Combined Tractability of Query Evaluation
via Tree Automata and Cycluits

Antoine Amarilli’, Pierre Bourhis?, Mikaél Monet™*, Pierre Senellart®*
March 23th, 2017

TLTCI, Telécom ParisTech, Université Paris-Saclay; Paris, France
2CNRS, CRIStAL, Inria Lille; Lille, France
3Ecole normale supérieure, PSL Reasearch University; Paris, France

“Inria Paris; Paris, France

Big data, big queries

Conjunctive query Q on relational instance |

115

Big data, big queries

Conjunctive query Q on relational instance |

Complexity: NP-complete in combined, PTIME in data

115

Big data, big queries

Conjunctive query Q on relational instance |
Complexity: NP-complete in combined, PTIME in data

- PTIME is not enough! We want O(|Q| x |I|)

115

Big data, big queries

Conjunctive query Q on relational instance |
Complexity: NP-complete in combined, PTIME in data

- PTIME is not enough! We want O(|Q| x |I|)
- More elaborate tasks? Counting, probabilistic evaluation, etc.

115

Big data, big queries

Conjunctive query Q on relational instance |
Complexity: NP-complete in combined, PTIME in data

- PTIME is not enough! We want O(|Q| x |I|)
- More elaborate tasks? Counting, probabilistic evaluation, etc.

— Efficient provenance computation

1/15

Current approaches

Restrict the query:

2/15

Current approaches

Restrict the query:

- a-acyclic CQs — O(|Q| x |1])

2/15

Current approaches

Restrict the query:

- a-acyclic CQs — O(|Q| x |I])
- GF, RPQs, etc. — O(|Q| x |I])

2/15

Current approaches

Restrict the query:

- a-acyclic CQs — O(|Q| x |I])
- GF, RPQs, etc. — O(|Q| x |I])
- FO, bounded hypertreewidth, etc. — PTIME but not O(|Q| x |/|)

2/15

Current approaches

Restrict the query:

- a-acyclic CQs — O(|Q| x |I])
- GF, RPQs, etc. — O(|Q| x |I])
- FO, bounded hypertreewidth, etc. — PTIME but not O(|Q| x |/|)

Restrict the instance:

2/15

Current approaches

Restrict the query:

- a-acyclic CQs — O(|Q| x |I])
- GF, RPQs, etc. — O(|Q| x |I])
- FO, bounded hypertreewidth, etc. — PTIME but not O(|Q| x |/|)

Restrict the instance:

- Bounded treewidth data: MSO has O(|l|) time data complexity

2/15

Current approaches

Restrict the query:

- a-acyclic CQs — O(|Q| x |I])
- GF, RPQs, etc. — O(|Q| x |I])
- FO, bounded hypertreewidth, etc. — PTIME but not O(|Q| x |/|)

Restrict the instance:

- Bounded treewidth data: MSO has O(|l|) time data complexity

lal

- Problem: nonelementary in the query 22 (EXPTIME for CQs)

2/15

Our Approach

Approach Restrict Q Restrict Z

Complexity || linear in combined |linear in data
G oo

Expressivity 4 1 =4

3/15

Our Approach

Approach Restrict Q Restrict Z Restrict Qand T
Complexity |[linear in combined |linear in data | linear in combined
Gd € i \ (-';\1
Expressivity A4 L =4 L4

Best of both worlds!

3/15

Parameterized Complexity

Idea: one parameter R, for the instance (treewidth) AND one
parameter Rq for the query

4/15

Parameterized Complexity

Idea: one parameter R, for the instance (treewidth) AND one
parameter Rq for the query

- Instance classes 7,,Z5, - - -

4/15

Parameterized Complexity

Idea: one parameter R, for the instance (treewidth) AND one
parameter Rq for the query

- Instance classes 7,,Z5, - - -

- Query classes Qq, Dy, - -+

4/15

Parameterized Complexity

Idea: one parameter R, for the instance (treewidth) AND one
parameter Rq for the query

- Instance classes 7,,Z5, - - -
- Query classes Qq, Dy, - -+
Definition

The problem is fixed-parameter tractable (FPT) linear if there exists a
computable function f such that it can be solved in time

f(RisRq) > 1Q] x |1

4/15

Main contributions

1) A new language...

- We introduce the language of intentional-clique-guarded
Datalog (ICG-Datalog), parameterized by body-size kp

5/15

Main contributions

1) A new language...

