Combined Tractability of Query Evaluation via Tree Automata and Cycluits

Antoine Amarilli¹, Pierre Bourhis², **Mikaël Monet**^{1,4}, Pierre Senellart^{3,4} March 23th, 2017

¹LTCI, Télécom ParisTech, Université Paris-Saclay; Paris, France

²CNRS, CRIStAL, Inria Lille; Lille, France

³École normale supérieure, PSL Reasearch University; Paris, France

⁴Inria Paris; Paris, France

Conjunctive query Q on relational instance I

Conjunctive query Q on relational instance I

Complexity: NP-complete in combined, PTIME in data

Conjunctive query Q on relational instance I

Complexity: NP-complete in combined, PTIME in data

- PTIME is not enough! We want $O(|Q| \times |I|)$

Conjunctive query Q on relational instance I

Complexity: NP-complete in combined, PTIME in data

- PTIME is not enough! We want $O(|Q| \times |I|)$
- · More elaborate tasks? Counting, probabilistic evaluation, etc.

Conjunctive query Q on relational instance I

Complexity: NP-complete in combined, PTIME in data

- PTIME is not enough! We want $O(|Q| \times |I|)$
- · More elaborate tasks? Counting, probabilistic evaluation, etc.
- → Efficient provenance computation

Restrict the query:

Restrict the query:

• α -acyclic CQs $\rightarrow O(|Q| \times |I|)$

Restrict the query:

- α -acyclic CQs $\rightarrow O(|Q| \times |I|)$
- GF, RPQs, etc. ightarrow O(|Q| imes |I|)

Restrict the query:

- α -acyclic CQs $\rightarrow O(|Q| \times |I|)$
- GF, RPQs, etc. $\rightarrow O(|Q| \times |I|)$
- FO^k, bounded hypertreewidth, etc. \rightarrow **PTIME but not** $O(|Q| \times |I|)$

Restrict the query:

- α -acyclic CQs $\rightarrow O(|Q| \times |I|)$
- GF, RPQs, etc. $\rightarrow O(|Q| \times |I|)$
- FO^k, bounded hypertreewidth, etc. \rightarrow **PTIME but not** $O(|Q| \times |I|)$

Restrict the instance:

Restrict the query:

- α -acyclic CQs $\rightarrow O(|Q| \times |I|)$
- GF, RPQs, etc. $\rightarrow O(|Q| \times |I|)$
- FO^k, bounded hypertreewidth, etc. \rightarrow **PTIME but not** $O(|Q| \times |I|)$

Restrict the instance:

• Bounded treewidth data: MSO has O(|I|) time data complexity

Restrict the query:

- α -acyclic CQs $\rightarrow O(|Q| \times |I|)$
- GF, RPQs, etc. $\rightarrow O(|Q| \times |I|)$
- FO^k, bounded hypertreewidth, etc. \rightarrow **PTIME but not** $O(|Q| \times |I|)$

Restrict the instance:

- Bounded treewidth data: MSO has O(|I|) time data complexity
- Problem: nonelementary in the query 2². (EXPTIME for CQs)

Our Approach

Approach	Restrict <i>Q</i>	Restrict ${\mathcal I}$	
Complexity	linear in combined	linear in data	
Expressivity	60		

Our Approach

Approach	Restrict Q	Restrict ${\mathcal I}$	Restrict $\mathcal Q$ and $\mathcal I$
Complexity	linear in combined	linear in data	linear in combined
Expressivity	00		<u> </u>

Best of both worlds!

Idea: one parameter k_I for the instance (treewidth) AND one parameter k_Q for the query

Idea: one parameter k_I for the instance (treewidth) AND one parameter k_Q for the query

• Instance classes $\mathcal{I}_1, \mathcal{I}_2, \cdots$

Idea: one parameter k_I for the instance (treewidth) AND one parameter k_Q for the query

- Instance classes $\mathcal{I}_1, \mathcal{I}_2, \cdots$
- Query classes Q_1, Q_2, \cdots

Idea: one parameter k_I for the instance (treewidth) AND one parameter k_Q for the query

- Instance classes $\mathcal{I}_1, \mathcal{I}_2, \cdots$
- Query classes Q_1, Q_2, \cdots

