolean function ϕ
defined on the nodes of T such that, for any valuation ν of T , ν(ϕ) = 1 iff A accepts ν(T).

We then show that we can efficiently build provenance representations of SATWAs on
trees as stratified cycluits:

I Theorem 32. For any fixed alphabet Γ, given a Γ-SATWA A and a Γ-tree T , we can build
a stratified cycluit capturing the provenance of A on T in time O(|A| · |T |). Moreover, this
stratified cycluit has treewidth O(|A|).

Proof sketch. The construction generalizes Proposition 3.1 of [5] from bNTAs and circuits
to SATWAs and cycluits. For each node w of T and state q, we create a gate gqw which,
following the transitions of A, is connected to those created for the neighbors of w; gqw is such
that for every Boolean valuation ν : T → {0, 1} of the inputs of C, there exists a run ρ of A
on ν(T) starting at w in state q if and only if ν(gqw) = 1. The reason why we need cycluits
rather than circuits is because SATWAs may loop back on previously visited nodes. J

Note that the proof can be easily modified to make it work for standard alternating two-
way automata rather than our isotropic automata. This result allows us to prove Theorem 24,
by applying it to the SATWA obtained from the ICG-Datalog program (Theorem 22), slightly
modified so as to extend it to the alphabet Γ. Recalling that nodes of the tree encodings
each encode at most one fact of the instance, we use the second coordinate of Γ to indicate
whether the fact is actually present or should be discarded. This allows us to range over
possible subinstances, and thus to compute the provenance. This concludes the proof of
our main result (Theorem 11 in Section 5): we can evaluate an ICG-Datalog program on
a treelike instance in FPT-linear time by computing its provenance by Theorem 24 and
evaluating the provenance in linear time (Proposition 30).

8 From Cycluits to Circuits and Probability Bounds

We have proven our main result on ICG-Datalog, Theorem 11, in the previous section,
introducing stratified cycluits in the process as a way to capture the provenance of ICG-
Datalog. In this section, we study how these stratified cycluits can be transformed into
equivalent acyclic Boolean circuits, and we then show how we can use this to derive bounds
for the probabilistic query evaluation problem (PQE).

From cycluits to circuits. We call two cycluits or circuits C1 and C2 equivalent if they
have the same set of inputs Cinp and, for each valuation ν of Cinp, we have ν(C1) = ν(C2). A
first result from existing work is that we can remove cycles in cycluits and convert them to
circuits, with a quadratic blowup, by creating linearly many copies to materialize the fixpoint
computation. This allows us to remain FPT in combined complexity, but not FPT-linear:

I Proposition 33 ([50], Theorem 2). For any stratified cycluit C, we can compute in time
O(|C|2) a Boolean circuit C ′ which is equivalent to C.

In addition to being quadratic rather than linear, another disadvantage of this approach
is that bounds on the treewidth of the cycluit (which we will need later for probability

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 15

computation) are generally not preserved on the output. Hence, we prove a second cycle
removal result, that proceeds in FPT-linear time when parameterized by the treewidth of
the input cycluit. When we use this result, we no longer preserve FPT combined complexity
of the overall computation, because the stratified cycluits produced by Theorem 24 generally
have treewidth Ω(|P |). On the other hand, we obtain an FPT-linear data complexity bound,
and a bounded-treewidth circuit as a result.

I Theorem 34. There is an α ∈ N s.t., for any stratified cycluit C of treewidth k, we can
compute in time O(2kα |C|) a circuit C ′ which is equivalent to C and has treewidth O(2kα).

Proof sketch. The proof is technical and proceeds stratum by stratum, so it focuses on
monotone cycluits. For such circuits, we rewrite tree decompositions to a normal form that
ensures that gate definitions occur only in leaf bags, and with all relevant input gates in scope.
We then perform our rewriting bottom-up on the tree decomposition, by creating gates at
each bag to code the behavior of the sub-circuit in terms of the values of the yet-undefined
internal gates propagated from the parent bag: this requires a fixpoint computation, coded
by iterating in the circuits for the two subtrees rooted at the children of the current bag.
We show it is equivalent to standard cycluit evaluation, and that the number of required
iterations is bounded by the bag size. Further, as higher strata may depend on any gate (not
just on one single output), we use a second top-down pass to perform the previous process
for each rooting of the tree decomposition in overall linear time. J

Probabilistic query evaluation. We can then apply the above result to the probabilistic
query evaluation (PQE) problem, which we now define:

I Definition 35. A TID instance is a relational instance I and a function π mapping each
fact F ∈ I to a rational probability π(F). A TID instance (I, π) defines a probability
distribution Pr on I ′ ⊆ I, where Pr(I ′) :=

∏
F∈I′ π(F)×

∏
F∈I\I′(1− π(F)).

The probabilistic query evaluation (PQE) problem asks, given a Boolean query Q and
a TID instance (I, π), the probability that the query Q is satisfied in the distribution Pr
of (I, π). Formally, we want to compute

∑
I′⊆I s.t. I′|=Q Pr(I ′). The data complexity of PQE

is its complexity when Q is fixed and the TID instance (I, π) is given as input. Its combined
complexity is its complexity when both the query and TID instance are given as input.

Earlier work [24] showed that PQE has #P-hard data complexity even for some CQs of
a simple form, but [5, 4] shows that PQE is tractable in data complexity for any Boolean
query in monadic second-order (MSO) if the input instances are required to be treelike.

We now explain how to use Theorem 34 for PQE. Let P be an ICG-Datalog program
of body size kP. Given a TID instance (I, π) of treewidth kI, we compute a provenance
cycluit for P on I of treewidth O(|P |) in FPT-linear time in |I| · |P | by Theorem 24. By
Theorem 34, we compute in O(2|P |α |I| |P |) an equivalent circuit of treewidth O(2|P |α). Now,
by Theorem D.2 of [4], we can solve PQE for P and (I, π) in O(22|P |

α

|I| |P | + |π|) up to
PTIME arithmetic costs. Linear-time data complexity was known from [5], but 2EXPTIME
combined complexity is novel, as [5] only gave non-elementary combined complexity bounds.

Acyclic queries on tree TIDs. A natural question is then to understand whether better
bounds are possible. In particular, is PQE tractable in combined complexity on treelike
instances? We show that, unfortunately, treewidth bounds are not sufficient to ensure this.
The proof draws some inspiration from earlier work [39] on the topic of tree-pattern query
evaluation in probabilistic XML [40].

I Proposition 36. There is a fixed arity-two signature on which PQE is #P-hard even when
imposing that the input instances have treewidth 1 and the input queries are α-acyclic CQs.

16 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Path queries on tree TIDs. We must thus restrict the query language further to achieve
combined tractability. One natural restriction is to go from α-acyclic queries to path queries,
i.e., Boolean CQs of the form R1(x1, x2), . . . , Rn(xn−1, xn), where each Ri is a binary relation
of the signature. For instance, R(x, y), S(y, z), T (z, w) is a path query, but R(x, y), S(z, y) is
not (we do not allow inverse relations). We can strengthen the previous result to show:

I Proposition 37. There is a fixed arity-two signature on which PQE is #P-hard even when
imposing that the input instances have treewidth 1 and the input queries are path queries.

Tractable cases. In which cases, then, could PQE be tractable in combined complexity?
One example is in [21]: PQE is tractable in combined complexity over probabilistic XML,
when queries are written as deterministic tree automata. In this setting, that the edges
of the XML document are directed (preventing, e.g., the inverse construction used in the
proof of Proposition 37). Further, as the result works on unranked trees, it is important that
children of a node are ordered as well (see [3] for examples where this matters).

We leave open the question of whether there are some practical classes of instances and
of queries for which such a deterministic tree automaton can be obtained from the query in
polynomial time to test the query for a given treewidth. As we have shown, path queries
and instances of treewidth 1, even though very restricted, do not suffice to ensure this. Note
that, in terms of data complexity, we have shown in [6] that treelike instances are essentially
the only instances for which first-order tractability is achievable.

9 Conclusion

We introduced ICG-Datalog, a new stratified Datalog fragment whose evaluation has FPT-
linear complexity when parameterized by instance treewidth and program body size. The
complexity result is obtained via compilation to alternating two-way automata, and via the
computation of a provenance representation in the form of stratified cycluits, a generalisation
of provenance circuits that we hope to be of independent interest.

We believe that ICG-Datalog can be further improved by removing the guardedness
requirement on negated atoms, which would make it more expressive and step back from
the world of guarded negation logics. In particular, we conjecture that our FPT-linear
tractability result generalizes to frontier-guarded Datalog, and its extensions with clique-
guards and stratified (but unguarded) negation, taking the rule body size and instance
treewidth as the parameters. We further hope that our results could be used to derive
PTIME combined complexity results on instances of arbitrary treewidth, e.g., XP membership
when parametrizing by program size; this could in particular recapture the tractability of
bounded-treewidth queries. Last, we intend to extend our cycluit framework to support more
expressive provenance semirings than Boolean provenance (e.g., formal power series [36]).

We leave open the question of practical implementation of the methods we developed,
but we have good hopes that this approach can give efficient results in practice, in part from
our experience with a preliminary provenance prototype [49]. Optimization is possible, for
instance by not representing the full automata but building them on the fly when needed in
query evaluation. Another promising direction supported by our experience, to deal with
real-world datasets that are not treelike, is to use partial tree decompositions [45].

Acknowledgements. This work was partly funded by the Télécom ParisTech Research
Chair on Big Data and Market Insights.

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 17

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, 1995.
2 N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,

17(3), 1997.
3 A. Amarilli. The possibility problem for probabilistic XML. In AMW, 2014.
4 A. Amarilli, P. Bourhis, and P. Senellart. Provenance circuits for trees and treelike instances

(extended version). CoRR, abs/1511.08723, 2015. Extended version of [5].
5 A. Amarilli, P. Bourhis, and P. Senellart. Provenance circuits for trees and treelike instances.

In ICALP, volume 9135 of LNCS, 2015.
6 A. Amarilli, P. Bourhis, and P. Senellart. Tractable lineages on treelike instances: Limits

and extensions. In PODS, 2016.
7 V. Bárány, B. ten Cate, and M. Otto. Queries with guarded negation. PVLDB, 5(11),

2012.
8 V. Bárány, B. ten Cate, and L. Segoufin. Guarded negation. J. ACM, 62(3), 2015.
9 P. Barceló. Querying graph databases. In PODS, 2013.
10 P. Barceló, M. Romero, and M. Y. Vardi. Does query evaluation tractability help query

containment? In PODS, 2014.
11 M. Benedikt, P. Bourhis, and P. Senellart. Monadic datalog containment. In ICALP, 2012.
12 M. Benedikt, P. Bourhis, and M. Vanden Boom. A step up in expressiveness of decidable

fixpoint logics. In LICS, 2016.
13 M. Benedikt and G. Gottlob. The impact of virtual views on containment. PVLDB, 3(1-2),

2010.
14 M. Benedikt, B. ten Cate, and M. Vanden Boom. Effective interpolation and preservation

in guarded logics. In LICS, 2014.
15 A. Berry, R. Pogorelcnik, and G. Simonet. An introduction to clique minimal separator

decomposition. Algorithms, 3(2), 2010.
16 D. Berwanger and E. Grädel. Games and model checking for guarded logics. In LPAR,

2001.
17 J.-C. Birget. State-complexity of finite-state devices, state compressibility and incompress-

ibility. Mathematical systems theory, 26(3), 1993.
18 H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6), 1996.
19 T. Cachat. Two-way tree automata solving pushdown games. In Automata logics, and

infinite games, chapter 17. Springer, 2002.
20 D. Calvanese, G. De Giacomo, M. Lenzeniri, and M. Y. Vardi. Containment of conjunctive

regular path queries with inverse. In KR, 2000.
21 S. Cohen, B. Kimelfeld, and Y. Sagiv. Running tree automata on probabilistic XML. In

PODS, 2009.
22 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree automata: Techniques and applications, 2007. Available from
http://tata.gforge.inria.fr/.

23 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1), 1990.

24 N. Dalvi and D. Suciu. Management of probabilistic data: foundations and challenges. In
PODS, 2007.

25 D. Deutch, T. Milo, S. Roy, and V. Tannen. Circuits for Datalog provenance. In ICDT,
2014.

26 R. Diestel. Simplicial decompositions of graphs: A survey of applications. Discrete Math.,
75(1), 1989.

http://webdam.inria.fr/Alice/pdfs/all.pdf
http://www.tau.ac.il/~nogaa/PDFS/ayz97.pdf
https://arxiv.org/abs/1404.3131
https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1604.02761
http://vldb.org/pvldb/vol5/p1328_vincebarany_vldb2012.pdf
https://hal.inria.fr/hal-01184763
https://users.dcc.uchile.cl/~pbarcelo/pods001i-barcelo.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.715.6869&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.715.6869&rep=rep1&type=pdf
http://pierre.senellart.com/publications/benedikt2012monadic.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/LICS16-gnfpup-long.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/LICS16-gnfpup-long.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R26.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/CSL-LICS14-gnfi-long.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/CSL-LICS14-gnfi-long.pdf
https://hal.archives-ouvertes.fr/lirmm-00485851/document
https://hal.archives-ouvertes.fr/lirmm-00485851/document
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PS/BG-lpar01.ps
http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-27.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-27.pdf
https://hal.archives-ouvertes.fr/hal-00019914/document
https://www.inf.unibz.it/~calvanese/papers/calv-degi-lenz-vard-KR-2000.pdf
https://www.inf.unibz.it/~calvanese/papers/calv-degi-lenz-vard-KR-2000.pdf
http://www.cs.huji.ac.il/~sara/papers/running-tree-automata.pdf
http://tata.gforge.inria.fr/
http://www.sciencedirect.com/science/article/pii/089054019090043H
https://homes.cs.washington.edu/~suciu/pods71v-suciu.pdf
https://openproceedings.org/2014/conf/icdt/DeutchMRT14.pdf
http://www.sciencedirect.com/science/article/pii/0012365X89900848

18 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

27 R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J. ACM,
30(3), 1983.

28 J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. J. ACM,
49(6), 2002.

29 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
30 F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.

J. Combinatorial Theory, 16(1), 1974.
31 G. Gottlob, E. Grädel, and H. Veith. Datalog LITE: A deductive query language with

linear time model checking. ACM Trans. Comput. Log., 3(1), 2002.
32 G. Gottlob, G. Greco, and F. Scarcello. Treewidth and hypertree width. In L. Bordeaux,

Y. Hamadi, and P. Kohli, editors, Tractability: Practical Approaches to Hard Problems,
chapter 1. Cambridge University Press, 2014.

33 G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries.
JCSS, 64(3), 2002.

34 G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and guards: game theoretic
and logical characterizations of hypertree width. JCSS, 66(4), 2003.

35 G. Gottlob, R. Pichler, and F. Wei. Monadic Datalog over finite structures of bounded
treewidth. TOCL, 12(1), 2010.

36 T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS, 2007.
37 M. Grohe and D. Marx. Constraint solving via fractional edge covers. TALG, 11(1), 2014.
38 T. Imielinski and W. Lipski, Jr. Incomplete information in relational databases. J. ACM,

31(4), 1984.
39 B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query efficiency in probabilistic XML models.

In SIGMOD, 2008.
40 B. Kimelfeld and P. Senellart. Probabilistic XML: Models and complexity. In Z. Ma and

L. Yan, editors, Advances in Probabilistic Databases for Uncertain Information Manage-
ment. Springer, 2013.

41 S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. J. Royal Statistical Society. Series B,
1988.

42 H.-G. Leimer. Optimal decomposition by clique separators. Discrete Math., 113(1-3), 1993.
43 D. Leinders, M. Marx, J. Tyszkiewicz, and J. V. den Bussche. The semijoin algebra and

the guarded fragment. Journal of Logic, Language and Information, 14(3), 2005.
44 S. Malik. Analysis of cyclic combinational circuits. In ICCAD, 1993.
45 S. Maniu, R. Cheng, and P. Senellart. ProbTree: A query-efficient representation of prob-

abilistic graphs. In BUDA, June 2014. Workshop without formal proceedings.
46 D. Marx. Can you beat treewidth? Theory of Computing, 6(1), 2010.
47 A. O. Mendelzon and P. T. Wood. Finding regular simple paths in graph databases. In

VLDB, 1989.
48 A. R. Meyer. Weak monadic second order theory of succesor is not elementary-recursive.

In Logic Colloquium, 1975.
49 M. Monet. Probabilistic evaluation of expressive queries on bounded-treewidth instances.

In SIGMOD/PODS PhD Symposium, June 2016.
50 M. D. Riedel and J. Bruck. Cyclic Boolean circuits. Discrete Applied Mathematics, 160(13-

14), 2012.
51 N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.

J. Algorithms, 7(3), 1986.
52 R. E. Tarjan. Decomposition by clique separators. Discrete Math., 55(2), 1985.
53 A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of

Mathematics, 5, 1955.

http://researcher.ibm.com/researcher/files/us-fagin/jacm83b.pdf
https://home.mathematik.uni-freiburg.de/flum/preprints/query.ps
http://www.sciencedirect.com/science/article/pii/009589567490094X
https://logic.rwth-aachen.de/Publications/pub/graedel/GoGrVe-tocl01.ps
https://logic.rwth-aachen.de/Publications/pub/graedel/GoGrVe-tocl01.ps
https://www.mat.unical.it/~ggreco/files/GottlobGrecoScarcello.pdf
http://www.sciencedirect.com/science/article/pii/S0022000001918094
http://www.sciencedirect.com/science/article/pii/S0022000003000308
http://www.sciencedirect.com/science/article/pii/S0022000003000308
https://arxiv.org/abs/0809.3140
https://arxiv.org/abs/0809.3140
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1022&context=db_research
http://www.cs.bme.hu/~dmarx/papers/soda-fractional.pdf
http://pierre.senellart.com/publications/kimelfeld2013probabilistic.pdf
http://intersci.ss.uci.edu/wiki/pdf/Lauritzen1988.pdf
http://intersci.ss.uci.edu/wiki/pdf/Lauritzen1988.pdf
http://www.sciencedirect.com/science/article/pii/0012365X9390510Z
http://alpha.luc.ac.be/~lucp1080/sagf.pdf
http://alpha.luc.ac.be/~lucp1080/sagf.pdf
http://alcom.ee.ntu.edu.tw/system/privatezone/meetingfile/201002111238121.pdf
http://pierre.senellart.com/publications/maniu2014probtree.pdf
http://pierre.senellart.com/publications/maniu2014probtree.pdf
http://theoryofcomputing.org/articles/v006a005/v006a005.pdf
http://www.vldb.org/conf/1989/P185.PDF
https://zenodo.org/record/58133/
http://www.sciencedirect.com/science/article/pii/S0166218X1200159X
http://www.sciencedirect.com/science/article/pii/0012365X85900512
https://projecteuclid.org/euclid.pjm/1103044538

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 19

54 M. Y. Vardi. The complexity of relational query languages. In STOC, 1982.
55 M. Y. Vardi. On the complexity of bounded-variable queries. In PODS, pages 266–276,

1995.
56 M. Yannakakis. Algorithms for acyclic database schemes. In VLDB, 1981.

http://www.cs.rice.edu/~vardi/papers/stoc82.pdf.gz
https://www.cs.rice.edu/~vardi/papers/pods95.ps.gz
https://www.researchgate.net/publication/200034379_Algorithms_for_Acyclic_Database_Schemes

20 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

A Proofs for Section 4 (Conjunctive Queries on Treelike Instances)

I Proposition 3. There is an arity-two signature σ and an infinite family Q1, Q2, . . . of
α-acyclic CQs such that, for any i ∈ N, any bNTA that tests Qi for treewidth 1 must have
Ω(2|Qi|1−ε) states for any ε > 0.

Proof. We fix the signature σ to consist of binary relations S, S0, S1, and C. We will code
binary numbers as gadgets on this fixed signature. The coding of i ∈ N at length k, with
k > 1 + dlog2 ie, consists of an S-chain S(a1, a2), . . . , S(ak−1, ak), and facts Sbj (aj+1, a

′
j+1)

for 1 6 j 6 k− 1 where a′j+1 is a fresh element and bj is the j-th bit in the binary expression
of i (padding the most significant bits with 0). We now define the query family Qi: each Qi
is formed by picking a root variable x and gluing 2i chains to x; for 0 6 j 6 2i − 1, we have
one chain that is the concatenation of a chain of C of length i and the length-(i+ 1) coding
of j using a gadget. Clearly the size of Qi is O(i× 2i) and thus 2i = Ω(|Qi|1−ε/2).

Fix i > 0. Let A be a bNTA testing Qi on instances of treewidth 1. We will show that
A must have at least

(2i
2i−1

)
= Ω

(
22i− i

2

)
states (the lower bound is obtained from Stirling’s

formula), from which the claim follows. In fact, we will consider a specific subset I of the
instances of treewidth 6 1, and a specific set E of tree encodings of instances of I, and show
the claim on E , which suffices to conclude.

To define I, let Si be the set of subsets of {0, . . . , 2i − 1} of cardinality 2i−1, so that |Si|
is
(2i

2i−1

)
. We will first define a family I ′ of instances indexed by Si as follows. Given S ∈ Si,

the instance I ′S of I ′ is obtained by constructing a full binary tree of the C-relation of height
i− 1, and identifying, for all j, the j-th leaf node with element a1 of the length-(i+ 1) coding
of the j-th smallest number in S. We now define the instances of I to consist of a root
element with two C-children, each of which are the root element of an instance of I ′ (we call
the two the child instances). It is clear that instances of I have treewidth 1, and we can
check quite easily that an instance of I satisfies Qi iff the child instances I ′S1

and I ′S2
are

such that S1 ∪ S2 = {1, . . . , 2i}.
We now define E to be tree encodings of instances of I: refer to Appendix C.1 for details

of how they are defined. First, define E ′ to consist of tree encodings of instances of I ′, which
we will also index with Si, i.e., ES is a tree encoding of I ′S . We now define E as the tree
encodings E constructed as follows: given an instance I ∈ I, we encode it as a root bag
with domain {r}, where r is the root of the tree I, and no fact, the first child n1 of the root
bag having domain {r, r1} and fact C(r, r1), the second child n2 of the root being defined
in the same way. Now, n1 has one dummy child with empty domain and no fact, and one
child which is the root of some tree encoding in E of one child instance of I. We define n2
analogously with the other child instance.

For each S ∈ Si, letting S̄ be the complement of S relative to {0, . . . , 2i − 1}, we call
IS ∈ I the instance where the first child instance is I ′S and the second child instance is I ′

S̄
,

and we call ES ∈ E the tree encoding of IS according to the definition above. We then call
QS the set of states q of A such that there exists a run of A on ES where the root of the
encoding of the first child instance is mapped to q. As each IS satisfies Q, each ES should
be accepted by the automaton, so each QS is non-empty.

Further, we show that the QS are pairwise disjoint: for any S1 6= S2 of Si, we show that
QS1 ∩ QS2 = ∅. Assume to the contrary the existence of q in the intersection, and let ρS1

and ρS2 be runs of A respectively on IS1 and IS2 that witness respectively that q ∈ QS1

and q ∈ QS2 . Now, consider the instance I ∈ I where the first child instance is I1, and the
second child instance is Ī2, and let E ∈ E be the tree encoding of I. We can construct a
run ρ of A on E by defining ρ according to ρS2 except that, on the subtree of E rooted at

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 21

the root r′ of the tree encoding of the first child instance, ρ is defined according to ρS1 : this
is possible because ρS1 and ρS2 agree on r′1 as they both map r′ to q. Hence, ρ witnesses
that A accepts E. Yet, as I1 6= I2, we know that I does not satisfy Q, so that, letting E ∈ E
be its tree encoding, A rejects E. We have reached a contradiction, so indeed the QS are
pairwise disjoint.

As the QS are non-empty, we can construct an mapping from Si to the state set of A by
mapping each S ∈ Si to some state of QS : as the QS are pairwise disjoint, this mapping is
injective. We deduce that the state set of A has size at least |Si|, which concludes from the
bound on the size of Si that we showed previously. J

I Proposition 4. For any treewidth bound kI ∈ N, given an α-acyclic CQ Q, we can compute
in FPT-linear time in O(|Q|) (parameterized by kI) an alternating two-way tree automaton
that tests it for treewidth kI.