- We introduce the language of intentional-clique-guarded

Datalog (ICG-Datalog), parameterized by body-size kp

... with FPT-linear (combined) evaluation...

- Given an ICG-Datalog program P with body-size kp and a

relational instance | of treewidth Ry, checking if | = P can be
done in time f(kp, R;) x |P| x |I|

5/15

Main contributions

1) A new language...

- We introduce the language of intentional-clique-guarded

Datalog (ICG-Datalog), parameterized by body-size kp

... with FPT-linear (combined) evaluation...

- Given an ICG-Datalog program P with body-size kp and a

relational instance | of treewidth Ry, checking if | = P can be
done in time f(kp, R;) x |P| x |I|

.. and also FPT-linear (combined) computation of provenance

- We design a new concise provenance representation based on

cyclic Boolean circuits: cycluits

5/15

ICG-Datalog

- Fragment of Datalog with stratified negation

6/15

ICG-Datalog

- Fragment of Datalog with stratified negation
co=0" o ={R,R,,...} U{S,,S,,.. .}

6/15

ICG-Datalog

- Fragment of Datalog with stratified negation
co=0" o ={R,R,,...} U{S,,S,,.. .}
- Boolean programs: special 0-ary intensional predicate Goal()

6/15

ICG-Datalog

- Fragment of Datalog with stratified negation
co=0" o ={R,R,,...} U{S,,S,,.. .}
- Boolean programs: special 0-ary intensional predicate Goal()

S(X,t) < Ri(X,y) A Ra(y, t,2) AR3(z,x) AS'(X,Y,2)

Goal() « - --

6/15

ICG-Datalog

- Fragment of Datalog with stratified negation
co=0" o ={R,R,,...} U{S,,S,,.. .}
- Boolean programs: special 0-ary intensional predicate Goal()

S(X,t) < Ri(X,y) A Ra(y, t,2) AR3(z,x) AS'(X,Y,2)

Goal() « - --

- Intensional cliqgue-guarded

6/15

ICG-Datalog

- Fragment of Datalog with stratified negation
co=0" o ={R,R,,...} U{S,,S,,.. .}
- Boolean programs: special 0-ary intensional predicate Goal()

S(X,t) < Ri(X,y) A Ra(y, t,2) AR3(z,x) AS'(X,V,2)

Goal() « - --

- Intensional cliqgue-guarded

6/15

ICG-Datalog

- Fragment of Datalog with stratified negation
co=0" o ={R,R,,...} U{S,,S,,.. .}
- Boolean programs: special 0-ary intensional predicate Goal()

S(x,t) < Ri(x,¥) ARa2(v,t,2) AR3(Z,X) AS'(X,V,2)

Goal() « - --

- Intensional cliqgue-guarded

6/15

ICG-Datalog

- Fragment of Datalog with stratified negation
co=0" o ={R,R,,...} U{S,,S,,.. .}
- Boolean programs: special 0-ary intensional predicate Goal()

S(x,t) < Ri(x,¥) ARa2(v,t,2) AR3(Z,X) AS'(X,V,2)

Goal() « - --

- Intensional clique-guarded (# frontier-guarded Datalog!)

6/15

ICG-Datalog

- Fragment of Datalog with stratified negation
co=0" o ={R,R,,...} U{S,,S,,.. .}
- Boolean programs: special 0-ary intensional predicate Goal()

S(x,t) < Ri(x,¥) ARa2(v,t,2) AR3(Z,X) AS'(X,V,2)

Goal() « - --

- Intensional clique-guarded (# frontier-guarded Datalog!)
- body-size = MaxArity(c) x maXye r NbAtoms(r)
"size to write a rule"

6/15

ICG-Datalog

- Fragment of Datalog with stratified negation
co=0" o ={R,R,,...} U{S,,S,,.. .}
- Boolean programs: special 0-ary intensional predicate Goal()

S(x,t) < Ri(x,¥) ARa2(v,t,2) AR3(Z,X) AS'(X,V,2)

Goal() « - --

- Intensional clique-guarded (# frontier-guarded Datalog!)
- body-size = MaxArity(c) x maXye r NbAtoms(r)

"size to write a rule"
- We also allow stratified negation

6/15

Database | ICG-Datalog program P
of treewidth < k,

C(x) < Subway("Corvisart",x)
C(x) = C(y) A Subway(y,x)