Definition

The problem is fixed-parameter tractable (FPT) linear if there exists a computable function f such that it can be solved in time $f(k_I, k_O) \times |Q| \times |I|$

Main contributions

- 1) A new language...
 - We introduce the language of intentional-clique-guarded
 Datalog (ICG-Datalog), parameterized by body-size kp

Main contributions

- 1) A new language...
 - We introduce the language of intentional-clique-guarded
 Datalog (ICG-Datalog), parameterized by body-size kp
- 2) ... with **FPT-linear** (combined) evaluation...
 - Given an ICG-Datalog program P with body-size k_P and a relational instance I of treewidth k_I , checking if $I \models P$ can be done in time $f(k_P, k_I) \times |P| \times |I|$

Main contributions

- 1) A new language...
 - We introduce the language of intentional-clique-guarded
 Datalog (ICG-Datalog), parameterized by body-size kp
- 2) ... with FPT-linear (combined) evaluation...
 - Given an ICG-Datalog program P with body-size k_P and a relational instance I of treewidth k_I , checking if $I \models P$ can be done in time $f(k_P, k_I) \times |P| \times |I|$
- 3) ... and also FPT-linear (combined) computation of provenance
 - We design a new concise provenance representation based on cyclic Boolean circuits: cycluits

Fragment of Datalog with stratified negation

- · Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\mathrm{ext}} \sqcup \sigma^{\mathrm{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$
- · Boolean programs: special o-ary intensional predicate Goal()

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$
- · Boolean programs: special o-ary intensional predicate Goal()

```
\begin{cases} \vdots \\ S(x,t) \leftarrow R_1(x,y) \land R_2(y,t,z) \land R_3(z,x) \land S'(x,y,z) \\ \vdots \\ \text{Goal()} \leftarrow \cdots \end{cases}
```

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$
- · Boolean programs: special o-ary intensional predicate Goal()

$$\begin{cases} \vdots \\ S(x,t) \leftarrow R_1(x,y) \land R_2(y,t,z) \land R_3(z,x) \land S'(x,y,z) \\ \vdots \\ \text{Goal()} \leftarrow \cdots \end{cases}$$

· Intensional clique-guarded

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$
- · Boolean programs: special o-ary intensional predicate Goal()

$$\begin{cases} \vdots \\ S(x,t) \leftarrow R_1(x,y) \land R_2(y,t,z) \land R_3(z,x) \land S'(x,y,z) \\ \vdots \\ \text{Goal()} \leftarrow \cdots \end{cases}$$

· Intensional clique-guarded

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$
- · Boolean programs: special o-ary intensional predicate Goal()

$$\begin{cases} \vdots \\ S(x,t) \leftarrow R_1(x,y) \land R_2(y,t,z) \land R_3(z,x) \land S'(x,y,z) \\ \vdots \\ Goal() \leftarrow \cdots \end{cases}$$

· Intensional clique-guarded

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\mathrm{ext}} \sqcup \sigma^{\mathrm{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$
- · Boolean programs: special o-ary intensional predicate Goal()

$$\begin{cases} \vdots \\ S(x,t) \leftarrow R_1(x,y) \land R_2(y,t,z) \land R_3(z,x) \land S'(x,y,z) \\ \vdots \\ \text{Goal}() \leftarrow \cdots \end{cases}$$

• Intensional clique-guarded (≠ frontier-guarded Datalog!)

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$
- · Boolean programs: special o-ary intensional predicate Goal()

$$\begin{cases} \vdots \\ S(x,t) \leftarrow R_1(x,y) \land R_2(y,t,z) \land R_3(z,x) \land S'(x,y,z) \\ \vdots \\ \text{Goal}() \leftarrow \cdots \end{cases}$$

- · Intensional clique-guarded (≠ frontier-guarded Datalog!)
- body-size = $MaxArity(\sigma) \times max_{rule\ r} NbAtoms(r)$ "size to write a rule"