Hence, if we are additionally given a relational instance I of treewidth 6 kI, one can
determine whether I |= Q in FPT-linear time in |I| · |Q| (parameterized by kI).

Proof. Given the α-acyclic CQ Q, we can compute in linear time in Q a chordal decomposi-
tion T (equivalently, a join tree) of Q (Theorem 5.6 of [FFG02], attributed to [TY84]). As
T is in particular a simplicial decomposition of Q of width 6 arity(σ)− 1, i.e., of constant
width, we use Proposition 12 to compile in linear time in |Q| an ICG-Datalog program P

with body size bounded by a constant kP.
We now use Theorem 22 to construct, in FPT-linear time in |P | (hence, in |Q|), parame-

terized by kI and the constant kP, a SATWA A testing P for treewidth kI.
We now observe that, thanks to the fact that Q is monotone, the SATWA A does not

actually feature any negation: the translation in the proof of Proposition 12 does not produce
any negated atom, and the compilation in the proof of Theorem 22 only produces a negated
state within a Boolean formula when there is a corresponding negated atom in the Datalog
program. Hence, A is actually an alternating two-way tree automaton, which proves the first
part of the claim.

For the second part of the claim, we use Theorem 11 to evaluate P on I in FPT-linear
time in |I| · |P |, parameterized by the constant kP and kI. This proves the claim. J

I Theorem 5. There is an arity-two signature σ for which there is no algorithm A with
exponential running time and polynomial output size for the following task: given a conjunctive
query Q of treewidth 6 2, produce an alternating two-way tree automaton AQ on Γ5

σ-trees
that tests Q on σ-instances of treewidth 6 5.

To prove this theorem, we need some notions and lemmas from [BBGS16], an extended
version of [BBS12]. Since [BBGS16] is currently unpublished, we provide in Appendix F the
complete relevant material from this paper, in particular Lemma 68, Theorem 70, and their
proofs.

Proof of Theorem 5. Let σ be SBin
Ch1,Ch2,Child,Child? as in Theorem 70. We pose c = 3, kI =

2× 3− 1 = 5. Assume by way of contradiction that there exists an algorithm A satisfying
the prescribed properties. We will describe an algorithm to solve any instance of the
containment problem of Theorem 70 in singly exponential time. As Theorem 70 states that
it is 2EXPTIME-hard, this yields a contradiction by the time hierarchy theorem.

Let P and Q be an instance of the containment problem of Theorem 70, where P is a
monadic Datalog program of var-size 6 3, and Q is a CQ of treewidth 6 2. We will show
how to solve the containment problem, that is, decide whether there exists some instance I
satisfying P ∧ ¬Q.

22 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Using Lemma 68, compute in singly exponential time the ΓkI
σ -bNTA AP . Using the

putative algorithm A on Q, compute in singly exponential time an alternating two-way
automaton AQ of polynomial size. As AP describes a family I of canonical instances for P ,
there is an instance satisfying P ∧¬Q iff there is an instance in I satisfying P ∧¬Q. Now, as
I is described as the decodings of the language of AP , all instances in I have treewidth 6 kI.
Furthermore, the instances in I satisfy P by definition of I. Hence, there is an instance
satisfying P ∧ ¬Q iff there is an encoding E in the language of AP whose decoding satisfies
¬Q. Now, as AQ tests Q on instances of treewidth kI, this is the case iff there is an encoding
E in the language of AP which is not accepted by AQ. Hence, our problem is equivalent to
the problem of deciding whether there is a tree accepted by AP but not by AQ.

We now use Theorem A.1 of [CGKV88] to compute in EXPTIME in AQ a bNTA A′Q
recognizing the complement of the language of AQ. Remember that AQ was computed in
EXPTIME and is of polynomial size, so the entire process so far is EXPTIME. Now we know
that we can solve the containment problem by testing whether AP and A′Q have non-trivial
intersection, which can be done in PTIME by computing the product automaton and testing
emptiness [CDG+07]. This solves the containment problem in EXPTIME. As we explained
initially, we have reached a contradiction, because it is 2EXPTIME-hard. J

I Theorem 8. For any kI, kQ ∈ N, given a CQ Q and a simplicial decomposition T of
simplicial width kQ of Q, we can compute in FPT-linear in |Q| (parameterized by kI and kQ)
an alternating two-way tree automaton that tests Q for treewidth kI.

Hence, if we are additionally given a relational instance I of treewidth 6 kI, one can
determine whether I |= Q in FPT-linear time in |I| · (|Q|+ |T |) (parameterized by kI and kQ).

Proof. We use Proposition 12 to compile the CQ Q to an ICG-Datalog program P with
body size at most kP := fσ(kQ), in FPT-linear time in |Q|+ |T | parameterized by kQ.

We now use Theorem 22 to construct, in FPT-linear time in |P | (hence, in |Q|), parame-
terized by kI and kP, hence in kI and kQ, a SATWA A testing P for treewidth kI. For the
same reasons as in the proof of Proposition 4, it is actually an two-way alternating tree
automaton, so we have shown the first part of the result.

To prove the second part of the result, we now use Theorem 11 to evaluate P on I in
FPT-linear time in |I| · |P |, parameterized by kP and kI, hence again by kQ and kI. This
proves the claim. J

B Proofs for Section 5 (ICG-Datalog on Treelike Instances)

I Proposition 9. There is a signature σ and Datalog program P such that the language of
Γ1
σ-trees that encode instances satisfying P is not a regular tree language.

We will use in this proof the notion of tree encoding and the associated concepts, which can
be found in Appendix C.1.

Proof. Let σ be the signature containing two binary relations Y and Z and two unary
relations Begin and End. Consider the following program P :

Goal()← S(x, y),Begin(x),End(y)
S(x, y)← Y (x,w), S(w, u), Z(u, y)
S(x, y)← Y (x,w), Z(w, y)

Let L be the language of the tree encodings of instances of treewidth 1 that satisfy P . We
will show that L is not a regular tree language, which clearly implies the second claim, as a

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 23

bNTA or an alternating two-way tree automaton can only recognize regular tree languages
[CDG+07]. To show this, let us assume by contradiction that L is a regular tree language,
so that there exists a Γ1

σ-bNTA A that accepts L, i.e., that tests P .
We consider instances which are chains of facts which are either Y - or Z-facts, and where

the first end is the only node labeled Begin and the other end is the only node labeled End.
This condition on instances can clearly be expressed in MSO, so that by Theorem 2 there
exists a bNTA Achain on Γ1

σ that tests this property. In particular, we can build the bNTA A′

which is the intersection of A and Achain, which tests whether instances are of the prescribed
form and are accepted by the program P .

We now observe that such instances must be the instance

Ik = {Begin(a1), Y (a1, a2), . . . , Y (ak−1, ak), Y (ak, ak+1),
Z(ak+1, ak+2), . . . , Z(a2k−1, a2k), Z(a2k, a2k+1),End(a2k+1)}

for some k ∈ N. Indeed, it is clear that Ik satisfies P for all k ∈ N, as we derive the facts

S(ak, ak+2), S(ak−1, ak+3), . . . , S(ak−(k−1), ak+2+(k−1)), that is, S(a1, a2k+1),

and finally Goal(). Conversely, for any instance I of the prescribed shape that satisfies P ,
it is easily seen that the derivation of Goal justifies the existence of an chain in I of the
form Ik, which by the restrictions on the shape of I means that I = Ik.

We further restrict our attention to tree encodings that form a single branch of a
specific form, namely, their contents are as follows (given from leaf to root) for some integer
n > 0: ({a1},Begin(a1)), ({a1, a2}, X(a1, a2)), ({a2, a3}, X(a2, a3)), ({a3, a1}, X(a3, a1)),
. . . , ({an, an+1}, X(an, an+1)), ({an+1},End(an+1)), where we write X to mean that we
may match either Y or Z, where addition is modulo 3, and where we add dummy nodes
(⊥,⊥) as left children of all nodes, and as right children of the leaf node ({a1},Begin(a1)), to
ensure that the tree is full. It is clear that we can design a bNTA Aencode which recognizes
tree encodings of this form, and we define A′′ to be the intersection of A′ and Aencode. In
other words, A′′ further enforces that the Γ1

σ-tree encodes the input instance as a chain of
consecutive facts with a certain prescribed alternation pattern for elements, with the Begin
end of the chain at the top and the End end at the bottom.

Now, it is easily seen that there is exactly one tree encoding of every Ik which is accepted
by A′′, namely, the one of the form tested by Aencode where n = 2k, the first k X are matched
to Y and the last k X are matched to Z.

Now, we observe that as A′′ is a bNTA which is forced to operate on chains (completed
to full binary trees by a specific addition of binary nodes). Thus, we can translate it to a
deterministic automaton A′′′ on words on the alphabet Σ = {B, Y, Z,E}, by looking at its
behavior in terms of the X-facts. Formally, A′′′ has same state space as A′′, same final states,
initial state δ(ι((⊥,⊥)), ι((⊥,⊥))) and transition function δ(q, x) = δ(ι((⊥,⊥)), q, (s, f)) for
every domain s, where f is a fact corresponding to the letter x ∈ Σ (B stands here for Begin,
and E for End). By definition of A′′, the automaton A′′′ on words recognizes the language
{BY kZkE | k ∈ N}. As this language is not regular, we have reached a contradiction. This
contradicts our hypothesis about the existence of automaton A, which establishes the desired
result. J

I Theorem 11. Given an ICG-Datalog program P of body size kP and a relational instance I
of treewidth kI, checking if I |= P is FPT-linear time in |I| · |P | (parameterized by kP and kI).

Proof. Anticipating on the results of later sections, we use Theorem 24 to compute a
representation C of the provenance of P on I as a stratified cycluit, in FPT-linear time

24 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

(parameterized by kP and kI). We let ν be the valuation of C that sets every input to true
(reflecting that all the facts of I are indeed there), and we then use Proposition 30 to evaluate
ν(C) in linear time. By definition of the provenance, we have ν(C) = 1 iff I |= P , which
concludes the proof. J

I Proposition 12. There is a function fσ (depending only on σ) such that for all k ∈ N, for
any conjunctive query Q and simplicial tree decomposition T of Q of width at most k, we can
compute in O(|Q|+ |T |) an equivalent ICG-Datalog program with body size at most fσ(k).

We first prove the following lemma about simplicial tree decompositions:

I Lemma 38. For any simplicial decomposition T of width k of a query Q, we can compute
in linear time a simplicial decomposition Tbounded of Q such that each bag has degree at
most 2k+1.

Proof. Fix Q and T . We construct the simplicial decomposition Tbounded of Q in a process
which shares some similarity with the routine rewriting of tree decompositions to make them
binary, by creating copies of bags. However, the process is more intricate because we need to
preserve the fact that we have a simplicial tree decomposition, where interfaces are guarded.

We go over T bottom-up: for each bag b of T , we create a bag b′ of Tbounded with same
domain as b. Now, we partition the children of b depending on their intersection with b: for
every subset S of the domain of b such that b has some children whose intersection with b is
equal to S, we write these children bS,1, . . . , bS,nS (so we have S = dom(b) ∩ dom(bS,j) for
all 1 6 j 6 nS), and we write b′S,1, . . . , b′S,nS for the copies that we already created for these
bags in Tbounded. Now, for each S, we create nS fresh bags b′=S,j in Tbounded (for 1 6 j 6 nS)
with domain equal to S, and we set b′=S,1 to be a child of b′, b′=S,j+1 to be a child of b′=S,j
for all 1 6 j < nS , and we set each b′S,i to be a child of b′=S,i.

This process can clearly be performed in linear time. Now, the degree of the fresh bags
in Tbounded is at most 2, and the degree of the copies of the original bags is at most 2k+1,
as stated. Further, it is clear that the result is still a tree decomposition (each fact is still
covered, the occurrences of each element still form a connected subtree because they are as
in T with the addition of some paths of the fresh bags), and the interfaces in Tbounded are
the same as in T , so they still satisfy the requirement of simplicial decompositions. J

We can now prove Proposition 12. In fact, as will be easy to notice from the proof,
our construction further ensures that the equivalent ICG-Datalog program is positive,
nonrecursive, and conjunctive.

Proof of Proposition 12. Using Lemma 38, we can start by rewriting in linear time the
input simplicial decomposition to ensure that each bag has degree at most 2k+1. Hence, let
us assume without loss of generality that T has this property. We further add an empty root
bag if necessary to ensure that the root bag of T is empty and has exactly one child.

We start by using Lemma 3.1 of [FFG02] to annotate in linear time each node b of T
by the set of atoms Ab of Q whose free variables are in the domain of b and such that for
each atom A of Ab, b is the topmost bag of T which contains all the variables of A. As the
signature σ is fixed, note that we have |Ab| 6 gσ(k) for some function gσ depending only
on σ.

Once this is done, we scrub T , namely, we remove variables from bags of T to ensure
that, for each bag b, for each x ∈ dom(b), either Ab contains an atom where x appears, or
there is a child of b where x appears. We can do so in linear time by traversing T bottom-up,
keeping track of which variables must be kept, and removing all other variables. Intuitively,

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 25

this scrubbing transformation will ensure that, when constructing our ICG-Datalog program,
all variables in the head of a rule also appear in the body of this rule.

We now perform a process similar to Lemma 3.1 of [FFG02]. We start by precomputing
in linear time a mapping µ that associates, to each pair {x, y} of variables of Q, the set
of all atoms in Q where {x, y} co-occur. We can compute µ in linear time by processing
all atoms of Q and adding each atom as an image of µ for each pair of variables that it
contains (remember that the arity of σ is constant). Now, we do the following computation:
for each bag b which is not the root of T , letting S be its interface with its parent bag, we
annotate b by a set of atoms Aguard

b defined as follows: for all x, y ∈ S with x 6= y, letting
A(z) be an atom of Q where x and y appear (which must exist, by the requirement on
simplicial decompositions, and which we retrieve from µ), we add A(w) to Aguard

b , where,
for 1 6 i 6 |z|, we set wi := zi if zi ∈ {x, y}, and wi to be a fresh variable otherwise. In
other words, Aguard

b is a set of atoms that ensures that the interface S of b with its parent is
covered by a clique, and we construct it by picking atoms of Q that witness the fact that it is
guarded (which it is, because T is a simplicial decomposition), and replacing their irrelevant
variables to be fresh. Note that Aguard

b consists of at most k × (k + 1)/2 atoms, but the
domain of these atoms is not a subset of dom(b) (because they include fresh variables). This
entire computation is performed in linear time.

We now define the function fσ(k) as follows, remembering that arity(σ) denotes the arity
of the extensional signature:

fσ(k) := max(arity(σ), k + 1)×
(
gσ(k) + 2k+1(k(k + 1)/2 + 1)

)
.

We now build our ICG-Datalog program P of body size fσ(k) which is equivalent to Q.
We define the intensional signature σint by creating one intensional predicate Pb for each
non-root bag b of T , whose arity is the size of the intersection of b with its parent. As we
ensured that the root bag br of T is empty and has exactly one child b′r, we use Pb′r as our
0-ary Goal() predicate (because its interface with its parent br is necessarily empty). We
now define the rules of P by processing T bottom-up: for each bag b of T , we add one rule
ρb with head Pb(x), defined as follows:

If b is a leaf, then ρb is Pb ←
∧
Ab.

If b is an internal node with children b1, . . . , bm (remember that m 6 2k+1), then ρb is
Pb ←

∧
Ab ∧

∧
16i6m(

∧
Aguard
bi

∧ Pbi).

We first check that P is intensional-clique-guarded, but this is the case because the only
use of intensional atoms in rules is the Pbi , whose free variables are the intersection S of b
and bi, but by construction the conjunction of atoms

∧
Aguard
bi

is a suitable guard for S: for
each {x, y} ∈ S, it contains an atom where both x and y occur).

Second, we check that, pursuant to the definition of Datalog, each head variable occurs
in the body, but this is the case thanks to the fact that T is scrubbed: any variable of an
intensional predicate Pb is a variable of dom(b), which must occur either in Ab or in the
intersection of b with one of its children bi.

Third, we check that the body size of P is indeed fσ(k). It is clear that arity(σint) 6 k+1,
so that arity(P) 6 max(arity(σ), k + 1). Further, the maximal number of atoms in the body
of a rule is gσ(k) + 2k+1(k(k + 1)/2 + 1)), so we obtain the desired bound.

What is left to check is that P is equivalent to Q. It will be helpful to reason about P by
seeing it as the conjunctive query Q′ obtained by recursively inlining the definition of rules:
observe that this a conjunctive query, because P is conjunctive, i.e., for each intensional

26 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

atom Pb, the rule ρb is the only one where Pb occurs as head atom. It is clear that P and Q′
are equivalent, so we must prove that Q and Q′ are equivalent.

For the forward direction, it is obvious that Q′ =⇒ Q, because Q′ contains every
atom of Q by construction of the Ab. For the backward direction, noting that the only
atoms of Q′ that are not in Q are those added in the sets Aguard

b , we observe that there is a
homomorphism from Q′ to Q defined by mapping each atom A(w) occurring in some Aguard

b

to the atom A(z) of Q used to create it; this mapping is the identity on the two variables
x and y used to create A(w), and maps each fresh variables wi to zi: the fact that these
variables are fresh ensures that this homomorphism is well-defined. This shows Q and Q′,
hence P , to be equivalent, which concludes the proof. J

I Proposition 13. For any positive, conjunctive, nonrecursive ICG-Datalog program P with
body size k, there is a CQ Q of simplicial width 6 k that is equivalent to P .

To prove Proposition 13, we will use the notion of the call graph of a Datalog program.
This is the graph G on the relations of σint which has an edge from R to S whenever a
rule contains relation R in its head and S in its body. From the requirement that P is
nonrecursive, we know that this graph G is a DAG.

We now prove Proposition 13:

Proof of 13. We first check that every intensional relation reachable from Goal in the call
graph G of P appears in the head of a rule of P (as P is conjunctive, this rule is then unique).
Otherwise, it is clear that P is not satisfiable (it has no derivation tree), so we can simply
rewrite P to the query False. We also assume without loss of generality that each intensional
relation except Goal() occurs in the body of some rule, as otherwise we can simply drop
them and all rules where they appear as the head relation.

In the rest of the proof we will consider the rules of P in some order, and create an
equivalent ICG-Datalog program P ′ with rules r′0, . . . , r′m′ . We will ensure that P ′ is also
positive, conjunctive, and nonrecursive, and that it further satisfies the following additional
properties:

1. Every intensional relation other than Goal appears in the body of exactly one rule of P ′,
and appears there exactly once;

2. For every 0 6 i 6 m, for every variable z in the body of rule r′i that does not occur in its
head, then for every 0 6 j < i, z does not occur in r′j .

We initialize a queue that contains only the one rule that defines Goal in P , and we do
the following until the queue is empty:

Pop a rule r from the queue. Let r′ be defined from r as follows: for every intensional
relation R that occurs in the body of r′, letting R(x1), . . . , R(xn) be its occurrences,
rewrite these atoms to R1(x1), . . . , Rn(xn), where the Ri are fresh intensional relations.
Add r′ to P ′.
For each intensional atom Ri(x) of r′, letting R be the relation from which Ri was created,
let rR be the rule of P that has R in its head (by our initial considerations, there is one
such rule, and as the program is conjunctive there is exactly one such rule). Define r′Ri
from rR by replacing its head relation from R to Ri, and renaming its head and body
variables such that the head is exactly Ri(x). Further rename all variables that occur in
the body but not in the head, to replace them by fresh new variables. Add r′Ri to the
queue.

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 27

We first argue that this process terminates. Indeed, considering the graph G, whenever
we pop from the queue a rule with head relation R (or a fresh relation created from a
relation R), we add to the queue a finite number of rules for head relations created from
relations R′ such that the edge (R,R′) is in the graph G. The fact that G is acyclic ensures
that the process terminates (but note that its running time may generally be exponential in
the input). Second, we observe that, by construction, P satisfies the first property, because
each occurrence of an intensional relation in a body of P ′ is fresh, and satisfies the second
property, because each variable which is the body of a rule but not in its head is fresh, so it
cannot occur in a previous rule

Last, we verify that P and P ′ are equivalent, but this is immediate, because any derivation
tree for P can be rewritten to a derivation tree for P ′ (by renaming relations and variables),
and vice-versa.

We define Q to be the conjunction of all extensional atoms occurring in P ′. To show that
it is equivalent to P ′, the fact that Q implies P ′ is immediate as the leaves are sufficient
to construct a derivation tree, and the fact that P ′ implies Q is because, letting G′ be the
call graph of P ′, by the first property of P ′ we can easily observe that it is a tree, so the
structure of derivation trees of G′ also corresponds to P , and by the second property of P ′
we know that two variables are equal in two extensional atoms iff they have to be equal in
any derivation tree. Hence, P ′ and Q are indeed equivalent.

We now justify that Q has simplicial width at most k. We do so by building from P ′ a
simplicial decomposition T of Q of width 6 k. The structure of T is the same as G′ (which
is actually a tree). For each bag b of T corresponding to a node of G′ standing for a rule
r of P ′, we set the domain of b to be the variables occurring in r. It is clear that T is a
tree decomposition of Q, because each atom of Q is covered by a bag of T (namely, the one
for the rule whose body contained that atom) and the occurrences of each variable form a
connected subtree (whose root is the node of G′ standing for the rule where it was introduced,
using the second condition of P ′). Further, T is a simplicial decomposition because P ′ is
intensional-clique-guarded; further, from the second condition, the variables shared between
one bag and its child are precisely the head variables of the child rule. The width is 6 k

because the body size of an ICG-Datalog program is an upper bound on the maximal number
of variables in a rule body. J

I Proposition 14. There is a signature σ and a family (Pn)n∈N of ICG-Datalog programs with
body size at most 9 which are positive, conjunctive, and nonrecursive, such that |Pn| = O(n)
and any CQ Qn equivalent to Pn has size Ω(2n).

To prove Proposition 14, we will introduce the following notion:

I Definition 39. A match of a CQ Q in an instance I is a subset M of facts of I which is
an image of a homomorphism from the canonical instance of Q to I, i.e., M witnesses that
I |= Q, in particular M |= Q as a subset of I.

Our proof will rely on the following elementary observation:

I Lemma 40. If a CQ Q has a match M in an instance I, then necessarily |Q| > |M |.

Proof. As M is the image of Q by a homomorphism, it cannot have more atoms than M
has facts. J

We are now ready to prove Proposition 14:

28 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Proof of Proposition 14. Fix σ to contain a binary relation R and a ternary relation G.
Consider the rule ρ0 : R0(x, y)← R(x, y) and define the following rules, for all i > 0:

ρi : Ri(x, y)← G(x, z, y), Ri−1(x, z), Ri−1(z, y)

For each i > 0, we let Pi consist of the rules ρj for 1 6 j 6 i, as well as ρ0 and the rule
Goal()← Ri(x, y). It is clear that each Pi is positive, conjunctive, and non-recursive; further,
the predicate G ensures that it is an ICG-Datalog program. The arity is 3 and the maximum
number of atoms is the body is 3, so the body size is indeed 9.

We first prove by an immediate induction that, for each i > 0, considering the rules of Pi
and the intensional predicate Ri, whenever an instance I satisfies Ri(a, b) for two elements
a, b ∈ dom(I) then there is an R-path of length 2i from a to b. Now, fixing i > 0, this clearly
implies there is an instance Ii of size (number of facts) > 2i, namely, an R-path of this length
with the right set of additional G-facts, such that Ii |= Pi but any strict subset of Ii does
not satisfy Pi.

Now, let us consider a CQ Qi which is equivalent to Pi, and let us show the desired size
bound. By equivalence, we know that Ii |= Qi, hence Qi has a match Mi in Ii, but any strict
subset of Ii does not satisfy Qi, which implies that, necessarily, Mi = Ii (indeed, otherwise
Mi would survive as a match in some strict subset of Ii). Now, by Lemma 40, we deduce
that |Qi| > |Mi|, and as |Mi| = |Ii| > 2i, we obtain the desired size bound, which concludes
the proof. J

I Proposition 15. There is a function fσ (depending only on σ) such that, for any weak
GN-normal form GNF query Q of CQ-rank r, we can compute in time O(|Q|) an equivalent
nonrecursive ICG-Datalog program P of body size fσ(r).