(Paris Metro map)

7115

Database | ICG-Datalog program P
of treewidth < k,

1 C(x) < Subway("Corvisart",x)
C(x) = C(y) A Subway(y,x)

2 | Goal() — - C("Chéatelet")

(Paris Metro map)

7115

Database | ICG-Datalog program P
of treewidth < k,

1 C(x) < Subway("Corvisart",x)
C(x) = C(y) A Subway(y,x)

2 | Goal() — - C("Chéatelet")

“Is it impossible to go from
station Corvisart to station
Chételet with the subway?"

(Paris Metro map)

7115

Database | ICG-Datalog program P
of treewidth < k| of body-size 4

1 C(x) < Subway("Corvisart",x)
C(x) = C(y) A Subway(y,x)

2 | Goal() — - C("Chéatelet")

“Is it impossible to go from
station Corvisart to station
Chételet with the subway?"

(Paris Metro map)

7115

CQs captured

- ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)

8/15

CQs captured

- ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)

- Simplicial width of a CQ: interface between bags are cliques

8/15

CQs captured

- ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)
- Simplicial width of a CQ: interface between bags are cliques

— upper bound of treewidth

8/15

CQs captured

- ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)
- Simplicial width of a CQ: interface between bags are cliques

— upper bound of treewidth

Theorem
Bounded simplicial width conjunctive queries can be captured by
bounded body-size ICG-Datalog programs

8/15

CQs captured

- ICG-Datalog can express any Boolean CQ (unlike, e.g, CGF)
- Simplicial width of a CQ: interface between bags are cliques

— upper bound of treewidth

Theorem
Bounded simplicial width conjunctive queries can be captured by
bounded body-size ICG-Datalog programs

- Cannot capture bounded treewidth CQs with the same tools

8/15

Other languages captured

- a-acyclic CQs for kp < MaxArity (o)

9/15

Other languages captured

- a-acyclic CQs for kp < MaxArity (o)
- Boolean 2RPQs, SAC2RPQs for kp < 4

9/15

Other languages captured

- a-acyclic CQs for kp < MaxArity (o)
- Boolean 2RPQs, SAC2RPQs for kp < 4
- Monadic Datalog of bounded body-size

9/15

Other languages captured

- a-acyclic CQs for kp < MaxArity (o)

- Boolean 2RPQs, SAC2RPQs for kp < 4

- Monadic Datalog of bounded body-size

- Some Guarded Negation fragments (e.g GNF with CQ-rank)

9/15

Proof Structure

10/15

Proof Structure

ICG-Datalog program P
of body-size < k,

C(x) < Subway("Corvisart",x)
C(x) < C(y) A Subway(y,x)

2 | Goal() ~ - C("Chételet")

Database |
of treewidth < k;

78

o8 o

(Paris Metro map)

10/15

Proof Structure

ICG-Datalog program P
of body-size < k,

C(x) < Subway("Corvisart",x)
C(x) < C(y) A Subway(y,x)

2 | Goal() < - C("Chatelet")

Database |)
of treewidth s k, Tree encoding E

| &>
o(gk) 1)
> ®

@ @

(Paris Metro map)

10/15

Proof Structure

ICG-Datalog program P
of body-size < k, Tree Automaton A

1 C(x) < Subway("Corvisart",x)
C(x) < C(y) A Subway(y,x) ﬁ

2 | Goal() ~ - C("Chételet")

Database |)
of treewidth s k, Tree encoding E

| &>
o(gk) 1)
> ®

@ @

(Paris Metro map)

10/15

Proof Structure

ICG-Datalog program P
of body-size s k;, Tree Automaton A Answer

;(x) — Subway("Corvisart",x) OCIAI-1EJ)
“ 1 C() ~ C(y) A Subway(y,x) ﬁ YESI/NO
“Is it impossible to go from

< anl() -~ C('Chatelet’) station Corvisart to station
Chételet with the subway?"

Database |
of treewidth < k;

Tree encoding E

" o(g(k) IIl) (&)
T ®
@ @

(Paris Metro map)

10/15

Proof Structure

ICG-Datalog program P Two-way Alternating
of body-size < k, Tree Automaton A

;(x) — Subway("Corvisart",x) OCIAI-1EJ)
“