- Fragment of Datalog with stratified negation
- $\sigma = \sigma^{\text{ext}} \sqcup \sigma^{\text{int}} = \{R_1, R_2, \ldots\} \sqcup \{S_1, S_2, \ldots\}$
- · Boolean programs: special o-ary intensional predicate Goal()

$$\begin{cases} \vdots \\ S(x,t) \leftarrow R_1(x,y) \land R_2(y,t,z) \land R_3(z,x) \land S'(x,y,z) \\ \vdots \\ Goal() \leftarrow \cdots \end{cases}$$

- · Intensional clique-guarded (≠ frontier-guarded Datalog!)
- body-size = $MaxArity(\sigma) \times max_{rule\ r} NbAtoms(r)$ "size to write a rule"
- · We also allow stratified negation

Database I of treewidth ≤ k₁

(Paris Metro map)

ICG-Datalog program P

 $C(x) \leftarrow Subway("Corvisart",x)$

 $C(x) \leftarrow C(y) \land Subway(y,x)$

Database I of treewidth ≤ k₁

(Paris Metro map)

ICG-Datalog program P

1
$$C(x) \leftarrow Subway("Corvisart",x)$$

 $C(x) \leftarrow C(y) \land Subway(y,x)$

Database I of treewidth ≤ k,

(Paris Metro map)

ICG-Datalog program P

1
$$C(x) \leftarrow Subway("Corvisart",x)$$

 $C(x) \leftarrow C(y) \land Subway(y,x)$

"Is it impossible to go from station Corvisart to station Châtelet with the subway?"

Database I of treewidth ≤ k₁

(Paris Metro map)

ICG-Datalog program P of body-size 4

1
$$C(x) \leftarrow Subway("Corvisart",x)$$

 $C(x) \leftarrow C(y) \land Subway(y,x)$

"Is it impossible to go from station Corvisart to station Châtelet with the subway?"

· ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)

- ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)
- · Simplicial width of a CQ: interface between bags are cliques

- · ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)
- · Simplicial width of a CQ: interface between bags are cliques
- ightarrow upper bound of treewidth

- · ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)
- · Simplicial width of a CQ: interface between bags are cliques
- \rightarrow upper bound of treewidth

Theorem

Bounded simplicial width conjunctive queries can be captured by bounded body-size ICG-Datalog programs

- · ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)
- · Simplicial width of a CQ: interface between bags are cliques
- → upper bound of treewidth

Theorem

Bounded simplicial width conjunctive queries can be captured by bounded body-size ICG-Datalog programs

· Cannot capture bounded treewidth CQs with the same tools

• α -acyclic CQs for $k_P \leqslant \operatorname{MaxArity}(\sigma^{\operatorname{ext}})$

- α -acyclic CQs for $k_P \leq \text{MaxArity}(\sigma^{\text{ext}})$
- Boolean 2RPQs, SAC2RPQs for $k_P \leqslant 4$

- α -acyclic CQs for $k_P \leq \text{MaxArity}(\sigma^{\text{ext}})$
- Boolean 2RPQs, SAC2RPQs for $k_P \leqslant 4$
- Monadic Datalog of bounded body-size

- α -acyclic CQs for $k_P \leq \text{MaxArity}(\sigma^{\text{ext}})$
- Boolean 2RPQs, SAC2RPQs for $k_P \leqslant 4$
- · Monadic Datalog of bounded body-size
- Some Guarded Negation fragments (e.g GNF with CQ-rank)

ICG-Datalog program P of body-size ≤ k_p

$$C(x) \leftarrow Subway("Corvisart",x)$$

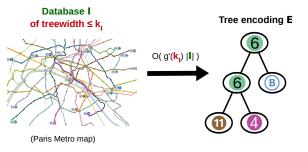
 $C(x) \leftarrow C(y) \land Subway(y,x)$

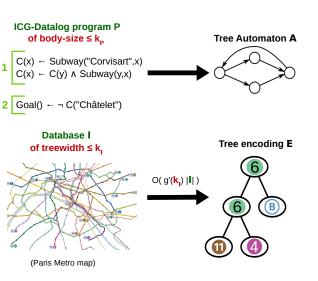
Database I of treewidth ≤ k₁

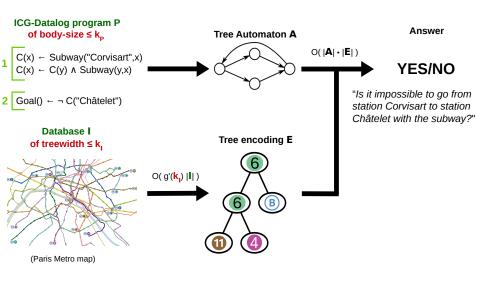
(Paris Metro map)