Proof. We recall from [BtCV14], Appendix B.1, that a weak GN-normal form formulae is a
ϕ-formula in the inductive definition below:

A disjunction of existentially quantified conjunctions of ψ-formulae is a ϕ-formula;
An atom is a ψ-formula;
The conjunction of a ϕ-formula and of a guard is a ψ-formula;
The conjunction of the negation of a ϕ-formula and of a guard is a ψ-formula.

We define fσ : n 7→ arity(σ)× n.
We consider an input Boolean GN-normal form formula Q of CQ-rank r, and call T

its abstract syntax tree. We rewrite T in linear time to inline in ϕ-formulae the definition
of their ψ-formulae, so all nodes of T consist of ϕ-formulae, in which all subformulae are
guarded (but they can be used positively or negatively).

We now process T bottom-up. We introduce one intensional Datalog predicate Rn per
node n in T : its arity is the number of variables that are free at n. We then introduce one
rule ρn,δ for each disjunct δ of the disjunction that defines n in T : the head of ρn,δ is an
Rn-atom whose free variables are the variables that are free in n, and the body of ρn,δ is the
conjunction that defines δ, with each subformula replaced by the intensional relation that
codes it. Of course, we use the predicate Rr for the root r of T as our goal predicate; note
that it must be 0-ary, as Q is Boolean so there are no free variables at the root of T . This
process defines our ICG-Datalog program P : it is clear that this process runs in linear time.

We first observe that body size for an intensional predicate Rn is less than the CQ-
rank of the corresponding subformula: recall that the CQ-rank is the overall number of
conjuncts occurring in the disjunction of existentially quantified conjunctions that defines
this subformula. Hence, as the arity of σ is bounded, clearly P has body size 6 fσ(r). We

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 29

next observe that intentional predicates in the bodies of rules of P are always guarded,
thanks to the guardedness requirement on Q. Further, it is obvious that P is nonrecursive,
as it is computed from the abstract syntax tree T . Last, it is clear that P is equivalent to
the original formula Q, as we can obtain Q back simply by inlining the definition of the
intensional predicates. J

I Proposition 16. The combined complexity of monadic Datalog query evaluation on bounded-
treewidth instances is FPT when parameterized by instance treewidth and body size (as in
Definition 10) of the monadic Datalog program.

Proof. This is simply by observing that any monadic Datalog program is an ICG-Datalog
program with the same body size, so we can simply apply Theorem 11. J

I Proposition 19. Given a Boolean SAC2RPQ Q, we can compute in time O(|Q|) an
equivalent ICG-Datalog program P of body size 4.

Proof. We first show the result for 2RPQs, and then explain how to extend it to SAC2RPQs.
We have not specified how RPQs are provided as input. We assume that they are

provided as a regular expression, from which we can use Thompson’s construction [ALSU06]
to compute in linear time an equivalent NFA A (with ε-transitions) on the alphabet Σ±.
Note that the result of Thompson’s construction has exactly one final state, so we may
assume that each automaton has exactly one final state.

We now define the intensional signature of the ICG-Datalog program to consist of one
unary predicate Pq for each state q of the automaton, in addition to Goal(). We add the
rule Goal()← Pqf (x) for the final state qf , and for each extensional relation R(x, y), we add
the rules Pq0(x)← R(x, y) and Pq0(y)← R(x, y), where q0 is the initial state. We then add
rules corresponding to automaton transitions:

for each transition from q to q′ labeled with a letter R, we add the rule Pq′(y) ←
Pq(x), R(x, y);
for each transition from q to q′ labeled with a negative letter R−, we add the rule
Pq′(y)← Pq(x), R(y, x);
for each ε-transition from q to q′ we add the rule Pq′(x)← Pq(x)

This transformation is clearly in linear time, and the result clearly satisfies the desired
body size bound. Further, as the result is a monadic Datalog program, it is clearly an
ICG-Datalog program. Now, it is clear that, in any instance I where Q holds, from two
witnessing elements a and b and a path π : a = c0, c1, . . . , cn = b from a to b satisfying Q, we
can build a derivation tree of the Datalog program by deriving Pq0(a), Pq1(c1), . . . , Pqn(cn),
where q0 is the initial state and qn is final, to match the accepting path in the automaton
A that witnesses that π is a match of Q. Conversely, any derivation tree of the Datalog
program P that witnesses that an instance satisfies P can clearly be used to extract a path
of relations which corresponds to an accepting run in the automaton.

We now extend this argument to SAC2RPQs. Recall from [Bar13] that a C2RPQ is a
conjunction of 2RPQs, i.e., writing a 2RPQ as Q(x, y) with its two free variables, a C2RPQ
is a CQ built on RPQs. An AC2RPQ is a C2RPQ where the undirected graph on variables
defined by co-occurrence between variables is acyclic, and a SAC2RPQ further imposes that
there are no loops (i.e., atoms of the C2RPQ of the form Q(x, x)) and no multiedges (i.e.,
for each variable pair, there is at most one atom where it occurs).

We will also make a preliminary observation on ICG-Datalog programs: any rule of the
form (*) A(x)← A1(x), . . . , An(x), where A and each Ai is a unary atom, can be rewritten

30 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

in linear time to rules with bounded body size, by creating unary intensional predicates A′i
for 1 6 i 6 n, writing the rule A′n(x)← An(x), writing the rule A′i(x)← A′i+1(x), Ai(x) for
each 1 6 i < n, and writing the rule A(x)← A′1(x). Hence, we will write rules of the form
(*) in the transformation, with unbounded body size, being understood that we can finish
the process by rewriting out each rule of this form to rules of bounded body size.

Given a SAC2RPQ Q, we compute in linear time the undirected graph G on variables,
and its connected components. Clearly we can rewrite each connected component separately,
by defining one Goali() 0-ary predicate for each connected component i, and adding the rule
Goal() ← Goal1(), . . . ,Goaln(): this is a rule of form (*), which we can rewrite. Hence, it
suffices to consider each connected component separately.

Hence, assuming that the graph G is connected, we root it at an arbitrary vertex to obtain
a tree T . For each node n of T (corresponding to a variable of the SAC2RPQ), we define a
unary intensional predicate P ′n which will intuitively hold on elements where there is a match
of the sub-SAC2RPQ defined by the subtree of T rooted at n, and one unary intensional
predicate P ′′n,n′ for all non-root n and children n′ of n in T which will hold whenever there
is a match of the sub-SAC2RPQ rooted at n which removes all children of n except n′. Of
course we add the rule Goal()← P ′nr

(x), where nr is the root of T .
Now, we rewrite the SAC2RPQ to monadic Datalog by rewriting each edge of T indepen-

dently, as in the argument for 2RPQs above. Specifically, we assume that the edge when
read from bottom to top corresponds to a 2RPQ; otherwise, if the edge is oriented in the
wrong direction, we can clearly compute an automaton for the reverse language in linear time
from the Thompson automaton, by reversing the direction of transitions in the automaton,
and swapping the initial state and the final state. We modify the previous construction by
replacing the rule for the initial state Pq0 by Pq0(x)← P ′n′(x) where n′ is the lower node of
the edge that we are rewriting, and the rule for the goal predicate in the head is replaced by
a rule P ′′n,n′(x)← Pqf (x), where n is the upper node of the edge, and qf is the final state of
the automaton for the edge: this is the rule that defines the P ′′n,n′ .

Now, we define each P ′n as follows:

If n is a leaf node of T , we define P ′n by the same rules that we used to define Pq0 in the
previous construction, so that P ′n holds of all elements in the active domain of an input
instance.
If n is an internal node of T , we define P ′n(x)← P ′′n,n1

(x), . . . , P ′′n,nm(x), where n1, . . . , nm
are the children of n in T : this is a rule of form (*).

Now, given an instance I satisfying the SAC2RPQ, from a match of the SAC2RPQ as a
rooted tree of paths, it is easy to see by bottom-up induction on the tree that we derive Pv
with the desired semantics, using the correctness of the rewriting of each edge. Conversely, a
derivation tree for the rewriting can be used to obtain a rooted tree of paths with the correct
structure where each path satisfies the RPQ corresponding to this edge. J

C Proofs for Section 6 (Compilation to Automata)

C.1 Details on Tree Encodings
We first explain how we encode and decode structures of bounded treewidth to trees whose
alphabet size depends only on the treewidth bound and on the signature. Having fixed a
signature σ and a treewidth k ∈ N, we define a domain Dk = {a1, . . . , a2k+2} and a finite
alphabet Γkσ whose elements are pairs (d, s), with d being a subset of up to k + 1 elements of
Dk, and s being either the empty set or an instance consisting of a single σ-fact over some

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 31

subset of d: in the latter case, we will abuse notation and identify s with the one fact that it
contains. A (σ, k)-tree encoding is simply a rooted, binary, ordered, full Γkσ-tree 〈E, λ〉; the
fact that 〈E, λ〉 is ordered is merely for technical convenience when running bNTAs, but it is
otherwise inessential.

Intuitively, a tree encoding 〈E, λ〉 can be decoded (up to isomorphism) to an instance
dec(〈E, λ〉) with the elements of D being decoded to the domain elements: each occurrence of
an element ai ∈ D in an ai-connected subtree of E, i.e., a maximal connected subtree where
ai appears in the first component of each node, is decoded to a fresh element. In other words,
reusing the same ai in adjacent nodes in 〈E, λ〉 mean that they stand for the same element,
and using ai elsewhere in the tree creates a new element. It is easy to see that dec(〈E, λ〉) has
treewidth 6 k, as a tree decomposition for it can be constructed from 〈E, λ〉. Conversely, any
instance I of treewidth 6 k has a (σ, k)-encoding, i.e., a Γkσ-tree 〈E, λ〉 such that dec(〈E, λ〉)
is I up to isomorphism: we can construct it from a tree decomposition, replicating each bag
of the decomposition to code each fact in its own node of the tree encoding. What matters
is that this process is FPT-linear for k, so that we will use the following claim:

I Lemma 41 [FFG02] (see [Ama16] for our type of encodings). The problem, given an
instance I of treewidth 6 k, of computing a tree encoding of I, is FPT-linear for k.

C.2 Evaluation
I Proposition 21. For any alphabet Γ, given a Γ-tree T and a Γ-SATWA A, we can determine
whether T |= A in time O(|T | · |A|).

Proof. We use Theorem 32 to compute a provenance cycluit C of the SATWA (modified to
be a Γ-SATWA by simply ignoring the second component of the alphabet) in time O(|T | · |A|).
Then we conclude by evaluating the resulting provenance cycluit (for an arbitrary valuation
of that circuit) in time O(|C|) using Proposition 30.

Note that, intuitively, the fixpoint evaluation of the cycluit can be understood as a least
fixpoint computation to determine which pairs of states and tree nodes (of which there are
O(|T | · |A|)) are reachable. J

C.3 Compilation
I Theorem 22. Given an ICG-Datalog program P of body size kP and kI ∈ N, we can build
in FPT-linear time in |P | (parameterized by kP, kI) a SATWA AP testing P for treewidth kI.

First, we introduce some useful notations to deal with valuations of variables as constants of
the encoding alphabet. Recall that DkI is the domain for treewidth kI, used to define the
alphabet of tree encodings of width kI.

I Definition 42. Given a tuple x of variables, a partial valuation of x is a function ν from x
to DkI t {?}. The set of undefined variables of ν is U(ν) = {xj | ν(xj) = ?}: we say that the
variables of U(ν) are not defined by ν, and the other variables are defined by ν.

A total valuation of x is a partial valuation ν of x such that U(ν) = ∅. We say that a
valuation ν extends another valuation ν′ if the domain of ν′ is a superset of that of ν, all
variables defined by ν are defined by ν′ and are mapped to the same value. For y ⊆ y, we
say that ν is total on y if its restriction to y is a total valuation.

For any two partial valuations ν of x and ν′ of y′ if we have ν(x) = ν′(x) for all x in
(x ∩ y′) \ (U(ν) ∪ U(ν′)), we write ν ∪ ν′ for the valuation on x ∪ y′ that maps every x to
ν(x) or ν′(x) if one is defined, and to “?” otherwise.

32 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

When ν is a partial valuation of x with x ⊆ x′ and we define a partial valuation ν′ of x′
with ν′ := ν, we mean that ν′ is defined like ν on x and is undefined on x′ \ x.

I Definition 43. Let x and y be two tuples of variables of same arity (note that some
variables of x may be repeated, and likewise for y). Let ν : x → DkI be a total valuation
of x. We define Homy,x(ν) to be the (unique) homomorphism between the tuple y and the
tuple ν(x), if such a homomorphism exists; otherwise, Homy,x(ν) is null.

The rest of this section proves Theorem 22 in two steps. First, we build a SATWA A′P
and we prove that A′P tests P for treewidth kI; however, the construction of A′P that we
present is not FPT-linear. Second, we explain how to modify the construction to construct
an equivalent SATWA AP while respecting the FPT-linear time bound.

Construction of A′P . We construct the SATWA A′P by describing its states and transitions.
First, for every extensional atom S(x) appearing in (the body) of a rule of P and partial
valuation ν of x, we introduce a state qνS(x). This will be the starting state of a run if it is
possible to navigate the tree encoding from some starting node and build this way a total
valuation ν′ that extends ν and such that S(ν′(x)) holds in the tree encoding, in a node
whose domain elements that are in the image of ν′ will decode to the same element as they
do in the node where the automaton can reach state qνS(x). In doing so, one has to be careful
not to leave the occurrence subtree of the values of the valuation (the “allowed subtree”).
Indeed, in a tree encoding, an element a ∈ DkI appearing in two bags that are separated by
another bag not containing a is used to encode two distinct elements of the original instance,
rather than the same element. We now formally define the transitions needed to implement
this.

Let (d, s) ∈ ΓkI
σ be a symbol; we have the following transitions:

If there is a j such that ν(xj) 6= ? and ν(xj) /∈ d, then ∆(qνS(x), (d, s)) := ⊥. This is to
prevent the automaton from leaving the allowed subtree.
Else if ν is not total, then ∆(qνS(x), (d, s)) := qνS(x)∨

∨
a∈d,xj∈U(ν)

q
ν∪{xj 7→a}
S(x) . That is, either

we continue navigating in the same state, or we guess a value for some undefined variable.
Else if ν is total but s 6= S(ν(x)), then ∆(qνS(x), (d, s)) := qνS(x): if the fact s of the node
is not a match, then we continue searching.
Else, the only remaining possibility is that ν is total and that s = S(ν(x)), in which case
we set ∆(qνS(x), (d, s)) := >, i.e., we have found a node containing the desired fact.

For every rule r of P , subset A of the literals in the body of r, and partial valuation ν
of the variables in A that is total for the variables in the head of r, we introduce a state
qν,Ar . This state is intended to prove the literals in A with the partial valuation ν. We will
describe the transitions for those states later.

For every intensional predicate R(x) appearing in a rule of P and total valuation ν of x,
we have a state qνR(x). This state is intended to prove R(x) with the total valuation ν. Let
(d, s) ∈ ΓkI

σ be a symbol; we have the following transitions:

If there is a j such that ν(xj) /∈ d, then ∆(qνR(x), (d, s)) := ⊥. This is again in order to
prevent the automaton from leaving the allowed subtree.
Else, ∆(qνR(x), (d, s)) is defined a disjunction of all the qν′,Ar for each rule r such that the
head of r is R(y), ν′ := Homy,x(ν) is not null and A is the set of all literals in the body
of r. Notice that because ν was total on x, ν′ is also total on y. This transition simply
means that we need to chose an appropriate rule to prove R(x). We point out here that

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 33

these transitions are the ones that make the construction quadratic instead of linear in
|P |, but this will be handled later.

It is now time to describe transitions for the states qν,Ar . Let (d, s) ∈ ΓkI
σ , then:

If there is a variable z in A such that z is defined by ν and ν(z) /∈ d, then ∆(qν,Ar , (d, s)) :=
⊥.
Else, if A contains at least two literals, then ∆(qν,Ar , (d, s)) is defined as a disjunction

of qν,Ar and of
[
a disjunction over all the non-empty sets A1,A2 that partition A of

[
a

disjunction over all the total valuations ν′ of U(ν)∩ vars(A1)∩ vars(A2) with values in d

of
[
qν∪ν

′,A1
r ∧ qν∪ν′,A2

r

]]]
. This transition means that we allow to split in two partitions

the literals that need to be proven, and for each partition we launch one run that will have
to prove it. In doing so, we have to take care that the two runs will build valuations that
are consistent. This is why we fix the value of the variables that they have in common
with a total valuation ν′.
Else, if A = {S(y)} where S is an extensional relation, then ∆(qν,Ar , (d, s)) := qνS(y).
Else, if A = {R′(y)} or {¬R′(y)} where R′ is an intensional relation, and if |y| = 1,
and if ν(y) is undefined (where we write y the one element of y), then ∆(qν,Ar , (d, s)) :=
qν,Ar ∨

∨
a∈d q

ν∪{y 7→a},A
r .

Else, if A = {R′(y)} where R′ is an intensional relation, then we will only define the
transitions in the case where ν is total on y, in which case we set ∆(qν,Ar , (d, s)) := qνR′(y).
It is sufficient to define the transitions in this case, because qν,{R

′(y)}
r can only be reached

if ν is total on y. Indeed, if |y| = 1, then ν must be total on y because we would have
applied the previous bullet point otherwise. If |y| > 1, the only way we could have reached
the state qν,{R

′(y)}
r is by a sequence of transitions involving qν0,A0

r , . . . , qνm,Amr , where A0
are all the literals in the body of r, Am is {R′(y)} and νm is ν. We can then see that,
during the partitioning process, R′(y) must have been separated from all the extensional
atoms that formed its guard, hence all its variables have been assigned a valuation.
Else, if A = {¬R′(y)} with R′ intensional, then ∆(qν,Ar , (d, s)) := ¬qνR′(y). Again, we can
show that it suffices to consider the case where ν is total on y, for the same reasons as in
the previous bullet point.

Finally, the initial state of A′P is q∅Goal.

We describe the stratification function ζ ′ of A′P . Let ζ be that of P . For any state q of
the form qνT (x) or qν,Ar with r having as head relation T , then ζ ′(q) is 0 if T is extensional
and ζ(T) (which is > 1) if T is intensional. Notice that then only states corresponding to
extensional relations are in the first stratum. It is then clear from the transitions that ζ ′ is a
valid stratification function for A′P .

As previously mentioned, the construction of A′P is not FPT-linear, but we will explain
at the end of the proof how to construct in FPT-linear time a SATWA AP equivalent to A′P .

A′P tests P on tree encodings of width 666 kI. To show this claim, let 〈T, λE〉 be a
(σ, kI)-tree encoding. Let I be the instance obtained by decoding 〈T, λE〉; we know that
I has treewidth 6 kI and that we can define from 〈T, λE〉 a tree decomposition 〈T, dom〉
of I whose underlying tree is also T . For each node n ∈ T , let decn : DkI → dom(n) be the
function that decodes the elements in node n of the encoding to the elements of I that are in

34 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

the corresponding bag of the tree decomposition, and let encn : dom(n)→ DkI be the inverse
function that encodes back the elements, so that we have decn ◦ encn = encn ◦ decn = Id.
We will denote elements of DkI by a and elements in the domain of I by c.

We recall some properties of tree decompositions and tree encodings:

I Property 44. Let n1, n2 be nodes of T and a ∈ DkI be an (encoded) element that appears
in the λE-image of n1 and n2. Then the element a appears in every node in the path from
n1 to n2 if and only if decn1(a) = decn2(a).

I Property 45. Let n1, n2 be nodes of T and c be an element of I that appears in dom(n1)∩
dom(n2). Then for every node n′ on the path from n1 to n2, c is also in dom(n′), and
moreover encn′(c) = encn1(c).

We start with the following lemma about extensional facts:

I Lemma 46. For every extensional relation S, node n ∈ T , variables y, and partial valuation
ν of y, there exists a run ρ of A′P starting at node n in state qνS(y) if and only if there exists
a fact S(c) in I such that we have decn(ν(yj)) = cj for every yj defined by ν. We call this a
match c of S(y) in I that is compatible with ν at node n.

Proof. We prove each direction in turn.

Forward direction. Suppose there exists a run ρ of A′P starting at node n in state
qνS(y). First, notice that by design of the transitions starting in a state of that form, states
appearing in the labeling of the run can only be of the form qν′S(y) for an extension ν′ of ν.
We will show by induction on the run that for every node π of the run labeled by (qν′S(y),m),
there exists c′ such that S(c′) ∈ I and c′ is compatible with ν′ at node m. This will conclude
the proof of the forward part of the lemma, by taking m = n.

The base case is when π is a leaf of ρ. The node π is then labeled by (qν′S(y),m) such that
∆(qν′S(y), λE(m)) = >. Let (d, s) = λE(m). By construction of the automaton we have that
ν′ is total and s = S(ν′(y)). We take c′ to be decm(ν′(y)), which satisfies the compatibility
condition by definition and is such that S(c′) = S(decm(ν′(y))) = decm(s) ∈ I.

When π is an internal node of ρ, we write (qν′S(y),m) its label. By definition of the
transitions of the automaton, we have ∆(qν′S(y), (d, s)) = qν

′

S(y)∨
∨

a∈d,yj∈U(ν′)
q
ν′∪{yj 7→a}
S(y) . Hence,

the node π has exactly one child π′, the first component of its label is some m′ ∈ Nbh(m),
and we have two cases depending on the first component of its label:

π′ may be labeled by (qν′S(y),m
′). Then by induction on the run there exists c′′ such

that S(c′′) ∈ I and c′′ is compatible with ν′ at node m′. We take c′ to be c′′, so that
we only need to check the compatibility condition, i.e., that for every yj defined by ν′,
decm(ν′(yj)) = cj = decm′(ν′(yj)). This is true by Property 44. Indeed, for every yj
defined by ν′, we must have ν′(yj) ∈ m′, otherwise π′ would have a label that cannot
occur in a run.
π′ is labeled by (qν

′∪{yj 7→a}
S(y) ,m′) for some a ∈ d and for some yj ∈ U(ν′). Then by

induction on the run there exists c′′ such that S(c′′) ∈ I and c′′ is compatible with
ν′ ∪ {yj 7→ a} at node m′. We take c′ to be c′′, which again satisfies the compatibility
condition thanks to Property 44.

Backward direction. Now, suppose that there exists c such that S(c) ∈ I and c
is compatible with ν at node n. The fact S(c) is encoded somewhere 〈T, λE〉, so there
exists a node m such that, letting (d, s) be λE(m), we have decm(s) = S(c). Let n =

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 35

m1,m2, . . . ,mp = m be the nodes on the path from n to m, and (di, si) be λE(mi) for
1 6 i 6 p. By compatibility, for every yj defined by ν we have decn(ν(yj)) = cj . But
decn(ν(yj)) ∈ dom(n) and cj ∈ dom(m) so by Property 45, for every 1 6 i 6 p we have
cj ∈ dom(mi) and encmi(cj) = encn(cj) = encn(decn(ν(yj))) = ν(yj), so that ν(yj) ∈ di.
We can then construct a run ρ starting at node n in state qνS(y) as follows. The root π1 is
labeled by (qνS(y), n), and for every 2 6 i 6 p, πi is the unique child of πi−1 and is labeled by
(qνS(y),mi). This part is valid because we just proved that for every i, there is no j such that
yj is defined by ν and ν(yj) /∈ dj . Now from πm, we continue the run by staying at node m
and building up the valuation, until we reach a total valuation νf such that νf(y) = encm(c).
Then we have s = S(νf(y)) and the transition is >, which completes the definition of the
run. J

The preceding lemma concerns the base case of extensional relations. We now prove a
similar equivalence lemma for intensional relations. This lemma allows us to conclude the
correctness proof, by applying it to the Goal() predicate and to the root of the tree-encoding.

I Lemma 47. For every relation R, node n ∈ T and total valuation ν of x, there exists a
run ρ of A′P starting at node n in state qνR(x) if and only if R(decn(ν(x))) ∈ P (I).

Proof. We will prove this equivalence by induction on the stratum ζ(R) of the relation R.
The base case (ζ(R) = 0, so R is an extensional relation) was shown in Lemma 46. For the
inductive case, where R is an intensional relation, we prove each direction separately.

Forward direction. First, suppose that there exists a run ρ of A′P starting at node n
in state qνR(x). We show by induction on the run (from bottom to top) that for every node π
of the run the following implications hold:

(i) If π is labeled with (qν′R′(y),m), then there exists c such that R′(c) ∈ P (I) and c is
compatible with ν′ at node m.

(ii) If π is labeled with ¬(qν′R′(y),m) with ν′ total, then R′(decm(ν′(y))) /∈ P (I).
(iii) If π is labeled with (qν′,Ar ,m), then there exists a mapping µ : vars(A)→ Dom(I) that

is compatible with ν′ at node m and such that:
For every positive literal S(z) in A, then S(µ(z)) ∈ P (I).
For every negative literal ¬S(z) in A, then S(µ(z)) /∈ P (I).

The base case is when π is a leaf. Notice that in this case, and by construction of A′P ,
the node π cannot be labeled by states corresponding to rules of P : indeed, there are no
transition for these states leading to a tautology, and all transitions to such a state are from
a state in the same stratum, so π could not be a leaf. Thus, we have three subcases:

π may be labeled by (qν′R′(y),m), where R′ is extensional. We must show (i), but this
follows from Lemma 46.
π may be labeled by (qν′R′(y),m), where R′ is intensional and verifies ζ(R′) < i, and
where ν′ is total. Again we need to show (i). By definition of the run ρ, this implies
that there exists a run of A′P starting at m in state qν′R′(y). But ν′ is total, so by
induction on the strata we have (using the forward direction of the equivalence lemma)
that R′(decm(ν′(y))) ∈ P (I). We take c to be decm(ν′(y)), which satisfies the required
conditions.
π may be labeled by ¬(qν′R′(y),m), where R′ is intensional and verifies ζ(R′) < i, and
where ν′ is total. We need to show (ii). By definition of the run ρ there exists no run of
A′P starting at m in state qν′R′(y). But ν′ is total, so by induction on the strata we have

36 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

(using the backward direction of the equivalence lemma) that R′(decm(ν′(y))) /∈ P (I),
which is what we needed to show.

For the induction case, where π is an internal node and letting (d, s) be λE(m) in what
follows, we have five subcases:

π may be labeled by (qν′R′(y),m) with R′ extensional. We must show (i), but this follows
from Lemma 46.
π may be labeled by (qν′R′(y),m) with R′ intensional and ν′ total. We need to prove (i).
In that case, given the definition of ∆(qν′R′(y), (d, s)) and by induction (on the run), there
exists a child π′ of π labeled by (qν′′,Ar ,m′), where m′ ∈ Nbh(m), where r is a rule with
head R′(z), where ν′′ = Homz,y(ν′) is a partial valuation which is not null, and where
A is the set of literals of r. Then, by induction on the run, there exists a mapping
µ : vars(A) → Dom(I) that verifies (iii). Thus by definition of the semantics of P we
have that R′(µ(z)) ∈ P (I), and we take c to be µ(z). What is left to check is that
the compatibility condition holds. We need to prove that decm(ν′(y)) = c, i.e., that
decm(ν′(y)) = µ(z). We know, by definition of µ, that decm′(ν′′(z)) = µ(z). So our goal
is to prove decm(ν′(y)) = decm′(ν′′(z)), i.e., by definition of ν′′ we want decm(ν′(y)) =
decm′(Homz,y(ν′)(z)). By definition of Homz,y(ν′), we know that ν′(y) = Homz,y(ν′)(z),
and this implies the desired equality by applying Property 44 to m and m′.
π may be labeled by (qν′,Ar ,m), where A = {R′′(y)} or {¬R′′(y)}, where |y| = 1, where
the head of r uses relation R′., and where y ∈ U(ν′) (writing y the one element of y). We
need to prove (iii). By construction we have ∆(qν′,Ar , (d, s)) = qν

′,A
r ∨

∨
a∈d q

ν′∪{y 7→a},A
r .

So by definition of a run there is m′ ∈ Nbh(m) and a child π′ of π such that π′ is labeled
by (qν′,Ar ,m′) or by (qν

′∪{y 7→a},A
r ,m′) for some a ∈ d. In both cases it is easily seen that

we can define an appropriate ν from the valuation ν′ that we obtain by induction on the
run (more details are given in the next bullet point).
π may be labeled by (qν′,Ar ,m), with A = {R′′(y)} and ν′ total on y, the head of r using
relation R′. We need to prove (iii). By construction we have ∆(qν′,Ar , (d, s)) = qν

′

R′′(y),
so that by definition of the run there is m′ ∈ Nbh(m) and a child π′ of π such that
π′ is labeled by (qν′R′′(y),m

′). Thus by induction on the run there exists c such that
R′′(c) ∈ P (I) and c compatible with ν′ at node m′. By Property 44, c is also compatible
with ν′ at node m. We define µ by µ(y) := c, which effectively defines it because in this
case vars(r) = y, and this choice satisfies the required properties.
π may be labeled by (qν′,Ar ,m), with A = {¬R′′(y)} and ν′ total on y and the head of r
has relation R′. We again need to prove (iii). By construction we have ∆(qν′,Ar , (d, s)) =
¬qν′R′′(y) and then by definition of the automaton there exists a child π′ of π labeled by
¬(qν′R′′(y),m) with ζ(R′′) < i and there exists no run starting at node m in state qν′R′′(y).
So by induction on the strata (using the backward direction of the equivalence lemma)
we have R′′(decm(ν′(y))) /∈ P (I). We define µ by µ(y) = decm(ν′(y)), which effectively
defines it because vars(r) = y, and the compatibility conditions are satisfied.
π may be labeled by (qν′,Ar ,m), with |A| > 2. We need to prove (iii). Given the definition
of ∆(qν′,Ar , (d, s)) and by definition of the run, one of the following holds:

There exists m′ ∈ Nbh(m) and a child π′ of π such that π′ is labeled by (qν′,Ar ,m′).
By induction there exists µ′ : vars(A)→ Dom(I) satisfying (iii) for node m′. We can
take µ to be µ′, which satisfies the required properties.
There exist m1,m2 ∈ Nbh(m)2 and π1, π2 children of π and non-empty sets A1,A2
that partition A and a total valuation ν′′ of vars(A1) ∩ vars(A2) with values in d such

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 37

that π1 is labeled by (qν′∪ν′′,A1
r ,m1) and π2 is labeled by (qν′∪ν′′,A2

r ,m2). By induction
there exists µ1 : vars(A1) → Dom(I) and similarly µ2 that satisfy (iii). Thanks to
the compatibility conditions for µ1 and µ2 and to Property 44 applied to m1 and m2
via m, we can define µ : vars(A)→ Dom(I) with µ = µ1 ∪ µ2. One can check that µ
satisfies the required properties.

Hence, the forward direction of our equivalence lemma is proven.

Backward direction. We now prove the backward direction of the induction case of
our main equivalence lemma (Lemma 47). From the induction hypothesis on strata, we
know that, for every relation R with ζ(R) 6 i− 1, for every node n ∈ T and total valuation
ν of x, there exists a run ρ of A′P starting at node n in state qνR(x) if and only if we have
R(decn(ν(x))) ∈ P (I). Let R be a relation with ζ(R) = i, n ∈ T be a node and ν be a
total valuation of x such that R(decn(ν(x))) ∈ P (I). We need to show that there exists
a run ρ of A′P starting at node n in state qνR(x). We will prove this by induction on the
smallest j ∈ N such that R(decn(ν(x))) ∈ ΞjP (Pi−1(I)), where ΞjP is the j-th application
of the immediate consequence operator for the program P (see [AHV95]) and Pi−1 is the
restriction of P with only the rules up to strata i− 1. The base case, when j = 0, is in fact
vacuous since R(decn(ν(x))) ∈ Ξ0

P (Pi−1(I)) = Pi−1(I) implies that ζ(R) 6 i − 1, whereas
we assumed ζ(R) = i. For the inductive case (j > 1), we have R(decn(ν(x))) ∈ ΞjP (Pi−1(I))
so by definition of the semantics of P , there is a rule r of the form R(z)← L1(y1) . . . Lt(yt)
of P and a mapping µ : y1 ∪ · · · ∪ yt → Dom(I) such that µ(z) = decn(ν(x)) and, for every
literal Ll in the body of r:

If Ll(yl) = Rl(yl) is a positive literal, then Rl(µ(yl)) ∈ Ξj−1
P (Pi−1(I))

If Ll(yl) = ¬Rl(yl) is a negative literal, then Rl(µ(yl)) /∈ Pi−1(I)
To achieve our goal of building a run starting at node n in state qνR(x), we will construct a
run starting at node n in state qν

′,{L1,...,Lt}
r , with ν′ = Homz,x(ν). The first step is to take

care of the literals of the rule and to prove that:

(i) If Ll(yl) = Rl(yl) is a positive literal, then there exists a node ml and a valuation
νl such that there exists a run ρl starting at node ml in state qνlRl(yl) and such that
decml(νl(yl)) = µ(yl).

(ii) If Ll(yl) = ¬Rl(yl) is a negative literal, then for every nodeml such that decml(νl(yl)) =
µ(yl), there exists no run starting at node ml in state qνlRl(yl).

We straightforwardly get (ii) by using the induction on the strata of our equivalence
lemma. We now prove (i). Suppose first that Rl is an extensional relation. We define ml to
be the node in which Rl(µ(yl)) appears (in the tree decomposition), and we define νl to be
encml(µ(yl)). We then have decml(νl(yl)) = decml(encml(µ(yl))) = µ(yl), so by Lemma 46
there exists a run ρl starting at node ml in state qνlRl(yl).

Suppose now that Rl is intensional. By (syntactical) definition of our fragment, Rl(yl)
is clique-guarded by some extensional relations in the body of r, say Rl1(yl1), . . . , Rlc(ylc).
Moreover, there exist nodes ml1 , . . . ,mlc such that for every 1 6 p 6 c, Rlp(µ(ylp)) is in mlp .
By a well-known property of tree decompositions, this implies that there exists a node in which
all the elements of µ(yl) appear (see Lemma 1 of [Gav74], Lemma 2 of [BK10]). We define
ml to be this node. We define νl : yl → DkI to be

⊔
16p6c

νlp , where the νlp are the valuations

obtained when proving (i) for extensional relations in the case above. This definition makes
sense. Indeed, let v be a variable in ylp ∩ ylp′ . Because we defined νlp by encml(µ), we have
that µ(v) appears in the bag (of the tree decomposition) of mlp , and similarly in that of mlp′ .

38 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Then by Property 45, we have that encmlp (µ(v)) = encml
p′

(µ(v)), and thus νlp(v) = νlp′ (v).
We now show that decml(νl(yl)) = µ(yl), which will imply by induction hypothesis (on the
number j of applications of the immediate consequence operator) that there exists a run ρl
starting at node ml in state qνlRl(yl). Pick v ∈ yl. It is in some ylp for some 1 6 p 6 c, so
by definition of νl and of νlp we only need to prove decml(encmlp (µ(v))) = µ(v). But we
have µ(v) is in the bag of mlp (by definition of νlp), and in that of ml (by definition of ml),
so that again by Property 45 we get encmlp (µ(v)) = encml(µ(v)), which gives us what we
wanted because we can decode. Hence, (i) and (ii) are proven.

The second step is, from the runs ρl that we just constructed, to construct a run starting
at node n in state qν

′,{L1,...,Lt}
r . We describe in a high-level manner how we build the run.

Starting at node n, we partition the literals to prove (i.e., the atoms of the body of the rule
that we are applying), in the following way:

We create one class in the partition for each positive literal Rl (which can be intentional
or extensional) such that ml is n, which we prove directly at the current node. Specifically,
we handle these literals one by one, by splitting the remaining literals in two using the
transition formula corresponding to the rule and by staying at node n and building the
valuations according to decn(µ).
We create one class in the partition for each negative literal ¬Rl(yl) such that all its
variables yl are defined by the valuation: we use (ii) to know that there will be no run
for there literals.
For the remaining literals, considering all neighbors of n in the tree encoding, we split the
literals into one class per neighbor n′, where each literal Ll is mapped to the neighbor
that allows us to reach its node ml. We ignore the empty classes. If there is only one
class, i.e., we must go in the same direction to prove all facts, we simply go to the right
neighbor n′, remaining in the same state. If there are multiple classes, we partition the
facts and prove each class on the correct neighbor.
One must then argue that, when we do so, we can indeed choose the image by ν′ of all
elements that were shared between literals in two different classes and were not yet defined
in ν′. The reason why this is possible is because we are working on a tree encoding: if
two facts of the body share a variable x, and the two facts will be proved in two different
directions, then the variable x must be mapped to the same element in the two direction,
which implies that it must occur in the node m where we split. Hence, we can indeed
choose the image of x at the moment when we split.

J

FPT-linear time construction. Finally, we justify that we can construct in FPT-linear time
the automaton AP which recognizes the same language as A′P . The size of ΓkI

σ only depends
on kI and on the extensional signature, which are fixed. As the number of states is linear in
|P |, the number of transitions is linear in |P |. Most of the transitions are of constant size,
and in fact one can check that the only problematic transitions are those for states of the
form qνR(x) with R intensional, specifically the second bullet point. Indeed, we have defined
a transition from qνR(x), for each valuation ν of a rule body, to the qν′,Ar for linearly many
rules, so in general there are quadratically many transitions.

However, it is easy to fix this problem: instead of having one state qνR(x) for every
occurrence of an intensional predicate R(x) in a rule body of P and total valuation ν of this
rule body, we can instead have a constant number of states qR(a) for a ∈ Darity(R)

kI
. In other

words, when we have decided to prove a single intensional atom in the body of a rule, instead
of remembering the entire valuation of the rule body (as we remember ν in qνR(x)), we can

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 39

simply forget all other variable values, and just remember the tuple which is the image of x
by ν, as in qR(a). Remember that the number of such states is only a function of kP and kI,
because bounding kP implies that we bound the arity of P , and thus the arity of intensional
predicates.

We now redefine the transitions for those states :

If there is a j such that aj /∈ d, then ∆(qR(a), (d, s)) = ⊥.
Else, ∆(qR(a), (d, s)) is a disjunction of all the qν′,Ar for each rule r such that the head
of r is R(y), ν′(y) = a and A is the set of all literals in the body of r.

The key point is that a given qν′,Ar will only appear in rules for states of the form qR(a)
where R is the predicate of the head of r, and there is a constant number of such states.

We also redefine the transitions that used these states:

Else, if A = {R′(y)} with R′ intensional, then ∆(qν,Ar , (d, s)) = qR′(ν(y)).
Else, if A = {¬R′(y)} with R′ intensional, then ∆(qν,Ar , (d, s)) = ¬qR′(ν(y)).

AP recognizes the same language as A′P . Indeed, consider a run of A′P , and replace every
state qνR(x) with R intensional by the state qR(ν(x)): we obtain a run of AP . Conversely,
being given a run of AP , observe that every state qR(a) comes from a state qν,{R(y)}

r with
ν(y) = a. We can then replace qR(a) by the state qνR(x) to obtain a run of A′P .

D Proofs for Section 7 (Provenance Cycluits)

D.1 Cycluits
The semantics of monotone cycluits is formally defined by Algorithm 1.

Algorithm 1: Semantics of monotone cycluits
Input: Monotone cycluit C = (G,W, g0, µ), Boolean valuation ν : Cinp → {0, 1}
Output: {g ∈ C | ν(g) = 1}

1 S0 := {g ∈ Cinp | ν(g) = 1}
2 i := 0
3 do
4 i++
5 Si := Si−1 ∪

{
g ∈ C | (µ(g) = ∨),∃g′ ∈ Si−1, g

′ → g ∈W
}
∪

6
{
g ∈ C | (µ(g) = ∧), {g′ | g′ → g ∈W} ⊆ Si−1

}
7 While Si 6= Si−1
8 return Si

I Proposition 26. For any monotone cycluit C and Boolean valuation ν of C, the set
S := {g ∈ C | ν′(g) = 1} is the minimal set of gates (under inclusion) such that:
(i) S contains the true input gates, i.e., it contains {g ∈ Cinp | ν(g) = 1};
(ii) for any g such that µ(g) = ∨, if some input gate of g is in S, then g is in S;
(iii) for any g such that µ(g) = ∧, if all input gates of g are in S, then g is in S.

Proof. The operator used in Algorithm 1 is clearly monotone, so by the Knaster–Tarski
theorem, the outcome of the computation is the intersection of all set of gates satisfying the
conditions in Proposition 26. J

40 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Algorithm 1 is a naive fixpoint algorithm running in quadratic time, but we show that the
same output can be computed in linear time with Algorithm 2.

I Proposition 27. Given any monotone cycluit C and Boolean valuation ν of C, we can
compute the evaluation ν′ of C in linear time.

Proof. We use Algorithm 2. We first prove the claim about the running time. The prepro-
cessing to compute M is linear-time in C (we enumerate at most once every wire), and the
rest of the algorithm is clearly in linear time as it is a variant of a DFS traversal of the graph,
with the added refinement that we only visit nodes that evaluate to 1 (i.e., OR-gates with
some input that evaluates to 1, and AND-gates where all inputs evaluate to 1).

We now prove correctness. We use the characterization of Proposition 26. We first check
that S satisfies the properties:

(i) S contains the true input gates by construction.
(ii) Whenever an OR-gate g′ has an input gate g in S, then, when we added g to S, we

have necessarily followed the wire g → g′ and added g′ to Q, and later added it to S.
(iii) Whenever an AND-gate g′ has all its input gates g′ in S, there are two cases. The first

case in when g has no input gates at all, in which case S contains it by construction.
The second case is where such input gates exist: in this case, observe that M [g′] was
initially equal to the degree of g′, and that we decrement it for each input gate g of g′
that we add to S. Hence, considering the last input gate g of g′ that we add to S, it
must be the case that M [g′] reaches zero when we decrement it, and then we add g
to Q, and later to S.

Second, we check that S is minimal. Assume by contradiction that it is not the case,
and consider the first gate g which is added to S while not being in the minimal Boolean
valuation S′. It cannot be the case that g was added when initializing S, as we initialize S
to contain true input gates and AND-gates with no inputs, which must be true also in S′
by the characterization of Proposition 26. Hence, we added g to S in a later step of the
algorithm. However, we notice that we must added g to S because of the value of its input
gates. By minimality of g, these input gates have the same value in S and in S′. This yields
a contradiction, because the gates that we add to S are added following the characterization
of Proposition 26. This concludes the proof. J

D.2 Stratified cycluits
We show the claim that a Boolean cycluit is stratified iff it contains no cycle of gates involving
a ¬-gate, and that a stratification function can be computed in linear time.

I Proposition 48. Any Boolean cycluit C is stratified iff it it contains no cycle of gates
involving a ¬-gate. Moreover, a stratification function can be computed in linear time from C.

Proof. To see why a stratified Boolean cycluit C cannot contain a cycle of gates involving a
¬-gate, assume by contradiction that it has such a cycle g1 → g2 → · · · → gn → g1. As C
is stratified, there exists a stratification function ζ. From the properties of a stratification
function, we know that ζ(g1) 6 ζ(g2) 6 · · · 6 ζ(g1), so that we must have ζ(g1) = · · · = ζ(gn).
However, letting gi be such that µ(gi) = ¬, we know that ζ(gi−1) < ζ(gi) (or, if i = 1,
ζ(gn) < ζ(g1)), so we have a contradiction.

We now prove the converse direction of the claim, i.e., that any Boolean cycluit which
does not contain a cycle of gates involving a ¬-gate must have a stratification function, and

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 41

Algorithm 2: Linear-time evaluation of monotone cycluits
Input: Monotone cycluit C = (G,W, g0, µ), Boolean valuation ν : Cinp → {0, 1}
Output: {g ∈ C | ν(g) = 1}

1 /* Precompute the in-degree of ∧ gates */
2 for g ∈ C s.t. µ(g) = ∧ do
3 M [g] := |{g′ ∈ C | g′ → g}|
4 Q := {g ∈ Cinp | ν(g) = 1} ∪ {g ∈ C | (µ(C) = ∧) ∧M [g] = 0} /* as a stack */
5 S := ∅ /* as a bit array */
6 while Q 6= ∅ do
7 pop g from Q

8 if g /∈ S then
9 add g to S

10 for g′ ∈ C | g → g′ do
11 if µ(g′) = ∨ then
12 push g′ into Q
13 if µ(g′) = ∧ then
14 M [g′] := M [g′]− 1
15 if M [g′] = 0 then
16 push g′ into Q

17 return S

show how to compute such a function in linear time. Compute in linear time the strongly
connected components (SCCs) of C, and a topological sort of the SCCs. As the input gates
of C do not themselves have inputs, each of them must have their own SCC, and each
such SCC must be a leaf, so we can modify the topological sort by merging these SCCs
corresponding to input gates, and putting them first in the topological sort. We define the
function ζ to map each gate of C to the index number of its SCC in the topological sort,
which ensures in particular that the input gates of C are exactly the gates assigned to 0
by ζ. This can be performed in linear time. Let us show that the result ζ is a stratification
function:

For any edge g → g′, we have ζ(g) 6 ζ(g′). Indeed, either g and g′ are in the same
strongly connected component and we have ζ(g) = ζ(g′), or they are not and in this case
the edge g → g′ witnesses that the SCC of g precedes that of g′, whence, by definition of
a topological sort, it follows that ζ(g) < ζ(g′).
For any edge g → g′ where µ(g′) = ¬, we have ζ(g) < ζ(g′). Indeed, by adapting the
reasoning of the previous bullet point, it suffices to show that g and g′ cannot be in the
same SCC. Indeed, assuming by contradiction that they are, by definition of a SCC, there
must be a path from g′ to g, and combining this with the edge g → g′ yields a cycle
involving a ¬-gate, contradicting our assumption on C. J

I Proposition 30. We can compute ν(C) in linear time in the stratified cycluit C and in ν.

Proof. Compute in linear time a stratification function ζ of C using Proposition 48, and
compute the evaluation following Definition 29. This can be performed in linear time.

To see why this evaluation is independent from the choice of stratification, observe that
any stratification function must clearly assign the same value to all gates in an SCC. Hence,

42 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

the choosing a stratification function amounts to choosing the stratum that we assign to
each SCC. Further, when an SCC S precedes another SCC S′, the stratum of S must be
no higher than the stratum of S′. So in fact the only freedom that we have is to choose
a topological sort of the SCCs, and optionally to assign the same stratum to consecutive
SCCs in the topological sort: this amounts to “merging” some SCCs, and is only possible
when there are no ¬-gates between them. Now, in the evaluation, it is clear that the order
in which we evaluate the SCCs makes no difference, nor does it matter if some SCCs are
evaluated simultaneously. Hence, the evaluation of a stratified cycluit is well-defined. J

D.3 Building provenance cycluits
I Theorem 32. For any fixed alphabet Γ, given a Γ-SATWA A and a Γ-tree T , we can build
a stratified cycluit capturing the provenance of A on T in time O(|A| · |T |). Moreover, this
stratified cycluit has treewidth O(|A|).

To prove Theorem 32, we construct a cycluit CAT as follows, generalizing the construction
of [ABS15b]. For each node w of T , we create an input node gi

w, a ¬-gate g¬i
w defined

as NOT(gi
w), and an OR-gate gqw for each state q ∈ Q. Now for each gqw, for b ∈ {0, 1}, we

consider the propositional formula ∆(q, (λ(w), b)), and we express it as a circuit that captures
this formula: we let gq,bw be the output gate of that circuit, we replace each variable q′

occurring positively by an OR-gate
∨
w′∈Nbh(w) g

q′

w′ , and we replace each variable q′ occurring
negatively by the gate gq′w . We then define gqw as OR(AND(gi

w, g
q,0
w),AND(g¬i

w , g
q,1
w)). Finally,

we let the output gate of C be gqI
r , where r is the root of T .

It is clear that this process runs in linear time in |A| · |T |. Moreover, for every node w
of T , we create O(|A|) gates, and those gates can only be connected between them or between
gates created for the neighbors of w. Hence, the treewidth of CAT is O(|A|): we can compute a
tree decomposition of CAT where the underlying tree is T and where each bag b corresponding
to a node w of T contains the gates defined for the node w and for the neighbors of w. The
proof of Theorem 32 then follows from the following claim:

I Lemma 49. The cycluit CAT is a stratified cycluit capturing the provenance of A on 〈T, λ〉.