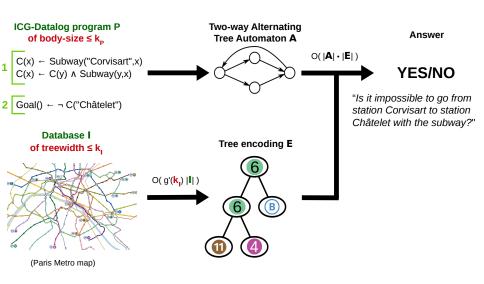
ICG-Datalog program P of body-size ≤ k_p

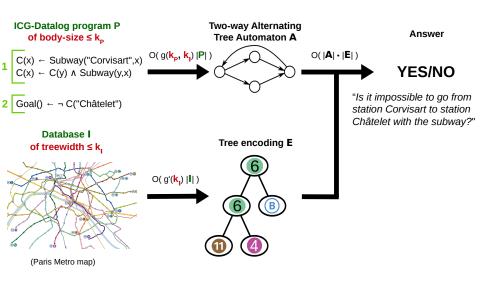
$$C(x) \leftarrow Subway("Corvisart",x)$$
$$C(x) \leftarrow C(y) \land Subway(y,x)$$











Definition

The provenance $\operatorname{Prov}(P,I)$ of program P on instance I is the function that takes as input a subinstance $I'\subseteq I$ and outputs TRUE iff $I'\models P$

Definition

The *provenance* $\operatorname{Prov}(P, I)$ of program P on instance I is the function that takes as input a subinstance $I' \subseteq I$ and outputs TRUE iff $I' \models P$ Possible representations:

· Boolean formulas (with the facts as variables)

Definition

The *provenance* $\operatorname{Prov}(P, I)$ of program P on instance I is the function that takes as input a subinstance $I' \subseteq I$ and outputs TRUE iff $I' \models P$ Possible representations:

- · Boolean formulas (with the facts as variables)
- Boolean circuits (with the facts as inputs)

Definition

The provenance $\operatorname{Prov}(P,I)$ of program P on instance I is the function that takes as input a subinstance $I'\subseteq I$ and outputs TRUE iff $I'\models P$

Possible representations:

- Boolean formulas (with the facts as variables)
- Boolean circuits (with the facts as inputs)

New Boolean circuits... with cycles! (*cycluits*)

Definition

The provenance $\operatorname{Prov}(P,I)$ of program P on instance I is the function that takes as input a subinstance $I'\subseteq I$ and outputs TRUE iff $I'\models P$

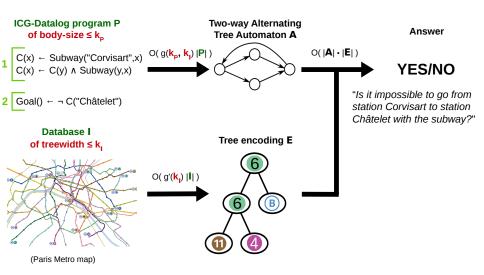
Possible representations:

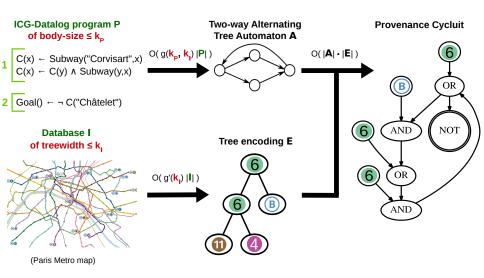
- · Boolean formulas (with the facts as variables)
- Boolean circuits (with the facts as inputs)