Proof. We first show that C := CAT is a stratified cycluit. Let ζ be the stratification function
of the Γ-SATWA A and let {0, . . . ,m} be its range. We use ζ to define ζ ′ as the following
function from the gates of C to {0, . . . ,m+ 1}:

For any input gate gi
w, we set ζ ′(gi

w) := 0 and ζ ′(g¬i
w) := 1.

For an OR gate g :=
∨
w′∈Nbh(w) g

q′

w′ , we set ζ ′(g) := ζ(q′).
For any state gqw, we set ζ ′(gnw) := ζ(q) + 1, and do the same for the intermediate
AND-gates used in its definition, as well as the gates in the two circuits that capture the
transitions ∆(q, (λ(w), b)) for b ∈ {0, 1}, except for the input gates of that circuit (i.e.,
gates of the form

∨
w′∈Nbh(w) g

q′

w′ , which are covered by the previous point, or gq′w , which
are covered by another application of that point).

Let us show that ζ ′ is indeed a stratification function for C. We first observe that it is
the case that the gates in stratum zero are precisely the input gates. We then check the
condition for the various possible wires:

gi
w → g¬i

w : by construction, we have ζ(gi
w) < ζ ′(g¬i

w).
g → g′ where g′ is a gate of the form gqw and g is an intermediate AND-gate in the
definition of a gqw: by construction we have ζ ′(g) = ζ ′(g′), so in particular ζ ′(g) 6 ζ ′(g′).

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 43

g → g′ where g′ is an intermediate AND-gate in the definition of a gate of the form gqw,
and g is gi

w or g¬i
w : by construction we have ζ ′(g) ∈ {0, 1} and ζ ′(g′) > 1, so ζ ′(g) 6 ζ ′(g′).

g → g′ where g is a gate in a circuit capturing the propositional formula of some transition
of ∆(q, ·) without being an input gate or a NOT-gate of this circuit, and g′ is also such a
gate, or is an intermediate AND-gate in the definition of gqw: then g′ cannot be a NOT-
gate (remembering that the propositional formulae of transitions only have negations on
literals), and by construction we have ζ ′(g) = ζ ′(g′).
g → g′ where g is of the form

∨
w′∈Nbh(w) g

q
w′ , and g′ is a gate in a circuit describing

∆(q′, ·) or an intermediate gate in the definition of gq′w . Then we have ζ ′(g) = ζ(q) and
ζ ′(g′) = ζ(q′), and as q occurs as a positive literal in a transition of q′, by definition
of ζ being a transition function, we have ζ(q) 6 ζ(q′). Now we have ζ ′(g) = ζ(q) and
ζ ′(g′) = ζ ′(q′) by definition of ζ ′, so we deduce that ζ ′(g) 6 ζ ′(g′).
g → g′ where g′ is of the form

∨
w′∈Nbh(w) g

q′

w′ , and g is one of the gq
′

w′ . Then by definition
of ζ ′ we have ζ ′(g) = ζ(q′) and ζ ′(g′) = ζ(q′), so in particular ζ ′(g) 6 ζ ′(g′).
g → g′ where g is a NOT-gate in a circuit capturing a propositional formula ∆(q′, (λ(w), b)),
and g is then necessarily a gate of the form gqw: then clearly q′ was negated in ϕ so we
had ζ(q) < ζ(q′), and as by construction we have ζ ′(g) = ζ(q) and ζ ′(g′) = ζ(q′), we
deduce that ζ ′(g) < ζ ′(g′).

We now show that C indeed captures the provenance of A on 〈T, λ〉. Let ν : T → {0, 1}
be a Boolean valuation of the inputs of C, that we extend to an evaluation ν′ : C → {0, 1}
of C. We claim the following equivalence: for all q and w, there exists a run ρ of A on
ν(T) starting at w in state q if and only if ν(gqw) = 1.

We prove this claim by induction on the stratum ζ(q) of q. Up to adding an empty first
stratum, we can make sure that the base case is vacuous. For the induction step, we prove
each implication separately.

Forward direction. First, suppose that there exists a run ρ starting at w in state q,
and let us show that ν′(gqw) = 1. We show by induction on the run (from bottom to top)
that for each node y of the run labeled by a positive state (q′, w′) we have ν′(gq

′

w′) = 1, and
for every node y of the run labeled by a negative state ¬(q′, w′) we have ν′(gq

′

w′) = 0. The
base case concerns the leaves, where there are three possible subcases:

We may have λr(y) = (q′, w′) with ζ(q′) = i, so that ∆(q′, (λ(w′), ν(w′))) is tautological.
In this case, gq

′

w′ is defined as OR(AND(gi
w′ , g

q′,1
w′),AND(g¬i

w′ , g
q′,0
w′)). Hence, we know that

ν(gq
′,ν(w)
w′) = 1 because the circuit is also tautological, and depending on whether ν(w)

is 0 or 1 we know that ν(g¬i
w′) = 1 or ν(gi

w′) = 1, so this proves the claim.
We may have λr(y) = (q′, w′) with ζ(q′) = j for j < i. By definition of the run ρ, this
implies that there exists a run starting at w′ in state q′. But then, by the induction on
the strata (using the forward direction of the equivalence), we must have ν(gq

′

w′) = 1.
We may have λr(y) = ¬(q′, w′) with ζ(q′) = j for j < i. Then by definition there exists
no run starting at w′ in state q′. Hence again by induction on the strata (using the
backward direction of the equivalence), we have that ν(gq

′

w′) = 0.

For the induction case on the run, where y is an internal node, by definition of a run
there is a subset S = {qP1 , · · · , qPn} of positive literals and a subset N = {¬qN1 , · · · ,¬qNm}
of negative literals that satisfy ϕν(w′) := ∆(q′, (λ(w′), ν(w′))) such that:

For all qPk ∈ P , there exists a child yk of y with λr(yk) = (qPk , w′k) where w′k ∈ Nbh(w′);
For all ¬qNk ∈ N there is a child yw′k of y with λr(yw′) = ¬(qNk , w′).

44 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Then, by induction on the run, we know that for all qPk we have ν(gqPkw′k
) = 1 and for

all ¬qNk we have ν(gqNkw′) = 0. By construction of C, we have ν(gq
′

w′) = 1. There are two
cases: either ν(w′) = 1 or ν(w′) = 0. In the first case, remember that the first input of the
OR-gate gq

′

w′ is an AND-gate of gi
w′ and the output gate gq

′,1
w′ of a circuit coding ϕ1 on inputs

including the gqPkw′
k

and gqNkw′′ . We have ν(gi
w′) = 1 because ν(w′) = 1, and the second gate

evaluates to 1 by construction of the circuit, as witnessed by the Boolean valuation of the
g
qPk
w′
k

and gqNkw′′ . In the second case we follow the same reasoning but with the second input

to gq
′

w′ instead, which is an AND-gate on g¬i
w′ and ϕ0.

By induction on the run, the claim is proven, and applying it to the root of the run
concludes the proof of the first direction of the equivalence (for the induction step of the
induction on strata).

Backward direction. We now prove the converse implication for the induction step
of the induction on strata, i.e., letting i be the current stratum, for every node w and
state q with ζ(q) = i, if ν(gqw) = 1 then there exists a run ρ of A starting at w. From the
definition of the stratification function ζ ′ of the cycluit from ζ, we have ζ ′(gqw) = ζ(q), so as
ν(gqw) = 1 we know that νi(gqw) = 1, where νi is the i-th stratum evaluation νi of C (remember
Definition 29). By induction hypothesis on the strata, we know from the equivalence that,
for any j < i, for any gate gq

′′

w′′ of C with ζ(gq
′′

w′′) = j, we have νj(gq
′′

w′′) = 1 iff there exists a
run ρ of A on ν(T) starting at w′′ in state q′′.

We show the claim by an induction on the iteration in the application of Algorithm 1
for νi where the gate gqw was set to 1. The base case concerns gates that were initially true
before applying the algorithm: by

Recall that the definition of νi according to Definition 29 proceeds in three steps. Initially,
we fix the value in νi of gates of lower strata, so we can then conclude by induction hypothesis
on the strata. We then set the value of all NOT-gates in νi, but these cannot be of the form
gq
′

w′ so there is nothing to show. Last, we evaluate all other gates with Algorithm 1. We
then show our claim by an induction on the iteration in the application of Algorithm 1 for νi
where the gate gqw was set to 1. The base case, where gqw was initially true, was covered in
the beginning of this paragraph.

For the induction step on the application of Algorithm 1, when a gate νi(gq
′

w′) is set to
true, as νi(gq

′

w′) is an OR-gate by construction, from the workings of Algorithm 1, there are
two possibilities: either its input AND-gate that includes gi

w′ was true, or its input AND-gate
that includes g¬i

w′ was true. We prove the first case, the second being analogous. From the
fact that gi

w′ is true, we know that ν(w′) = 1. Consider the other input gate to that AND
gate, which is the output gate of a circuit C ′ reflecting ϕ := ∆(q′, (λ(w′), ν(w′))), with the
input gates adequately substituted. We consider the value by νi of the gates that are used
as input gates of C ′ in the construction of C (i.e., OR-gates, in the case of variables that
occur positively, or directly gq

′′

w′ -gates, in the case of variables that occur negatively). By
construction of C ′, the corresponding Boolean valuation ν′ is a witness to the satisfaction
of ϕ. By induction hypothesis on the strata (for the negated inputs to C ′; and for the
non-negated inputs to C ′ which are in a lower stratum) and on the step at which the gate
was set to true by Algorithm 1 (for the inputs in the same stratum, which must be positive),
the valuation of these inputs reflects the existence of the corresponding runs. Hence, we can
assemble these (i.e., a leaf node in the first two cases, a run in the third case) to obtain a run
starting at w′ for state q′ using the Boolean valuation ν′ of the variables of ϕ; this valuation
satisfies ϕ as we have argued.

This concludes the two inductions of the proof of the equivalence for the induction step

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 45

of the induction on strata, which concludes the proof. J

Putting it together. We now conclude the proof of Theorem 24 by explaining how this
provenance construction for Γ-SATWAs can be used to compute the provenance of an
ICG-Datalog query on a treelike instance. This is again similar to [ABS15b].

Recall the definition of tree encodings from Appendix C.1, and the definition of the
alphabet Γkσ. To represent the dependency of automaton runs on the presence of individual
facts, we will be working with Γkσ-trees, where the Boolean annotation on a node n indicates
whether the fact coded by n (if any) is present or absent. The semantics is that we map back
the result to Γkσ as follows:

I Definition 50. We define the mapping ε from Γkσ to Γkσ by:

ε((d, s), 1) is just (d, s), indicating that the fact of s (if any) is kept;
ε((d, s), 0) is (d, ∅), indicating that the fact of s (if any) is removed.

We abuse notation and also see ε as a mapping from Γkσ-trees to Γkσ-trees by applying it
to each node of the tree.

As our construction of provenance applies to automata on Γkσ, we show the following easy
lifting lemma (generalizing Lemma 3.3.4 of [Ama16]):

I Lemma 51. For any Γkσ-SATWA A, we can compute in linear time a Γkσ-SATWA A′ such
that, for any Γkσ-tree E, we have that A′ accepts E iff A accepts ε(E).

Proof. The proof is exactly analogous to that of Lemma 3.3.4 of [Ama16]. J

We are now ready to conclude the proof of our main provenance result (Theorem 24):

Proof of Theorem 24. Given the program P and instance I, use Theorem 22 to compute in
FPT-linear time in |P | a Γkσ-SATWA A that tests it on tree encodings of width 6 kI, for kI
the treewidth bound. Compute also in FPT-linear time a tree encoding E of the instance I,
i.e., a Γkσ-tree E, using Lemma 41. Lift the Γkσ-SATWA A in linear time using Lemma 51 to a
Γkσ-SATWA A′, and use Theorem 32 on A′ and E to compute in FPT-linear time a stratified
cycluit C ′ that captures the provenance of A′ on E: the inputs of C ′ correspond to the nodes
of E. The treewidth of C ′ is in O(A′), so it is FPT-linear in |P |. Let C be obtained from C ′

in linear time by changing the inputs of C ′ as follows: those which correspond to nodes n
of E containing a fact (i.e., with label (d, s) for |s| = 1) are renamed to be an input gate that
stands for the fact of I coded in this node; the nodes n of E containing no fact are replaced
by a 0-gate, i.e., an OR-gate with no inputs. Clearly, C is still a stratified Boolean cycluit
that satisfies the required treewidth bound, and Cinp is exactly the set of facts of I.

All that remains to show is that C captures the provenance of P on I in the sense of
Definition 23. To see why, consider an arbitrary Boolean valuation ν mapping the facts of I to
{0, 1}, and call ν(I) := {F ∈ I | ν(F) = 1}. We must show that ν(I) satisfies P iff ν(C) = 1.
By construction of C, it is obvious that ν(C) = 1 iff ν′(C ′) = 1, where ν′ is the Boolean
valuation of C ′inp defined by ν′(n) = ν(F) when n codes some fact F in E, and ν′(n) = 0
otherwise. By definition of the provenance of A′ on E, we have ν′(C ′) = 1 iff A′ accepts ν′(E),
that is, by definition of lifting, iff A accepts ε(ν′(E)). Now all that remains to observe is that
ε(ν′(E)) is precisely a tree encoding of the instance ν(I): this is by definition of ν′ from ν,
and by definition of our tree encoding scheme (see “subinstance-compatibility” in [Ama16]).
Hence, by definition of A testing P , the tree ε(ν′(E)) is accepted by A iff ν(I) satisfies P .
This finishes the chain of equivalences, and concludes the proof of Theorem 24. J

46 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

E Proofs for Section 8 (From Cycluits to Circuits and Probability
Bounds)

E.1 From cycluits to circuits
I Theorem 34. There is an α ∈ N s.t., for any stratified cycluit C of treewidth k, we can
compute in time O(2kα |C|) a circuit C ′ which is equivalent to C and has treewidth O(2kα).

The proof of Theorem 34 is quite technical and proceeds in several successive stages, corre-
sponding to the following sections. In all sections but the last one, we focus on monotone
cycluits. Throughout the whole proof, we assume without loss of generality that there are no
isolated gates, i.e., gates that have no input gate and being the input to no gate (because
such gates are not necessarily reflected in tree decompositions). We call a 0-gate an OR-gate
with no inputs, and a 1-gate an AND-gate with no inputs.

E.1.1 Rewriting to arity-two cycluits
For technical convenience, it will be easier to work with arity-two cycluits:

I Definition 52. The fan-in of a gate g in a monotone cycluit C is the number of gates g′
such that g′ → g is a wire of C (note that, as we are working with cycluits, this may include
g′ = g, i.e., g may be its own input). For c ∈ N, a monotone cycluit C is arity-c if each AND-
and OR-gate has fan-in at most c, and if no gate is its own input (i.e., there is no wire of the
form g → g).

It is obvious that monotone cycluits, just like circuits, can be rewritten in linear time
to an arity-two monotone cycluit, by taking advantage of the associativity of the OR and
AND Boolean operations: we just rewrite each AND- and OR-gate with fan-in > 2 to a tree
of gates of fan-in 6 2 that computes the required Boolean operation on the original set of
inputs.

What is more technical to show, however, is that this rewriting operation can be performed
on a treelike cycluit, while ensuring that the treewidth of the result is still only a function of
the treewidth of the original cycluit. Hence, the result that we wish to prove is the following:

I Lemma 53. For any monotone cycluit C and tree decomposition T of width k of C, we
can compute in time O(|C|+ |T |) a monotone arity-two cycluit C ′ which is equivalent to C,
and a tree decomposition T ′ of width k2 of C ′.

Proof. First, to ensure the condition that no gate of the circuit is its own input, observe
that any wire of the form g → g can be dropped if g is an OR-gate with other inputs; if g is
an OR-gate whose only input is itself, then it will never evaluate to 1 so we can replace it by
a 0-gate, and if g is an AND-gate with a wire g → g then we can replace g by a 0-gate as it
will never evaluate to 1. This can be done in linear time and does not increase the width of
the tree decomposition.

We assume without loss of generality that the tree decomposition T has arity at most
two (i.e., each bag has at most two children), as we can otherwise ensure it by rewriting T in
linear time (by replacing each bag with more than two children with a hierarchy of bags with
the same contents and with two children). We assign each wire g → g′ of the circuit to some
bag b of T such that g, g′ ∈ dom(b): this is doable in linear time by Lemma 3.1 of [FFG02].
We now perform a bottom-up traversal of the tree decomposition T . In this process, we will
annotate bags b of the tree decomposition with sets of pairs of gates g 7→ g′, indicating that
g is to be renamed to g′ in the subtree of T rooted at b. During the bottom-up traversal, we

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 47

memorize, for each gate g in the current bag b, its fan-in for the wires that we have seen so
far: it is initially 0, and is computed at bag b as the sum of the fan-in of g at all the child
bags (if any) plus its fan-in for the wires assigned to bag b. Whenever the fan-in of a gate g
at a bag b exceeds two, we do the following: we create one gate g1 and label the first child
bag of b (if it exists) with g 7→ g1, create one gate g2 and label the second child bag of b (if it
exists) with g 7→ g2, and create a gate g′ for the wires of the current bag. We let the input
gates of g′ be the input gates present at the current bag, and rewrite this to arity-two, which
introduces 6 k − 1 new gates in total. Now, we set the input gates of g to be g′′ and g1,
where g′′ is a fresh gate for the same operation as g, and set the input gates of g′′ to be g2
and g′. We have introduced 6 k new gates in the current bag per gate initially in b, so the
new size of b is at most k2.

Once this pass is done, we perform a top-down pass to perform the renamings indicated
on the bags, which is doable in linear time because the number of renamings to perform at
any stage is constant (it is bounded by the width of the bags).

It is clear that this process produces an arity-two cycluit equivalent to C, and the rewritten
tree decomposition T ′ has width k2. J

E.1.2 Regrouped tree decompositions
Now that we can rewrite monotone cycluits to arity-two monotone cycluits in linear time
with only a quadratic blowup in the treewidth, we show that we can impose an additional
condition on tree decompositions of arity-two circuits, which we call being regrouped:

I Definition 54. A tree decomposition T of a cycluit C = (G,W, g0, µ) is regrouped if it
satisfies the following property: for any gate g ∈ G, letting ins(g) := {g′ ∈ G | g′ → g ∈W},
there is a bag bg of T such that {g} ∪ ins(g) ⊆ dom(b).

In other words, a tree decomposition is regrouped if each gate has a witness bag which
contains that gate and all of its inputs. This can be contrasted with the usual notion of tree
decomposition, where each of the input wires can be witnessed by a different bag. We show
that, for arity-two cycluits, we can assume that tree decompositions are regrouped in this
sense:

I Lemma 55. For any monotone arity-two cycluit C and tree decomposition T of C of
width k, we can compute in time O(|C| + |T |) a regrouped tree decomposition T ′ of C of
width 6 3k.

Proof. We define T ′ as having same skeleton as T and define each b′ ∈ T ′, letting b be the
corresponding bag in T , to have dom(b′) = dom(b) ∪

⋃
{ins(g) | g ∈ b}. In other words, we

add to each bag in T ′ the input gates of the gates that occur there. It is clear that T ′ then
satisfies the regrouped condition: take as witnessing bag bg of a gate g any bag b′ of T ′
corresponding to a bag b ∈ T such that g ∈ dom(b). It is clear that T ′ has width at most 3k,
as each bag b′ of T ′ contains at most the contents of the corresponding bag b of T plus two
additional input gates for each gate occurring in b, thanks to the fact that C is arity-two.

As the regrouped condition subsumes the condition of tree decompositions that requires
an occurrence of every wire, the only thing left to show is that the occurrences of any gate g
in T ′ still forms a connected subtree. As T is a tree decomposition of C, let Tg be the
connected subtree containing the occurrences of g in T , and, for every g′ such that g ∈ ins(g′),
let Tg′ be the connected subtree of the occurrences of g′ in T . For any g′ such that g ∈ ins(g′),
as T is a tree decomposition, it must witness the wire g → g′, so the subtrees Tg and Tg′
intersect in T . Now, the subtree T ′g of the occurrences of g in T ′ is by construction the

48 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

analogue in T ′ of the union of the connected subtrees Tg and Tg′ for g′ such that g ∈ ins(g′).
We conclude because the union of connected subtrees that intersect is also a connected
subtree. J

E.1.3 Normal-form tree decompositions
Having presented the notion of regrouped tree decompositions, we now introduce the notion
of normal-form tree decompositions, which satisfy the regrouped conditions and satisfy
other additional conditions. Unlike what we have done so far, for technical reasons that will
become apparent in the next section, we will define these tree decompositions as undirected
connected trees rather than rooted trees: this makes no difference, as we used to consider
tree decompositions as rooted trees simply for convenience. We call T an unrooted tree
decomposition if it is a tree decomposition whose underlying tree is unrooted, and, for b ∈ T ,
the rooting of T at bag b is a tree decomposition, in the usual rooted sense, obtained by
picking b as the root in this tree; this always yields a valid tree decomposition according to
our earlier definitions.

I Definition 56. An unrooted tree decomposition T of a monotone cycluit C is in normal
form if it satisfies the following additional conditions:

1. Each bag b of T has (undirected) degree either 1 or 3; we call b a leaf bag if it has degree 1,
and an internal bag if it has degree 3.

2. There is an injective mapping ϕ from each gate g of C to a leaf bag bg with dom(bg) =
{g} ∪ ins(g), where ins(g) are the input gates of g. The ϕ-occurrences of g are the leaf
bags {ϕ(g)} t {ϕ(g′) | g′ ∈ ins(g)}.

3. The tree decomposition is scrubbed, meaning that:
if a gate g occurs in a leaf bag b, then b is a ϕ-occurrence of g;
if a gate g occurs in a non-leaf bag b then there are two ϕ-occurrences b1 6= b2 of g
and two neighbor bags b′1 6= b′2 of b (note that we may have bi = b′i), such that, for
i ∈ {1, 2}, the unique simple path from b to bi goes through b′i.

Observe that the first condition ensures that, for any leaf bag b of T , the rooting of T
at bag b is a tree decomposition where the root bag b has exactly one child, and all other
bags have exactly two children except the leaf bags which have zero. The second condition
implies that T , or indeed any rooting of T , is regrouped, with the witnesses for regrouping
being chosen at the leaf bags in an injective fashion. The third condition intuitively ensures
that each gate g occurs in bags of T precisely in its ϕ-occurrences and on the paths between
the ϕ-occurrences of g. In particular, the first point of the third condition implies that any
leaf bag with non-empty domain must be in the image of ϕ. We also call a rooted tree
decomposition scrubbed when it satisfies the analogous condition (with undirected paths).

We now show:

I Lemma 57. For any monotone arity-two cycluit C and regrouped tree decomposition T
of C of width k, we can compute in time O(|C|+ |T |) a normal-form tree decomposition T ′
of C of width k.

Proof. We modify T in linear time in the following way to satisfy the second condition. For
each gate g, letting bg be the witness bag for g guaranteed by replace bg by a new bag b′g
with dom(b′g) = dom(bg), whose first child is bg and whose second child is a bag b′′g whose
domain is ({g} ∪ ins(g)) (note that this is a subset of dom(bg)). We can now set ϕ(g) to be
b′′g , with ϕ being injective.

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 49

We then rewrite T in linear time in the usual way to ensure that each bag has at most
two children.

We next make T scrubbed in three linear time passes. First, we remove all gates g in leaf
bags b when b is not a ϕ-occurrence of g; this removal does not affect the fact that T is a tree
decomposition, because each wire is still covered at the ϕ-image of its target gate, and the
occurrences of each gate still form a connected subtree as we are only removing occurrences
at leaf bags. Second, we do a bottom-up pass to compute, for each occurrence of a gate g at
a bag b, a value ng,b indicating how many different children of b have a ϕ-occurrence of g
as a descendent (this number is between 0 and 2): if this number is 0 at an internal bag,
then we remove g. The removal of g in this case does not violate the fact that T is a tree
decomposition: indeed, it does not affect the fact that the wires are covered, because this is
still the case at the ϕ-images, which are not internal bags; and gate occurrences still form
connected subtrees, because whenever we remove a gate g from a bag b then there is only
one neighbor of b at most (namely, its parent) where g also occurs. Third, we do a top-down
pass where, whenever we have ng,b = 1 for a gate g at a bag b when we encounter b top-down
(i.e., ng,b = 1 and ng,b′ = 1 for all ancestors of b′ where g occurs), then we remove g from b.
The result is still a tree decomposition, because again wires are still covered at the ϕ-images,
and whenever we remove a gate g from a bag b then there is only one neighbor of b at most
(namely, one of its children) where g also occurs.

We now let T ′ be the result of forgetting the orientation of T . It is clear that the first
point of the third condition is satisfied, and the second point is satisfied for any occurrence of
a gate g at an internal bag b: indeed, b either had two different children having a ϕ-occurrence
of g as a descendant, or b had one such descendant and had an ancestor b′ whose parent b′′
had a ϕ-occurrence as a descendent of its other child. Hence, T ′ is scrubbed.

We last ensure that T ′ satisfies the first condition. Note that, as each bag of T had at
most two children, the undirected degree of bags of T is at most 3, so we can simply enforce
the condition by adding bags with empty domain. This concludes the proof. J

E.1.4 Rewriting monotone cycluits
Armed with normal-form tree decompositions and the lemmas required to obtain them, we
are now ready to show our rewriting result for monotone cycluits:

I Theorem 58. There is an α ∈ N∗ s.t., for any monotone cycluit C of treewidth k, we can
compute in time O(2kα · |C|) a circuit C ′ which is equivalent to C and has treewidth 6 2kα .

To prove the theorem, we will rely on a notion of partial assignment of a monotone
cycluit, which we can use to enforce that some gates are evaluated to 1, even when they are
not input gates:

I Definition 59. For any monotone cycluit C and disjoint subsets S+ t S− of gates that
contain no input gate, letting S := (S+, S−), we define the partial assignment ρS(C) to be
the monotone cycluit obtained from C by replacing each gate of S+ by a 1-gate, and each
gate of S− by a 0-gate.

We will also rely on a variant of Algorithm 1 to evaluate parts of a cycluit in a tree
decomposition based on the child parts in the decomposition. It will work using the following
notion:

I Definition 60. The constant gates of a cycluit C = (G,W, g0, µ) are the gates of G\Cinp
that have no input gates, i.e., Ccst := {g ∈ G | @g′ ∈ G, g′ → g ∈ W}\Cinp: in other words,

50 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Algorithm 3: Partition-based evaluation of monotone cycluits
Input: Monotone cycluit C = (G,W, g0, µ), Boolean valuation ν : Cinp → {0, 1},

evaluation partition G1 tG2
Output: {g ∈ C | ν(g) = 1}

1 CST := {g ∈ Cinp | ν(g) = 1} ∪ {g ∈ Ccst | µ(g) = ∧}
2 T0 := CST
3 n := |F (G1 tG2)|+ 2
4 for i from 1 to n do
5 for j from 1 to 2 do
6 Ui,j := Ti−1 ∩ Fj(G1 tG2)
7 Vi,j := SubEval(C,CST ∪ Ui,j , Gj)
8 Ti := Vi,1 ∪ Vi,2 ∪ CST
9 return Tn

10 Function SubEval(C,Z,G′)
Input: Monotone cycluit C = (G,W, g0, µ), subset Z ⊆ G of true gates, subset

G′ ⊆ G of iteration gates
Output: Subset of gates that became true (observe the similarity to Algorithm 1)

11 Z0 := Z

12 l := 0
13 do
14 l := l + 1
15 Zl := Zl−1 ∪

{
g ∈ G′ | (µ(g) = ∨),∃g′ ∈ Zl−1, g

′ → g ∈W
}

16 ∪
{
g ∈ G′ | (µ(g) = ∧), {g′ | g′ → g ∈W} ⊆ Zl

}
17 While Zl 6= Zl−1
18 return Zl

these are precisely the 0- and 1-gates. The internal gates of G are the gates which are neither
constant gates nor input gates.

An evaluation partition of a cycluit C = (G,W, g0, µ) is a partition G1tG2 of the internal
gates of C. The frontier of G1 t G2 is F (G1 t G2) := F1(G1 t G2) t F2(G1 t G2), where
Fj(G1 tG2) := {g ∈ G3−j | ∃g′ ∈ Gj , g → g′ ∈W} for j ∈ {1, 2}.

This allows us to define Algorithm 3, a variant of Algorithm 1 which evaluates a cycluit
by evaluating separately the parts of its evaluation partition, memorizing only the state of
the frontier across evaluations. We claim the following:

I Lemma 61. For any cycluit C, valuation ν, and evaluation partition G1 tG2 of C, the
result of Algorithm 3 is indeed the set g of gates such that g evaluates to 1 in C under ν. In
other words, the output is the same as that of Algorithm 1.

Proof. Fix the cycluit C, valuation ν, and evaluation partition G1tG2, let F := F (G1tG2),
and write n := |F |+ 2.

First, observe that the output on input gates and on constant gates is correct, as all such
gates that evaluate to 1 are added to CST and are returned, and the ones that do not are
never otherwise added to any Ti (remember that the Gj do not contain any such gates, so we
only add internal gates to the Zl). Hence, it suffices to restrict our attention to the internal
gates.

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 51

The easy direction is the forward direction: let us show that, for any internal gate g
in Tn, this gate is also in the output of Algorithm 1. We do so by induction on the step
of the execution at which the gate was added to one of the sets Zl. Initially, there are no
internal gates in these sets. For the induction, observe that the gates added to such sets are
either ∨-gates which have one input already previously in such a set (and so, by induction
hypothesis, they are also in the output of Algorithm 1), or ∧-gates where all inputs are
already in such a set (and we can use the induction hypothesis again), so that indeed, when
that same gate is considered in one iteration of Algorithm 1, it will also be added to the
output of that algorithm.

We now prove the backward direction. To do this, first observe that, for any j ∈ {1, 2},
for any 1 6 i < n, we have Ui,j ⊆ Ui+1,j . Indeed, we have Ui,j ⊆ Vi,j ⊆ Ti, and all
gates of Ui,j are gates of Fj(G1 t G2), so Ui+1,j contains all gates of Ui,j . Now, as Ui,j
has size at most |F (G1 tG2)|, this means that there is i′ 6 |F (G1 tG2)| + 1 such that
Ui′,j = Ui′+1,j . As the same argument applies to the other value of j, we deduce the existence
of 1 6 i′ 6 |F (G1 tG2)|+ 1 such that this holds for all j ∈ {1, 2}. This clearly implies, then,
that Ti′ = Ti′+1, so that, as we chose n to be sufficiently large, we know that Tn = Tn−1.

We use this claim to conclude the proof of the backward direction. Assume by way of
contradiction that there is a gate g which is added to the output of Algorithm 1 and which is
not part of the output of Algorithm 3, and choose g to be the first gate that has this property
(formally, as several such gates may be added in the same iteration of Algorithm 1, choose
any gate among the first ones). By our initial remark about the correctness on constant gates
and input gates, g must be an internal gate. Let Γ be the subset of the inputs of g which
were evaluated to 1 at an iteration of Algorithm 1 which is strictly before the iteration where
g was evaluated to 1. By definition of that algorithm, Γ is in the output of Algorithm 1,
and hence, by minimality of g, it is in the output of Algorithm 3. Hence, Γ ⊆ Tn, hence
Γ ⊆ Tn−1 by the claim that we showed. Let us use this to study what happened during the
last iteration of Algorithm 3 and reach a contradiction.

As g is an internal gate, let j ∈ {1, 2} such that g ∈ Gj , and let us show that g ∈ Vn,j , by
considering the invocation SubEval(C,CST ∪Un,j , Gj). It suffices to show that there is some
l ∈ N such that Γ ⊆ Zl. Indeed, if this is the case, then, taking a minimal such l, we can
consider the (l+ 1)-th iteration of the loop of SubEval: this iteration takes place, because Zl
has just changed by addition of some gate in Γ (or, if l = 0, it takes place by definition of
a do... while loop), and in this iteration we know that we have g ∈ Zl+1, because g was
set to 1 in Algorithm 1 on the basis of Γ, and the iterations in SubEval are defined in the
same way on Gj . So let us show that Γ ⊆ Zl for some l ∈ N. As the Zl are monotone, we
can show this gate-per-gate: so let g′ ∈ Γ and show that it is in Zl for some l ∈ N.

We do a case disjunction. First, if g′ ∈ CST , then we have g′ ∈ Z0, so there is nothing to
show. Second, assume that g′ ∈ Gj . We use the fact that g′ ⊆ Tn−1 and g′ ∈ Gj to deduce
that, by definition of Tn−1, we must have had g′ ∈ SubEval(C,CST ∪ Un−1,j , Gj). Now, as
Un−1,j ⊆ Un,j , the monotonicity of SubEval ensures that we also have g′ ∈ SubEval(C,CST∪
Un,j , Gj). Hence, there is indeed l ∈ N during this evaluation such that g′ ∈ Zl. Third, assume
that g′ ∈ G3−j . As g′ is an input gate of g, and g ∈ Gj , this implies that g′ ∈ Fj(G1 tG2).
Hence, as Γ ⊆ Tn−1, we have g′ ∈ Un,j , hence, g′ ∈ Z0.

This shows that, indeed, in the last iteration (i = n) of Algorithm 3, for j defined such
that g ∈ Gj , there is some iteration of the corresponding invocation of SubEval where all
gates of Γ are added to Zi, so that we must add g to Zi+1. Hence, g is in the output of
Algorithm 3, which contradicts our initial assumption and concludes the proof. J

We are now ready to prove Theorem 58:

52 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Proof of Theorem 58. We will not define α explicitly, but it will be apparent from the
proof that a suitable α can be defined. Note that, up to adding a fresh gate to serve as the
new distinguished output gate, we can clearly ensure that the distinguished output gate g0
has exactly one input, and that it is not an input gate to any other gate of C, and we
can modify T accordingly. We start by computing in time O(f(k) · |C|), for some suitable
exponential f , a tree decomposition T of C [Bod96]. We use Lemmas 53, 55 and 57 to ensure
that, up to increasing the degree of the polynomial in the exponent of f , we can assume
that the monotone cycluit C is arity-two and that the tree decomposition T is in normal
form. We choose to root the normal-form tree decomposition T at the bag ϕ(g0) where g0
is the distinguished output gate. The resulting T is such that ϕ maps each gate to a leaf
bag, except the distinguished output gate g0 which is mapped to the root; however, from our
initial modification of C and the fact that T is scrubbed, we know that g0 only occurs at the
root (specifically, the root bag contains g0 and its one input gate). Hence, in the sequel, we
will never apply ϕ to g0, and so we see ϕ as a mapping to the leaf bags of T . To simplify the
induction, we ensure that the root bag also has two children, by adding to it a child with
empty domain; this does not break any of the conditions on T .

We must now create the circuit C ′ and its tree decomposition T ′. In fact, we will create
a pre-tree-decomposition T ′ of C ′, namely, a tree with same skeleton as T , where each bag
contains at most 2kα gates of C ′, and which satisfies the following conditions: first, all wires
in C ′ are either between nodes of a same bag, or from nodes of a bag to nodes of a parent
bag (i.e., all wires go upward in T ′); second, each gate only occurs in the bag where it is
created, except the gates of C ′inp = Cinp, whose occurrences in T ′ will correspond to a subset
of the bags of T where they occur. The pre-tree-decomposition T ′ can clearly be rewritten
to a tree decomposition in linear time and with a blowup of a factor 3 in the width: first, by
adding the input gates to the bags corresponding to all their actual occurrences in T , and
second by adding each gate of T ′ to its parent bag, which ensures that all wires are indeed
covered. Hence, we will only describe how to construct a pre-tree-decomposition T ′ of C ′.

We will create C ′ and T ′ by a bottom-up traversal of T . At each bag b of T , we will
denote by Tb the subtree of T rooted at b, we will write dom(Tb) to refer to all gates occurring
in Tb, and will write Cb to mean the sub-cycluit of C obtained by restricting to the gates
of dom(Tb) and a subset of the wires between them, namely, the wires whose target g is such
that ϕ(g) ∈ Tb. In other words, when g ∈ dom(Tb) but ϕ(g) is not in Tb, then g occurs in Cb
but it has no inputs, even though it may be the case that both inputs also occur in dom(Tb).
Further, the inputs of Cb are then precisely Cinp ∩ dom(Tb). Throughout the proof, for each
bag b, we will partition the gates of dom(b) in two sets (clearly computable in linear time):

The upward gates, written dom↑(b), which are the gates g such that ϕ(g) is a descendant
of b, as well as all the input gates g in dom(b) and all constant gates g in dom(b).
The downward gates, written dom↓(b), which are all other gates.

Intuitively, when processing the bag b, the upward gates are those which can be evaluated
from other gates of Tb (and from the valuation of the input gates) based on what happens
in Tb. (However, this evaluation may depend on downward gates of dom(b), so that we may
be unable to perform it fully.) By contrast, the downward gates are those for which we have
no complete information yet, and whose evaluation will take place later

To rewrite each Cb to a circuit when processing T , what is relevant to us is the behavior
of Cb for each valuation of its inputs, in terms of how the upward gates evaluate depending
on the value of the downward gates. Intuitively, to rewrite Cb, we need to describe the
“function” that gives us the value of the upward gates (which is propagated to parent bags

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 53

that we will rewrite later) depending on each possible valuation of the downward gates
(for which we do not know the value). Specifically, for any subset S+ ⊆ dom↓(b), letting
S := (S+,dom↓(b)\S+), for any gate γ ∈ dom↑(b), and for any valuation ν of the inputs
of Cb, we wish to know whether γ evaluates to 1 in ν(ρS(Cb)). Recalling the definition of
partial assignments (Definition 59), note that this is well-defined because S+ contains no
input gates. For brevity we write Πb := 2dom↓(b) × dom↑(b)

We are now ready to describe the inductive rewriting process. For each bag b of T , we
will create a bag b′ of T ′ containing gates of C ′. Remember that the circuit C ′ must have
the same inputs as C; in particular we will ensure that, for any b ∈ T , the cycluit Cb and the
circuit C ′b′ have the same inputs; further, by definition of the pre-tree-decomposition T ′, all
wires will go upward in T ′, meaning that, for any b′ ∈ T ′, the circuit C ′b′ can always be fully
evaluated from a valuation of its inputs. From this observation, we will inductively guarantee
that each bag b′ in T ′, corresponding to bag b in T , will contain one gate gS

+,γ
b for each

(S+, γ) ∈ Πb, with the following semantics: for any valuation ν of the inputs of Cb, the gate
gS

+,γ evaluates to 1 in ν(C ′b′) iff γ evaluates to 1 in ν(ρS(Cb)) where S := (S+,dom↓(b)\S+).
We first describe the base case of the construction. Remember that, as T is scrubbed,

each leaf bag of T is either in the image of ϕ or has empty domain. For a leaf bag b of T with
empty domain, there is nothing to do. Otherwise, let g be the preimage of b by ϕ, i.e., the
unique g (because ϕ is injective, and it is surjective on leaf bags with non-empty domain) such
that b = ϕ(g). We then have dom↑(b) = {g} ∪ (Cinp ∩ dom(b)) and dom↓(b) = ins(g) \ Cinp;
observe that, as C is arity-two, it has no self-loops, so that ins(g) and {g} are disjoint. If g
is an input gate, then ins(g) = ∅ and the only gate to create in b′ is g∅,gb which can simply
be taken to be g itself and satisfy the required conditions. If g is not an input gate, the
gates to define are gS

+,g
b for all S+ ⊆ ins(g)\Cinp (which has size at most 2), and we can

simply realize this following the truth table of the operation µ(g) of g, i.e., by setting gS
+,g

b

to be a sub-circuit with input dom(b) ∩ Cinp whose value is the value of g in ρS(Cb) with
S = (S+, ins(g) \ (Cinp ∪ S+)).

We now describe the inductive case of the construction. We consider an internal bag b
which has two children b1 and b2 in T ; we write b′, b′1, b′2 the corresponding bags in T ′, with
b′1 and b′2 being already inductively defined. In particular, we know that b′1 and b′2 contain
gates (which for brevity we will write gS

+,γ
1 and gS

+,γ
2 , rather than gS

+,γ
b′1

and gS
+,γ

b′2
) with

the prescribed properties; and we will omit for brevity the b subscript when defining gates
of b′ in C ′ standing for the current bag b of T . For i from 0 to (k + 1) + 2 , we will now
define gates gS+,γ,i in b′ as follows, for all (S+, γ) ∈ Πb:

Case of constant gates: if γ is a 1-gate (resp., a 0-gate), then the gate gS+,γ,i is a 1-gate
(resp., a 0-gate) for all 0 6 i 6 k + 3.
Case of input gates: if γ is an input gate, then the gate gS+,γ,i is the same input gate for
all 0 6 i 6 k + 3.
Base case: the gate gS+,γ,0 is simply a 0-gate.
Induction: letting j be such that ϕ(γ) is a descendant of bj (so that γ ∈ dom↑(bj) and
γ ∈ dom↓(b3−j) if γ ∈ dom(b3−j)), the gate gS+,γ,i for i > 1 is an OR-gate, for all
Γ′ ⊆ dom↓(bj) ∩ dom↑(b3−j) (which is necessarily ⊆ dom(b)), of the AND of gS+,γ′,i−1

for all γ′ ∈ Γ′ and of g(S+∩dom↓(bj))∪Γ′,γ
j .

We simply let gS+,γ to be gS+,γ,k+3. It is clear that we create only exponentially many gates
at each bag of T ′, so that we can obey the prescribed treewidth bound (in addition to the
transformations of C that we have performed at the beginning, namely, transformation to

54 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

arity-2, and up to the use of a normal-form tree decomposition which implies that the bag
size may be multiplied by 3).

We now show the correctness of this construction at b, i.e., we check inductively whether
the gates that we create satisfy their prescribed semantics. Fixing (S+, γ) ∈ Πb and a
valuation ν of the inputs of Cb, we consider the monotone cycluit ρS(Cb) and its evaluation
under ν, where S := (S+,dom↓(b)\S+) (note that this does not include any input gates
because dom↓(b) does not). What we must show is that gS+,γ evaluates to 1 under ν in C ′
iff γ evaluates to 1 in ν(ρS(Cb)). To show this claim, we must connect our construction of
the gS+,γ,i to the evaluation of the cycluit ν(ρS(Cb)); we will do so using the notion of an
evaluation partition, by defining one from the structure of Tb.

Specifically, consider the evaluation partition G1 t G2 of the internal gates of ρS(Cb)
defined by putting in G1 the internal gates whose image by ϕ is a descendant of b1, and in
G2 those whose image is a descendant of b2. We show the following claims:

This partition indeed covers the internal gates of ρS(Cb). Indeed, all internal gates of Cb
are either gates of dom(T1)\dom(b) (in which case their ϕ-image must be in T1), or gates
of dom(T2)\dom(b) (same reasoning), or gates of dom(b) in which case they must be in
dom↑(b) (as the gates of dom↓(b) are constant in ρS(Cb)) and then their ϕ-image is a
descendant of b by definition. Now, the ϕ-image cannot be b itself as ϕ maps only to
leaves, so it must be either a descendant of b1 or of b2.
For each j ∈ {1, 2}, we have Fj(G1 t G2) = dom↑(b3−j) ∩ dom↓(bj). Indeed, for the
forward inclusion, any gate g of Fj(G1tG2) is a gate of G3−j , that is, ϕ(g) is a descendant
of b3−j . Further, there is a wire (g, g′) with g′ ∈ Gj , that is, ϕ(g′) is a descendant of bj ,
and g occurs in ϕ(g′). Now, as g ∈ dom(Tj) ∩ dom(T3−j), as T is a tree decomposition,
we have g ∈ dom(bj) and g ∈ dom(b3−j), and more specifically we have g ∈ dom↑(b3−j)
and g ∈ dom↓(bj) by what precedes. Conversely, any gate g of dom↑(b3−j) is such that
ϕ(g) is a descendant of b3−j , so that g ∈ G3−j . Further, as g ∈ dom(bj), as the tree
decomposition T is scrubbed, there is a descendant bag b of bj where g appears in a
ϕ-image, and as ϕ(g) is not a descendant of bj it must be the case that g appears in the
ϕ-image of some g′ (so that g′ ∈ Gj) such that g → g′ is a wire. Hence, g ∈ G3−j and g
is an input of a gate in Gj , so indeed g ∈ Fj(G1 tG2).
We have |F (G1 tG2)| 6 k + 1. This follows from the previous point. Indeed, we have
|F (G1 tG2)| = |F1(G1 tG2)|+ |F2(G1 tG2)| 6

∣∣∣dom↑(b1)
∣∣∣+
∣∣∣dom↓(b1)

∣∣∣ 6 |dom(b)| 6
k + 1 because T is a tree decomposition of width 6 k.

Now, consider the evaluation of ρS(Cb) under ν using the evaluation partition G1 tG2,
implemented with Algorithm 3: write T0(S), T1(S), . . . , Tk+3(S) the sequence of sets defined
in the execution of the algorithm. (As this sequence may be shorter, if necessary we pad
it until Tk+3(S) by copying the last value.) Nested in our induction over T , we now show
by induction on 0 6 i 6 k + 1 that, in b′ as we have defined it, for any S+ ⊆ dom↓(b)
and γ ∈ dom↑(b), for any valuation ν of the inputs of Cb, the gate gS+,γ,i evaluates to 1
under ν iff γ ∈ Ti(S) ∩ dom↑(b). For the base case of i = 0, indeed gS

+,γ,0 evaluates to
true iff γ ∈ T0(S) ∩ dom↑(b) by definition of T0(S). For the induction step, observe that,
by definition, gS+,γ,i evaluates to true iff, letting j be such that ϕ(γ) is a descendant of bj ,
there is some Γ′ ⊆ dom↓(bj) ∩ dom↑(b3−j) (equivalently, by the second bullet point above,
Γ′ ⊆ Fj(G1 tG2)) such that gS+,γ′,i−1 evaluates to 1 for all γ′ ∈ Γ′ and g(S+∩dom↓(bj))∪Γ′,γ

j

evaluates to 1.
For the forward direction of this induction claim (for the nested induction), assume the

existence of such a Γ′, and show that γ ∈ Ti(S) (this suffices as we have γ ∈ dom↑(b) by

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 55

definition). By the induction hypothesis for the inner induction, as gS+,γ′,i−1 evaluates
to 1 for all γ′ ∈ Γ′, we know that Γ′ ⊆ Ti−1(S). By the induction hypothesis for the outer
induction, as g(S+∩dom↓(bj))∪Γ′,γ

j evaluates to 1, we know that γ evaluates to 1 in νj(ρSj (Cj)),
where Sj := ((S+ ∩ dom↓(bj)) ∪ Γ′,dom↓(bj)\(S+ ∪ Γ′)) and νj is the restriction of ν to
the inputs of Cj . Now, using Lemma 61, consider the execution of Algorithm 3 (on ρS(Cb)
under ν), and consider the invocation of SubEval for this i and j. We know that CST
contains all input gates of ρSj (Cj) set to 1 and all gates of S+ (these are constant gates
of ρS(Cb)), so they are in Z0; and as Γ′ ⊆ Fj(G1 t G2) and Γ′ ⊆ Ti−1(S), we know that
Γ′ ⊆ Ui,j , so Γ′ ⊆ Z0. Now, as we know that γ evaluates to 1 under νj in ρSj (Cj), consider
the evaluation of Algorithm 1 to witness this, and observe that, by what precedes, the
invocation of SubEval that we are considering is such that Z0 contains all gates which are
initially true in νj(ρSj (Cj)), namely, the input gates that evaluate to 1, the constant 1-gates,
and the gates of the first component of Sj , specifically, those of Γ′ and a subset of those
of S+. Hence, each time Algorithm 1 sets a gate to 1, SubEval also does. Hence, γ is also
returned by SubEval, so indeed γ ∈ Ti(S), which concludes the forward direction.