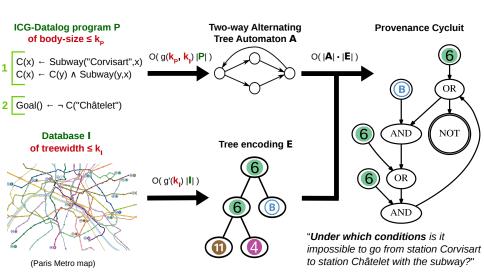
New Boolean circuits... with cycles! (cycluits)

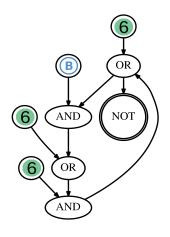
Theorem

Given an ICG-Datalog program P with body-size k_P and a relational instance I of treewidth k_I , we can compute in time $f(k_P, k_I) \times |P| \times |I|$ a Boolean **cycluit** capturing Prov(Q, I)

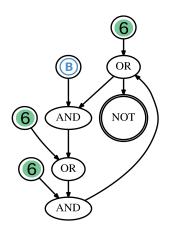




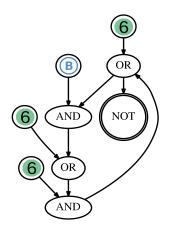




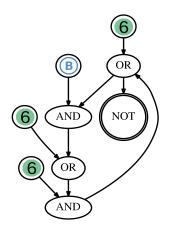
· Circuit with cycles



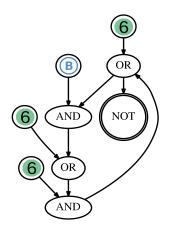
- · Circuit with cycles
- Forbid cycles of negation
 the cycluit is stratified



- · Circuit with cycles
- Forbid cycles of negation
 the cycluit is stratified
- · Semantics: least fixed-point



- Circuit with cycles
- Forbid cycles of negation
 the cycluit is stratified
- · Semantics: least fixed-point
- · Evaluation: linear time



- Circuit with cycles
- Forbid cycles of negation
 the cycluit is stratified
- · Semantics: least fixed-point
- · Evaluation: linear time

• Introduced ICG-Datalog, FPT-linear parameterized by body-size of program P and instance treewidth: $f(k_P, k_I) \times |P| \times |I|$

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of program P and instance treewidth: $f(k_P, k_I) \times |P| \times |I|$
- We propose a new concise provenance representation: cycluits

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of program P and instance treewidth: $f(k_P, k_I) \times |P| \times |I|$
- We propose a new concise provenance representation: cycluits

Other results:

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of program P and instance treewidth: $f(k_P, k_I) \times |P| \times |I|$
- · We propose a new concise provenance representation: cycluits

Other results:

· Application to probabilistic evaluation, model counting

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of program P and instance treewidth: $f(k_P, k_I) \times |P| \times |I|$
- · We propose a new concise provenance representation: cycluits

Other results:

- · Application to probabilistic evaluation, model counting
- · Lower bounds (bounded treewidth CQs, type of automata)

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of program P and instance treewidth: $f(k_P, k_I) \times |P| \times |I|$
- · We propose a new concise provenance representation: cycluits

Other results:

- · Application to probabilistic evaluation, model counting
- · Lower bounds (bounded treewidth CQs, type of automata)

Future work:

ullet Improve ICG-Datalog o Clique-Frontier-Guarded Datalog

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of program P and instance treewidth: $f(k_P, k_I) \times |P| \times |I|$
- · We propose a new concise provenance representation: cycluits

Other results:

- · Application to probabilistic evaluation, model counting
- · Lower bounds (bounded treewidth CQs, type of automata)

Future work:

- Improve ICG-Datalog → Clique-Frontier-Guarded Datalog
- Show PTIME combined complexity when body-size only is bounded (on arbitrary instances) $O(|P| \times |I|^{k_p})$

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of program P and instance treewidth: $f(k_P, k_I) \times |P| \times |I|$
- · We propose a new concise provenance representation: cycluits

Other results:

- · Application to probabilistic evaluation, model counting
- · Lower bounds (bounded treewidth CQs, type of automata)

Future work:

- ullet Improve ICG-Datalog o Clique-Frontier-Guarded Datalog
- Show PTIME combined complexity when body-size only is bounded (on arbitrary instances) $O(|P| \times |I|^{k_p})$
- Extend cycluit framework to more expressive provenance semirings

Thank you!