For the backward direction of the nested induction claim, assume that γ ∈ Ti(S)∩dom↑(b),
and show the existence of a suitable Γ′. Let j ∈ {1, 2} be such that γ ∈ dom↑(bj). We
choose Γ′ to be Ti−1(S) ∩ (dom↓(bj) ∩ dom↑(b3−j)), or, in other words, Ui,j in Algorithm 3.
Now, for any γ′ ∈ Γ′, observe that γ′ ∈ dom↑(b) (as γ′ ∈ dom↑(b3−j), we know that ϕ(γ′)
is a descendant of b3−j , hence of b), so that γ′ ∈ Ti−1(S) ∩ dom↑(b), and by induction
hypothesis for the inner induction we know that gS+,γ′,i−1 evaluates to 1. Now we will use
the induction hypothesis for the outer induction to argue that g(S+∩dom↓(bj))∪Γ′,γ

j evaluates
to 1, by showing that γ evaluates to true under νj in ρSj (Cj), with the same notations for νj
and Sj as for the forward direction above. To do this, as in the forward direction, we consider
the evaluation of SubEval at iteration i and for the current j. In this evaluation, the gates
that are initially true are the constant 1-gates (in particular those of S+), the input gates
that are true under ν, and the gates of Ti−1(S) ∩ Fj(G1 t G2), that is, of Γ′. In ρSj (Cj),
all gates of Γ′ are also true, and the other gates are also true whenever they appear in Cj :
in other words, all gates that are in Z0 at the beginning of this evaluation of SubEval are
also initially true in νj(ρSj (Cj)) except if they are gates that do not occur in ρSj (Cj) (and
have no inputs or outputs in ρS(Cb)). This property ensures that all gates that evaluate
to true in SubEval, which are gates of Gj , can also evaluate to true in Algorithm 1 thanks
to Lemma 61. Hence, indeed γ evaluates to true under νj in ρSj (Cj), so we conclude that
indeed g(S+∩dom↓(bj))∪Γ′,γ

j evaluates to 1. This finishes the proof of the inner induction, and
hence concludes the correctness proof of the induction step of the outer induction.

To conclude the proof of the Theorem, it suffices to observe that the root bag b′r of the
rewriting C ′ contains a gate g := g

∅,{g0}
r where g0 is the output gate of C, whose semantics

(by the outer induction claim) is guaranteed to be the following: for any valuation ν of C
(hence, of C ′), the gate g evaluates to true under ν in C ′ iff g0 evaluates to true in ν(C).
Hence, we set g as the output gate of C ′, and we have shown that C ′ is indeed equivalent
to C. This concludes the proof. J

E.1.5 Isotropic rewritings of monotone cycluits
To prove Theorem 34 for non-monotone cycluits, we will of course perform an induction on
the strata. The challenge when doing so is that, when rewriting a stratum, we may need
to access the value of all gates of the lower strata, not just a single output gate. So, in the
induction step on strata, it will not be sufficient to rewrite a stratum to a circuit with a

56 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

single output gate: we need to rewrite in a way where all gates of the circuit can be reused
by lower strata. We define this formally:

I Definition 62. A circuit (or cycluit) C ′ emulates a cycluit C iff C and C ′ have the same
input gates, all gates of C are gates of C ′, and for any valuation ν of the inputs, for any
gate g of C, g evaluates to true in C under ν iff it does in C ′ under ν.

Similarly to how we modified the circuit at the beginning of the proof of Theorem 58, it
will be convenient to rewrite the circuit in linear time to ensure that each gate of interest has
exactly one input and is not itself the input to another gate. We call such gates the potential
outputs:

I Definition 63. A potential output of a circuit (or cycluit) C is a gate g of C which has
exactly one input gate and is not itself the input to any gate.

We can very simply rewrite our input cycluit so that all gates of interest are potential
outputs:

I Lemma 64. For any cycluit C of treewidth k, we can compute in linear time a cycluit C ′
of treewidth 6 2k that emulates C, such that, for each gate g of C \ Cinp, the gate g in C ′ is
a potential output.

Proof. Simply build C ′ by renaming all gates of C that are not input gates to a different
name. Now, for each gate g of C, add gate g to C ′ by setting it to be an AND-gate whose one
input is the gate g′ which is the renaming of g in C ′. This clearly ensures that g evaluates
to TRUE iff its renaming does, so that C ′ indeed emulates C. Further, the process is clearly
in linear time and the treewidth bound is respected because we are simply duplicating each
gate. J

This allows us to assume that we are working with a cycluit where all “relevant” gates
are not the input gates to other gates. Thanks to this, the process that we really need for an
induction on strata is the following variant of Theorem 58:

I Theorem 65. There is an α ∈ N∗ s.t., for any monotone cycluit C of treewidth k, we can
compute in time O(2kα · |C|) a circuit C ′ that emulates C and has treewidth 6 2kα .

Proof. . First note that, thanks to Lemma 64, we can process the input monotone cycluit C
in linear time, keeping the parametrization in the treewidth, such that all gates of the
original input cycluit are now potential output gates. Hence, it now suffices to construct a
cycluit C ′ that quasi-emulates the cycluit C that we are working with, i.e., only emulates
the potential output gates of C: indeed, C ′ will then emulate all gates of the original cycluit.
As in Theorem 58, we will assume that C is arity-two, and that it has a normal-form tree
decomposition T . Further, as in the proof of Theorem 58, we will construct a pre-tree
decomposition T ′ of the result C ′, i.e., all wires are either within one bag or between a gate
of a bag and a gate of a neighboring bag: T ′ will have same skeleton as T when forgetting
about edge orientation.

We first notice that we can obtain the desired circuit C ′ in a naive way, which runs
in quadratic time and does not satisfy the treewidth bound. To do so, we can simply
apply Theorem 58, for each potential output g of C, on the tree decomposition T b obtained
by rooting T at b := ϕ(g). We could then build the rewriting of C as a circuit C ′ that
quasi-emulates C, by taking the union of the rewritings thus produced: these rewritings are
disjoint except for the input gates. Further, we can construct a pre-tree decomposition T ′

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 57

of C ′ by taking all the pre-tree decompositions produced in the applications of Theorem 58,
forgetting about their orientation (so they have the same undirected skeleton as T b, namely,
that of T), taking their bag-per-bag union, and rerooting the result at an arbitrary bag to
obtain a rooted tree decomposition.

Clearly the result T ′ of this process is still a pre-tree decomposition. First, all facts are
still contained within bags or hold between one bag and its neighboring bag (as it did in the
original pre-tree decompositions). Second, the occurrences of gates still form a connected
subtree. Indeed, for input gates, this connected subtree is the same as in T , as is readily
observed from the construction of Theorem 58. For the other gates, the connected subtree is
the same as the original pre-tree decomposition from which they come. Further, Theorem 58
ensures that the resulting circuit C ′ quasi-emulates the cycluit C: note that C ′ is still a
cycluit, because it is a union of acyclic circuits which is disjoint except for the input gates.
The two problems are that C ′ (and hence the overall computation process) is of quadratic
size, and that the treewidth of C ′ is no longer constant (each bag contains a linear number
of groups of gates, each group having been produced by the application of Theorem 58).

To explain how these problems can be addressed, we recall the specifics of the construction
used to prove Theorem 58. For each bag b of the rooted tree decomposition T ′′ to which it is
applied, the construction creates a set of gates gS

+,γ
b for some subsets S+ and for some γ

(along with some intermediate gates, e.g., gS
+,γ,i

b), whose inputs are gates g...b1
and g...b2

for the
two children of b in T ′′, and these gates describe the behavior of the subtree of T ′′ rooted
at b. In the process that we explained, for each internal bag b of the original normal-form
tree decomposition T , we have considered b across all the rootings T b′ of T for all b′ being
the ϕ-image of a potential output gate. For each such choice of root bag b′, we have applied
Theorem 58, so that in the bag b′′ obtained as a final result of the process, we have one
group of gates gS

+,γ
b (with their intermediate gates) for each choice of b′. However, the

crucial observation is that there are only three possible groups, up to equivalence. Indeed,
for each internal non-root bag b, we can classify the possible root bags b′ depending on their
orientation relative to b: as b has degree 3, there are only three possibilities. Specifically,
for any two choices of root b′1 and b′2 that have the same orientation relative to b, the gates
gS

+,γ
b were created for the same directed subtree of T rooted at b, so they are equivalent: the
same is in fact true of all the intermediate gates at b, and indeed all gates for all descendants
of b according to this orientation. In other words, the bottom-up construction of Theorem 58
at node b does the exact same thing for b′1 and for b′2.

From this observation, we can rewrite the result of the naive process to have linear size
and to satisfy the treewidth bound, by taking each bag b of T , considering the O(C) groups
of gates created in the analogue b′′ of b in the pre-tree decomposition T ′′ obtained as a result
of the naive process, and merge these groups depending on the orientation of the root used
for each group relative to b, so that only three groups of gates remain. This ensures that the
result has linear size, and that the width bound is respected (i.e., the width is only multiplied
by a factor of 3 relative to the width in the output of Theorem 58). By what precedes, the
gates that we merge are equivalent, and, as they occur in the same bags of T ′′, the result is
still a pre-tree decomposition. Further, the result of this process is still an acyclic circuit:
indeed, if we perform the merges bottom-up following some rooting of T ′′, it is clear that
whenever we merge two gates then they have the same input gates, so no cycles can be
introduced. Hence, the result of this process is a linear-sized circuit obeying the treewidth
bound, and it still quasi-emulates C, so it satisfies all of the required conditions.

The last thing to justify is that, instead of performing the quadratic-time construction
and merging the equivalent gates, we can directly construct the final output with the merged

58 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

gates in linear time. We now explain how to do so. For each bag b of T and each neighbor
b′ of b in T , we call Sb(b′), the gates to create at bag b for the rootings of T at a ϕ-image
whose unique simple path to b goes via b′. We then start by performing the entire bottom-up
construction of Theorem 58 for some rooting T br of T , where br is the ϕ-image of some
arbitrary gate: for each bag b, this creates the gates Sb(b′) for b′ the parent of b in T br .
Second, we perform an analogous process in a top-down pass on the tree T to reach the
leaves, i.e., the ϕ-images of the other output gates, so as to cover all the other possible
rootings. We explain what the top-down process does on a bag b with parent b′ and children
b1 and b2 in T br . Recalling that Sb(b′) has already been created, the top-down process must
create Sb(b1) and Sb(b2). Recall that the gates of Sb(b1) will stand for the subtree rooted
at b with children b′ and b2: their inputs are gates of Sb2(b) and gates of Sb′(b). The first
kind of gates have already been created by the bottom-up process at b2, and the second
kind of gates have been created previously in the top-down process, because b′ was visited
before b. So the top-down process simply creates the gates of Sb(b1) as in the inductive
step of the construction of Theorem 58 from these inputs. Likewise, the inputs to the gates
of Sb(b2) are gates of Sb1(b) and gates of Sb′(b), which have already been created. We can
see that this process creates the same gates in each bag as those created by the naive process,
except that we do not create the multiple equivalent sets of gates, so its output satisfies the
required conditions. Further, it is easy to see that this process is in linear time, at it consists
of one bottom-up application of Theorem 58, and one top-down traversal of the tree while
performing two times at each node the inductive step of the construction of Theorem 58.
This concludes the proof. J

E.1.6 Rewriting stratified cycluits
We now use Theorem 65 to conclude the proof of Theorem 34:

Proof of Theorem 34. Given a stratified cycluit C of treewidth k, assuming (up to adding
an additional gate) that its output gate is a potential output (recall Definition 63), we
transform C in linear time to an arity-two cycluit by the same construction as in the proof
of Lemma 53. Indeed, this construction still applies to non-monotone cycluits, because it
does not rely on the semantics of the gates except the associativity of OR- and AND-gates
(NOT-gates have arity 1 so they do not need to be rewritten); and the construction clearly
does not affect the fact that the cycluit is stratified. We now compute a stratification function
for C in linear time by Proposition 48. We write C1, . . . , Cm the strata of C, and write
C6i :=

⋃
p6i Cp for brevity. Analogously to the proof of Lemma 64, we now rewrite C in

linear time by re-wiring it in the following way: whenever a wire connects a gate g of stratum
i to a gate g′ of a stratum j > i, we introduce an intermediate AND-gate on this wire
assigned to the stratum i, so that g is a potential output gate of C6i. It is clear that this
only doubles the size of bags in the tree decomposition. This process is intuitively designed
to ensure that, whenever we have rewritten a prefix of the strata to a circuit C ′ that emulates
it (using Theorem 65), the rewriting of the next stratum can proceed using only the gates
of C ′.

We now compute in linear time a normal-form tree decomposition T of C as in Lemma 57:
clearly this still applies to non-monotone cycluits, as it does not depend on the semantics of
gates. Clearly T is still a tree decomposition of any union

⋃
p6i of lower strata, and, if we

restrict the bags to the gates of this union, it is still a normal-form tree decomposition.
We now describe the final rewriting process by induction on the strata of C. The invariant

is that, once we have processed the strata C1, . . . , Ci, we have obtained a circuit C ′i which

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 59

emulates C6i, with a tree decomposition T ′6i with same skeleton as T where, for each bag b′,
letting b be the corresponding bag in b, |dom(b′)| is within some factor (depending only
on k, and in O(2kα) for some constant α) of |dom(b) ∩Gi|, where Gi are the gates of C6i,
and where each potential output gate g of C6i occurs at least in the same bags as it does
in T . To achieve the overall linear running time, it suffices to ensure that each stratum Ci
is processed in time linear in Ci and in the union of connected subtrees of T (which we
can precompute for each i) that contains gates of stratum Ci. The reason why this ensures
linear running time overall is that each bag of T is visited a linear number of times for each
stratum that includes a gate in it, the number of which is a constant depending only on k.
Note that, because of the fact that we only visit for each stratum the union of connected
subtrees of T containing gates of this stratum, the tree decomposition T ′6i that we compute
at each stratum is technically not fully materialized (we do not materialize some parts where
all bags have empty domain), but by a slight abuse we will nevertheless see it as having same
skeleton as T .

The base case is that of the empty circuit, and of a tree decomposition with same skeleton
as T and empty bags (which of course we do not need to materialize).

For the induction step, we consider stratum Ci, and let Ti be the normal-form tree
decomposition of Ci with same skeleton as T obtained by restricting the bags of T to
the gates of Ci. By definition of a tree decomposition, the bags with non-empty domains
form connected subtrees of Ti, which we can process independently (as in this case the
corresponding gates have no wires connecting them in Ci), and to which we can restrict our
attention to ensure the linear time requirement for stratum i. To represent in Ci the missing
gates from lower strata (remembering that they are guaranteed to be potential output gates
in C6i−1), we add these gates as input gates, putting them in Ci, and putting each of them
in Ti only at the leaf bags which are ϕ-images of a gate that uses one of them as input.

Now, we can apply Theorem 65 to each disjoint part, the result of which is a circuit C ′i
that emulates Ci, with a (not fully materialized) tree decomposition T ′i having same skeleton
as T ; and clearly the bags that were empty in Ti remain empty in T ′i , and the size of the
others depends on the size of the corresponding bags in Ti by a constant factor depending
only on k and satisfying the prescribed bound, as can be observed from the construction of
Theorems 58 and 65. (Note that, in this accounting, we ignore the input gates that we added,
as they will be accounted for by their occurrence in the lower strata.) We now ensure that
all potential output gates of Ci, which for now only appear in the bag of T ′i corresponding to
their ϕ-image in Ti (i.e., in T), occur in all bags where they appear in Ti; this does not affect
the width requirement, as each gate thus added to a bag of T ′i is added for a gate (namely,
the same gate) that was in the corresponding bag in Ti, and for which no gate had been
added in Ti yet.

What remains to be done is to connect this rewriting C ′i of Ci to the rewriting C ′6i−1
obtained by induction for the lower strata, and produce the circuit C ′6i and tree decomposition
T ′6i satisfying the conditions. We simply do this by unioning C ′i with C ′6i−1, and substituting
to the input gates added to C ′i the actual gates of C ′6i−1: as C ′6i−1 emulates C6i, it emulates
these gates, as they must be potential output gates of C6i thanks to the rewriting that
we perform analogously to Lemma 64. It is clear by composition that C ′6i has the correct
semantics, and of course this kind of substitution does not affect the acyclicity of C ′6i. The
tree decomposition T ′6i is constructed by unioning T ′i with T ′6i as computed in the induction
(this only needs to traverse the bags where T ′i is materialized), and substituting the input
gates; the fact that the result is still a tree decomposition of the result is clear for the
occurrences of the gates of stratum i (which are the same as in T ′i), and of the occurrences

60 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

of the gates of lower strata, because each time a fresh input gate is substituted to a gate g′
of a lower stratum, the construction ensures that this is within a bag which is the ϕ-image of
a gate g of stratum i with g′ as input, and the occurrence of g′ in the corresponding bag
in T ensures that g′ must occur in that bag in T ′6i−1. Likewise, T ′6i covers all wires, because
this needs only be checked for the wires across strata, but it is the case for the same reason
as we just explained. This concludes the proof of the induction case.

We now check that the claimed treewidth bound of O(2kα) for some α is respected, by
accounting for the transformations that we have performed:

We have added one additional gate to the input cycluit at the very beginning.
We have transformed it to arity-2 as in Lemma 53, so squaring the bag size.
We have applied a process analogous to that of Lemma 64, which doubles the bag size.
We have chosen the tree decomposition to be regrouped as in Lemma 55, which multiplies
the bag size by 3, then normal-form as in Lemma 55, which does not change the bag size.
Now, we have performed the induction on strata, multiplying the bag size by at most 2kα

′

for some α′, using Theorem 65.

Hence, we can clearly respect the prescribed bound of O(2kα) for some α.
The result of the induction is indeed a circuit C ′ which emulates C6m = C (in particular, it

emulates the output gate of C, as it was a potential output gate), with a tree decomposition T ′
where each bag size is within the requested bounds, and computed in overall linear time.

This concludes the proof of Theorem 34. J

E.2 Hardness of PQE
I Proposition 36. There is a fixed arity-two signature on which PQE is #P-hard even when
imposing that the input instances have treewidth 1 and the input queries are α-acyclic CQs.

Proof. We reduce from the #P-hard problem #MONOTONE-2-SAT [Val79], that asks,
given a conjunction Φ of disjunctions of positive literals over variables x1, . . . , xn, the number
of assignments that satisfy Φ.

We consider a signature σ formed of a unary relation R, and of three binary relations V ,
K, and C.

Given Φ, we encode it in PTIME to a TID instance (I, π) which comprises the following
facts:

One fact R(r).
For each variable vi of Φ, the fact V (r, vi) with probability 1/2 in π, which intuitively
codes the valuation of variable vi.
For each clause Cj of Φ that contains variable vi, the following gadget:

a length-j path K(vi, ci,j,1),K(ci,j,1, ci,j,2), . . . ,K(ci,j,j−1, ci,j,j)
and the fact C(ci,j,j , c′i,j,j),

each of these facts having probability 1 in π. Intuitively, to remain on a fixed signature,
we write the clause number in unary as the path length.

It is immediate that I is a tree, so it has the prescribed treewidth. We now construct in
PTIME the query Q comprising the following atoms:

One atom R(x).

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 61

For each clause Cj , one atom V (x, yj), one length-j K-path from yj to a variable yj,j
and the fact C(yj,j , y′j,j).

Again, it is immediate that Q is acyclic.
We now claim that the probability of Q on (I, π) is exactly the number of satisfying

assignments of Φ divided by 2n, so that the computation of one reduces in PTIME to the
computation of the other, concluding the proof. To see why, we define a bijection between
the valuations of v1, . . . , vn to the possible worlds J of (I, π) in the expected way: retain
fact V (r, vi) iff vi is assigned to true in the valuation. Now, observe that J satisfies Q iff
the corresponding valuation makes Φ true. Indeed, from the satisfaction of Q by J , for
any j, observing the element to which yj,j is matched, and observing its ancestor vij in I,
we deduce that vij must be made true by the valuation, and, by construction of I, the
variable vij appears in Cj , hence Cj is true in Φ. Hence, Φ is true because every clause is
true. Conversely, assuming that the valuation satisfies Φ, we construct a match of Q on I by
mapping each branch of Q via the witnessing variable for that clause in the valuation of Φ.
This concludes the proof. J

I Proposition 37. There is a fixed arity-two signature on which PQE is #P-hard even when
imposing that the input instances have treewidth 1 and the input queries are path queries.

Proof. We adapt the previous proof. We extend the signature to include one binary
relation S− for each binary relation S. We modify the definition of the instance I to add,
whenever we created a fact S(a, b), the fact S−(b, a), each of these inverse facts being given
probability 1 in π. It is clear that I still has treewidth 1, as we can just use the same tree
decomposition as before. We now define the path query Q′ as follows, following a traversal
of the query Q of the previous proof:

V (x1, y1),K(y1, y1,1), C(y1,1, y
′
1,1), C−(y′1,1, y′′1,1),K−(y′′1,1, y′′1), V−(y′′1 , x2);

V (x2, y2),K(y2, y2,1),K(y2,1, y2,2), C(y2,2, y
′
2,2), C−(y′2,2, y′′2,2),K−(y′′2,2, y′′2,1),

K−(y′′2,1, y′′2), V−(y′′2 , x3);
etc.

It is straightforward to observe that, when inverse facts are added like we did, Q has a
match M on I iff Q′ has this same match: constructing the match of Q′ from that of Q is
trivial, and any match of Q′ is a match of Q thanks to the fact that, I being a tree, each
element of dom(I) has at most one ingoing inverse fact, so that each inverse fact must in
fact be mapped to the same element as the corresponding fact that was traversed earlier.
This concludes. J

F Results from [BBGS16]

This appendix contains some results from [BBGS16], an extended version of [BBS12] that
deals with the containment of monadic Datalog programs, but which is currently unpublished.
Relevant parts of this work are reproduced here for completeness.

F.1 Treelike canonical set of instances of a Datalog program
I Definition 66. A canonical set of instances for a Datalog program P is a (generally infinite)
family I of instances that all satisfy P and such that, for any CQ Q, if there is an instance I
satisfying P ∧ ¬Q, then there is an instance in I with the same property.

62 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

I Definition 67. The var-size of a Datalog program P is the maximal number of variables
used in a rule of P .

The following result from [BBGS16] shows that any Datalog program has a bounded-
treewidth set of canonical instances, an encoding of which can be described by a bNTA
constructible in exponential time. It heavily relies on notions introduced in [CV97].

I Lemma 68. For all c ∈ N∗, letting kI := 2c − 1, for any signature σ, given a Datalog
program P of var-size bounded by c, we can compute in exponential time in P a ΓkI

σ -bNTA AP
such that the set of the instances obtained by decoding the trees in the language of AP is
canonical for P .

Proof. This proof is based on the notion of unfolding expansion tree of a Datalog program P

(Definition 2.4 of [CV97]).
An expansion tree of a Datalog program is a ranked tree (non-binary in general) where

each node is labeled by an instantiated rule r of P (i.e., an homomorphic image of the rule
by some one-to-one mapping from the variables of the rule to some set of variables), and has
a child for each intensional predicate atom A appearing in r, whose label is a rule r′ with A
for head, with the variables of A mapped to the same variables as in r. We further require
that the root of the tree has a rule with the goal predicate in the head.

An unfolding expansion tree is an expansion tree with the additional condition that, for
each node n of the tree, each variable occurring in the body of the rule labeling n but not in
its head does not occur in the label of any ancestor of n. In other words, the same variable
is never re-used across rules unless the variable is propagated through the head.

From an unfolding expansion tree t, it is possible to get an instance over the extensional
signature satisfying P as follows. Let ν be a one-to-one mapping from the variables in the
rules labeling the nodes of t to constants. We denote by ν(t) the tree obtained by replacing
each variable appearing in the labels of t by its image by ν. We note that t and ν(t) are
identical up to renaming the values in variables. Let Πext(ν(t)) be the tree obtained by
keeping only the facts over the extensional signature in each label of a node of ν(t). We
denote by I(Πext(ν(t))) the instance composed of the facts appearing in Πext(ν(t)). It is
clear that I(Πext(ν(t))) satisfies P : indeed, a simple bottom-up induction on ν(t) shows that
it only contains intensional facts that are derivable by P from I(Πext(ν(t))).

First note that, for P a Datalog program, the set of instances of the form I(Πext(ν(t))),
where t is un unfolding expansion tree of P and ν is some fixed one-to-one mapping to
constants, is a canonical set of instances for P . This comes from Proposition 2.6 of [CV97]:
the Datalog program is equivalent to the infinite disjunction of the Πext(t), where t is an
unfolding expansion tree of P , each Πext(t) being seen as a conjunctive query. So for any
CQ Q, if I |= P ∧ ¬Q, then in particular I |= Πext(t) for some unfolding expansion tree t.
But then I(Πext(ν(t))) 6|= Q, since I(Πext(ν(t))) is a canonical model of Πext(t) and Πext(t)
has a model that does not satisfy Q.

In Section 5.1 of [CV97], the notion of proof tree is introduced. A proof tree for a Datalog
program P is defined as an expansion tree over a finite fixed set of variables {x1, x2, . . . , x2s}
where s is the var-size of P .

In the proof of Proposition 5.6 of [CV97], it is shown that for every unfolding expansion
tree t, there is an associated proof tree t′ obtained by a mapping µ such that t′ = µ(t). Now,
observe that Πext(t′) can be seen as a form of a tree encoding (though not of the same form
as our tree encodings: the domain is a subset of the xi’s, facts are extensional facts of the
instance) of I(Πext(ν(t))) for any one-to-one mapping ν from variables to constants. This
witnesses I(Πext(ν(t)) is of treewidth 6 2s− 1.

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 63

For any Datalog program of var-size c, Proposition 5.9 of [CV97] shows that there exists
a tree automaton of size exponential in P recognizing the proof trees of P (and the proof of
this result makes it clear that this automaton is computable in exponential time). From such
a tree automaton (running on the ranked expansion trees), by projection, we can construct
in polynomial time in the size of the automaton a bNTA A recognizing the Πext(t′) for
any proof tree t′. We now apply the technique of the proof of Proposition B.1 in [ABS15a]
to transform A, in time polynomial in A, into a ΓkI

σ -bNTA AP that recognizes (σ, kI)-tree
encodings of the I(Πext(ν(t))) for an arbitrary unfolding expansion tree t and one-to-one
mapping ν to constants. A technical detail imposed by the technique of [ABS15a] is that
we must ensure that each rule of the Datalog program has either 0 or 2 intensional facts;
we can always do that by an initial transformation of the Datalog program, introducing
intermediate intensional predicates for rules with more than 2 intensional facts or adding a
trivial intensional predicate atom for rules with 1 intensional fact. Note that the var-size of
the Datalog program is not affected by this transformation.

We have thus shown that it is possible to compute AP in exponential time, and that the
set of instances in the decoded language of AP is canonical for P . J

F.2 2EXPTIME-Hardness of Treelike CQ Validity over Valid Trees
We consider “universality” or “validity” problems for queries over trees: given a schema
describing a set of trees and a Boolean query over trees, does every tree satisfy the query.

Let Sch be a finite set of labels. The relational signature of ordered, labeled, binary trees,
denoted SBin

Ch1,Ch2, is made out of the binary predicates FirstChild, SecondChild, unary Root,
Leaf predicates, and Labelα predicates for all α ∈ Sch.

We denote as SBin
Ch1,Ch2,Child,Child? the relational signature containing all the relations of

SBin
Ch1,Ch2 together with binary Child and Child? relations.
A tree T over SBin

Ch1,Ch2 is a relational instance such that:
(i) the non-empty LabelTα ’s for α ∈ Sch form a partition of dom(T) (one can thus talk

about the label of a node n, which is the α ∈ Sch such that n ∈ LabelTα);
(ii) FirstChildT and SecondChildT are one-to-one partial mappings with the same domain

(the set of internal nodes), whose complement is LeafT (the set of leaves), and with
disjoint ranges;

(iii) the inverses of FirstChildT and SecondChildT are one-to-one partial mappings;
(iv) ∃xFirstChild(x, x) ∨ SecondChild(x, x) does not hold;
(v) RootT contains exactly one element (the root r of T), and the following formula does

not hold for r: ∃xFirstChild(x, r) ∨ SecondChild(x, r).
A tree T over SBin

Ch1,Ch2,Child,Child? is a relational instance that verifies the same axioms as a
tree over SBin

Ch1,Ch2, where ChildT is the disjoint union of FirstChildT and SecondChildT , and
where the following formula holds: Child?(x, y)↔ (Child(x, y) ∨ x = y).

A Boolean query on one of the signatures above is valid over a bNTA if for all trees that
satisfy the schema, the query returns true.

We can now prove the following result, which closely tracks Theorem 6 of [BMS08a].

I Theorem 69. Given a CQ Q on SBin
Ch1,Ch2,Child,Child? of treewidth 6 2 and a bNTA A, it is

2EXPTIME-hard to decide whether Q is valid over A.

Proof. We adapt the proof of Theorem 6 of [BMS08a], given in Appendix C.2 of [BMS08b],
which states that validity with respect to a bNTA of a CQ with child and descendant predicates
over unranked trees is 2EXPTIME-hard. We adapt it by moving from unranked trees to binary

64 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

trees (with the changes that it implies in our definition of a bNTA), writing the reduction using
Child? instead of the descendant predicate, and proving that the resulting CQ has bounded
treewidth. The final CQ will be defined through intermediate subformulae, and we will use
the following immediate observation to bound its treewidth: the treewidth of a CQ of the
form Q = ∃xyQ1(x)∧Q2(x,y) is the maximum of the width of a decomposition of ∃xQ1(x)
where all variables of x are in the same bag, and of the treewidth of Q′ = ∃xyR(x)∧Q2(x,y)
where R(x) is a single atom.

We give a self-contained presentation keeping the notation from [BMS08a] as much as
possible, with notable departures highlighted in bold font throughout the proof.

As in [BMS08a], we reduce from the termination of an alternating EXPSPACE Turing
Machine M , a 2EXPTIME-hard problem [CKS81]. The next three paragraphs are taken
in part from [BMS08a], with some minor simplifications, as we need to introduce the same
concepts.

An alternating Turing machine (ATM) is a tuple M = (Ω,Γ,∆, q0) where Ω = Ω∀]Ω∃]
{qa}] {qr} is a finite set of states partitioned into universal states from Ω∀, existential states
from Ω∃, an accepting state qa, and a rejecting state qr. The finite tape alphabet is Γ. The
initial state ofM is q0 ∈ Ω. The transition relation ∆ is a subset of (Ω×Γ)×(Ω×Γ×{L,R, S}).
The letters L, R, and S denote the directions left, right, and stay, according to which the
tape head is moved.

An accepting computation tree for an ATM M is a finite unranked tree labeled by
configurations (tape content, reading head position, and internal state) of M such that (1) if
node v is labeled by an existential configuration, then v has one child, labeled by one of
the possible successor configurations; (2) if v is labeled by a universal configuration, then v
has one child for each possible successor configuration; (3) the root is labeled by the initial
configuration (input word on the tape, head at the beginning of the word, initial state);
and (4) all leaves are labeled by accepting configurations (and accepting configurations
only appear as leaves). An ATM M accepts a word w ∈ Γ∗ if there exists an accepting
computation tree for M with w as initial tape content.

The overall idea of the proof of [BMS08a], that we closely adapt, is as follows. Given
an ATM M and a word w of length n, we construct, in polynomial time, (1) an ATM Mw

which accepts the empty word if and only if M accepts w; and (2) a bNTA A that checks
most important properties of (suitably encoded) computation trees of Mw, except their
consistency w.r.t. the transition relation of Mw. The consistency is tested by a query Q
that we define. To be precise, Q is satisfied by a tree T in L(A) if and only if the transition
relation of Mw is not respected by t. This means that Q is valid w.r.t. A, iff there does not
exist a consistent, accepting computation tree for Mw. Since 2EXPTIME is closed under
complementation, we conclude that validity of CQs on SBin

Ch1,Ch2,Child,Child? with respect to
bNTAs is 2EXPTIME-hard.

Without loss of generality, we assume that universal states of Mw have ex-
actly two successors, whatever the symbol read – if they have less, we can just
add transition(s) to an accepting configuration, and if they have more, we can
introduce intermediary states to encode the n-ary conjunction as a tree of binary
conjunctions, with no change to the tape.

We do not give the non-deterministic tree automaton explicitly, but trees in its language
will have the shape represented by Figure 1.1 The bold nodes are the nodes added to

1 Since our definition of bNTA requires a binary tree to be full, we need to add dummy
nodes where needed, with labels distinct from real nodes. This technicality has no impact,

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 65

the tree of the proof of Theorem 19 of [BMS08a]. The labels of dashed edges indicate the
number of nodes between a node and its ancestor. This bNTA encodes trees that represent
the executions of Mw.

Each configuration in an execution is encoded by a subtree rooted by a node labeled
CT; the CT-node for the initial configuration appears as the unique child of a chain of `
nodes with dummy labels from the root for some integer ` that we will define further (this
chain of ` nodes is only needed for technical reasons). A CT-node has two children labeled
r and NextCT. The subtree rooted by the r-node represents the tape of the configuration
and the subtree rooted by the NextCT-node has zero, one, or two CT-children
representing dummy nodes where needed, that we will regard as zero, one, or
two following configurations depending whether the current state is accepting,
existential, or universal.

A tape (under a node r) is written as a complete binary tree of depth n, with leaves of
the tree containing information about the 2n cells. This complete binary tree, that we will
refer to as the tape tree, is itself encoded for querying purposes in the following fashion: for
1 6 i 6 n, a node with label s represents a node at depth i in the tape tree; each such node
representing a node at depth i, with 1 6 i 6 n− 1, has for first child a node of label p that
serves as a navigation widget indicating the position of this node in the tape tree, and as
second child a node of label TTCh (for tape tree children) that has for children
two nodes of labels s, encoding the two children of the current encoded node in the tape
tree. The navigation widget is a p-labeled node with a single x-child that has itself a single
y-child. If the current encoded node in the tape tree was a left child, x = 0 and y = 1;
otherwise, x = 1 and y = 0 (this widget thus encodes the i-th bit of the address of a cell).
The node r itself has two children, the two nodes labeled with s encoding the first level of
the tape tree. Finally, nodes labeled with s representing a node at depth n in the tape tree
also have a p-labeled navigation widget, but have as second child a c-node that encodes the
content of the cell.

We encode the same information about configuration tapes as in [BMS08b]: symbols on
basic cells, symbol and transition followed on the current cell, and current symbol, previous
state, previous symbol on previous tape cells. This means each cell is virtually annotated
with an element of Γ∪ (Γ×∆)∪ (Γ×Ω×Γ): there are polynomially many such annotations,
we refer to them in the following as 1, . . . , k fixing an arbitrary order. As in [BMS08b],
we want to impose a number of horizontal constraints (constraints on the annotations of
neighboring cells in a given configuration) and of vertical constraints (constraints on the
annotation of the same cell in successive configurations). These constraints can be written
as two sets of pairs H(Mw) and V (Mw) of integers 1 6 i, j 6 k, respectively, indicating
respectively whether j can appear to the right of i in a configuration, and whether j can
appear in the same cell as i in a successive configuration. We refer to [BMS08b] for the full
set of constraints required.

For each cell, the c-node has two children, labeled with m (for me) and f (for forbidden),
each having as descendants a chain of k nodes that can have labels either 0 or 1. Only one
node has label 1 under m: the one whose depth gives the current content of the cell. Under f ,
for a cell at position i in the tape, node at depth j has label 0 if and only if (i, j) ∈ V (Mw).

As in [BMS08b], we can construct in polynomial time a bNTA that enforces that all trees
have the described form, including respect of horizontal constraints, initial configuration
at the root and accepting configuration at the leaves, but excluding vertical constraints.

and we will ignore these nodes.

66 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

⊥

CT

r

s

p

0

1

c

f

· · ·

k

m

· · ·

k

2n− 1

NextCT

CT

r

s

p

0

1

TTCh

s

· · ·

s

· · ·

s

p

1

0

TTCh

· · ·

NextCT

· · ·

CT

· · ·

`

Figure 1 General structure of trees in proof of Theorem 69; bold labels and counters highlight
changes from the proof of Theorem 6 of [BMS08a]

Indeed, vertical constraints cannot (at least straightforwardly) be imposed on the tree as they
relate nodes of the tree that are very far apart – see [BMS08b] for how to encode horizontal
constraints and the general structure. Modifications needed because of our binary setting
are minor. The language of this bNTA is exactly the codes of accepting computation trees
for Mw, except that vertical constraints may be violated.

We now construct a conjunctive query that holds if vertical constraints are violated. In
what follows, we denote by Ri(x, y) the chain ∃x1 . . . xi−1R(x, x1) ∧ · · · ∧R(xi−1, y) for R a
binary relation and i > 1. The query is built up from the following subformulae:

A formula Succ(r1, r2) that expresses that r1 and r2 are roots of a tree encoding tape,
with the configuration of r2 being the successor of that of r1. Formally:

Succ(r1, r2) := ∃s1s2 Labelr(r1) ∧ Labelr(r2)
∧ Child(s1, r1) ∧ Child(s2, r2) ∧ Child2(s1, s2).

There is a tree decomposition of width 2 of this subquery where both ex-
ported variables r1 and r2 are in the same bag.
A formula Φi(x, y) that expresses that x and y are s-nodes encoding a node at the i-th
level of two tape trees, such that the configuration of y is a successor of the configuration
of x:

Φi(x, y) := ∃r1r2 Labels(x) ∧ Labels(y) ∧ Succ(r1, r2)

∧ Child2i−1(r1, x) ∧ Child2i−1(r2, y).

There is a tree decomposition of width 2 of this subquery where both ex-
ported variables x and y are in the same bag.

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 67

A formula Ψi(x, y) that expresses that Φi(x, y) holds and that, additionally, x and y are
both first children or both second children of their parents; note that we could not use
FirstChild and SecondChild here as it would require disjunction. We can, however, use the
navigation widgets:

Ψi(x, y) := ∃pxpytxtyt′xt′yz Φi(x, y) ∧ Labelp(px) ∧ Labelp(py) ∧ Label1(tx) ∧ Label1(ty)
∧ Child(x, px) ∧ Child(y, py) ∧ Child(px, t

′
x) ∧ Child(py, t

′
y)

∧ Child?(t′x, tx) ∧ Child?(t′y, ty)

∧ Child(2i−1)+4(z, tx) ∧ Child(2i−1)+6(z, ty)

Observe that when x and y are both first children, the tx and ty are grandchildren
of the p-node, and therefore at distance (2i − 1) + 3 of the r-node, so going up
(2i− 1) + 4 times brings us to the CT-node of the current configuration, and going up
(2i− 1) + 6 times brings us to the CT-node of the preceding configuration. Similarly, if
x and y are both second children, the tx and ty are children of the p-node, so going up
(2i− 1) + 4 times brings us to the parent of the CT-node of the current configuration,
and going up (2i− 1) + 6 times brings us to the parent of the CT-node of the preceding
configuration. This is one of the two places we need the chain of ` nodes at
the root: otherwise, since the initial configuration does not have a preceding
configuration, we would not be able to go high enough up in the tree to find
the z node. Taking ` > 1 suffices.
There is a tree decomposition of width 2 of this subquery where both ex-
ported variables x and y are in the same bag.
A formula SameCell(s1, s2) that expresses that two s-nodes encoding a node at depth n
in the tape tree (i.e., at the bottom of the tape tree) correspond to the same cell of
successive configuration tapes:

SameCell(s1, s2) := ∃x1 · · ·xn−1y1 · · · yn−1
∧

16i<n−1

(
Child2(xi, xi+1) ∧ Child2(yi, yi+1)

)
∧ Child2(xn−1, s1) ∧ Child2(yn−1, s2)

∧Ψn(s1, s2) ∧
∧

16i<n
Ψi(xi, yi).

There is a tree decomposition of width 2 of this subquery where both ex-
ported variables s1 and s2 are in the same bag.

We can now use these subformulae in the following sentence, that expresses the final con-
junctive query Q. It checks whether the two same cells s1 and s2 of successive configurations
violate vertical constraints. Remember that the value of a cell is encoded under the m-node,
while vertical constraints are encoded under the f -node. A vertical constraint occurs when
the (unique) position of a 1-node under the m-descendant of s2 is equal to the position of a
1-node under the f -descendant of s1.

Q := ∃s1s2t1t2f1m2p1p2z SameCell(s1, s2) ∧ Child(s1, t1) ∧ Child(s2, t2)
∧ Child(t1, f1) ∧ Child(t2,m2)
∧ Labelf (f1) ∧ Labelm(m2) ∧ Label1(p1) ∧ Label1(p2)
∧ (Child?)k(f1, p1) ∧ (Child?)k(m2, p2)

∧ Child(2n−1+3)+k(z, p1) ∧ Child(2n−1+5)+k(z, p2).

68 Combined Tractability of Query Evaluation via Tree Automata and Cycluits

This is the other place we need the chain of ` nodes at the root: otherwise, again,
since the initial configuration does not have a preceding configuration, we would
not be able to go high enough up in the tree to find the z node. Taking ` > k− 1
suffices.

The query Q can be constructed in polynomial time, and Q is valid over the bNTA
previously constructed if and only if the Turing machine Mw has no accepting (EXPSPACE)
computation tree. Q has treewidth 2. J

F.3 2EXPTIME-Hardness of MDL containment in a Treelike CQ
We show a 2EXPTIME lower bound for the problem of checking the containment of a
monadic Datalog program in a CQ of treewidth 6 2. This matches the general upper bound
for the containment of a Datalog query within a union of CQs.

I Theorem 70. The following containment problem is 2EXPTIME-hard over the arity-two
signature SBin

Ch1,Ch2,Child,Child? : given a monadic Datalog program P with var-size 6 3 and a
conjunctive query Q of treewidth 6 2, decide whether there exists some instance I satisfying
P ∧ ¬Q.

Proof. We reduce from the problem of validity of a CQ on SBin
Ch1,Ch2,Child,Child? of treewidth

6 2 over a bNTA, which is 2EXPTIME-hard by Theorem 69.
Let A = (Q, F, ι,∆) be a bNTA satisfying the two requirements in the previous paragraph,

and Q a conjunctive query of treewidth 6 2. We build a monadic Datalog program P as
follows, which obeys the desired bound on var-size:

For every q ∈ Q, we have an intensional monadic predicate Pq.
For every q ∈ F , we have a rule:

Goal()← Root(r), Pq(r).

For every symbol α ∈ Sch, for every q ∈ ι(α), we have a rule:

Pq(l)← Leaf(l), Labelα(l),Child?(l, l).

For every symbol α ∈ Sch, for every q1, q2, q
′ ∈ Q such that q′ ∈ ∆(α, q1, q2), we have a

rule:

Pq′(n)← Labelα(n), Pq1(n1), Pq2(n2),
FirstChild(n, n1),Child(n, n1),Child?(n, n1),
SecondChild(n, n2),Child(n, n2),Child?(n, n2),
Child?(n, n)

Now, by construction, for every unfolding expansion tree t of P (see proof of Lemma 68),
I(Πext(t)) is a tree over SBin

Ch1,Ch2,Child,Child? . Again by the proof of Lemma 68, the set of the
instances of the form I(Πext(t)) where t is an unfolding expansion tree of P is a canonical
set of instances. In particular, there exists an instance satisfying P and not satisfying Q if
and only if Q is valid over A. J

References for the Appendix

ABS15a A. Amarilli, P. Bourhis, and P. Senellart. Provenance circuits for trees and treelike instances
(extended version). CoRR, abs/1511.08723, 2015. Extended version of [ABS15b].

https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1511.08723

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart 69

ABS15b A. Amarilli, P. Bourhis, and P. Senellart. Provenance circuits for trees and treelike instances.
In ICALP, volume 9135 of LNCS, 2015.

AHV95 S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, 1995.
ALSU06 A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 2nd edition, 2006.
Ama16 A. Amarilli. Leveraging the structure of uncertain data. PhD thesis, Télécom ParisTech,

2016.
Bar13 P. Barceló. Querying graph databases. In PODS, 2013.
BBGS16 M. Benedikt, P. Bourhis, G. Gottlob, and P. Senellart. Monadic datalog and limited access

containment. Unpublished, 2016.
BBS12 M. Benedikt, P. Bourhis, and P. Senellart. Monadic datalog containment. In ICALP, 2012.
BK10 H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations I. Upper bounds. Inf.

Comput., 208(3), 2010.
BMS08a H. Björklund, W. Martens, and T. Schwentick. Optimizing conjunctive queries over trees

using schema information. In MFCS, 2008.
BMS08b H. Björklund, W. Martens, and T. Schwentick. Optimizing conjunctive queries over

trees using schema information. http://www.theoinf.uni-bayreuth.de/download/
Optimizing_Conjunctive_Queries_over_Trees.pdf, 2008. Extended unpublished ver-
sion of [BMS08a].

Bod96 H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6), 1996.

BtCV14 M. Benedikt, B. ten Cate, and M. Vanden Boom. Effective interpolation and preservation
in guarded logics. In LICS, 2014.

CDG+07 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata: Techniques and applications, 2007. Available from
http://tata.gforge.inria.fr/.

CGKV88 S. Cosmadakis, H. Gaifman, P. Kanellakis, and M. Vardi. Decidable optimization problems
for database logic programs. In STOC, 1988.

CKS81 A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1), 1981.
CV97 S. Chaudhuri and M. Y. Vardi. On the equivalence of recursive and nonrecursive Datalog

programs. Journal of Computer and System Sciences, 54(1), 1997.
FFG02 J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. J. ACM,

49(6), 2002.
Gav74 F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.

J. Combinatorial Theory, 16(1), 1974.
TY84 R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs,

test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal
on Computing, 13(3):566–579, 1984.

Val79 L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3), 1979.

http://webdam.inria.fr/Alice/pdfs/all.pdf
https://tel.archives-ouvertes.fr/tel-01345836
https://users.dcc.uchile.cl/~pbarcelo/pods001i-barcelo.pdf
http://pierre.senellart.com/publications/benedikt2012monadic.pdf
http://www.sciencedirect.com/science/article/pii/S0890540109000947
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.182.2832
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.182.2832
http://www.theoinf.uni-bayreuth.de/download/Optimizing_Conjunctive_Queries_over_Trees.pdf
http://www.theoinf.uni-bayreuth.de/download/Optimizing_Conjunctive_Queries_over_Trees.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-27.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-27.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/CSL-LICS14-gnfi-long.pdf
https://www.cs.ox.ac.uk/people/michael.vandenboom/papers/CSL-LICS14-gnfi-long.pdf
http://tata.gforge.inria.fr/
http://www.sciencedirect.com/science/article/pii/S0022000097914525
http://www.sciencedirect.com/science/article/pii/S0022000097914525
https://home.mathematik.uni-freiburg.de/flum/preprints/query.ps
http://www.sciencedirect.com/science/article/pii/009589567490094X

	1 Introduction
	2 Preliminaries
	3 Approaches for Tractability
	3.1 Tractable Queries on All Instances
	3.2 Tractability on Treelike Instances
	3.3 Restricted Queries on Treelike Instances

	4 Conjunctive Queries on Treelike Instances
	5 ICG-Datalog on Treelike Instances
	6 Compilation to Automata
	7 Provenance Cycluits
	8 From Cycluits to Circuits and Probability Bounds
	9 Conclusion
	A Proofs for Section 4 (Conjunctive Queries on Treelike Instances)
	B Proofs for Section 5 (ICG-Datalog on Treelike Instances)
	C Proofs for Section 6 (Compilation to Automata)
	C.1 Details on Tree Encodings
	C.2 Evaluation
	C.3 Compilation

	D Proofs for Section 7 (Provenance Cycluits)
	D.1 Cycluits
	D.2 Stratified cycluits
	D.3 Building provenance cycluits

	E Proofs for Section 8 (From Cycluits to Circuits and Probability Bounds)
	E.1 From cycluits to circuits
	E.1.1 Rewriting to arity-two cycluits
	E.1.2 Regrouped tree decompositions
	E.1.3 Normal-form tree decompositions
	E.1.4 Rewriting monotone cycluits
	E.1.5 Isotropic rewritings of monotone cycluits
	E.1.6 Rewriting stratified cycluits

	E.2 Hardness of PQE

	F Results from unpublishedbenediktmonadic
	F.1 Treelike canonical set of instances of a Datalog program
	F.2 2EXPTIME-Hardness of Treelike CQ Validity over Valid Trees
	F.3 2EXPTIME-Hardness of MDL containment in a Treelike CQ

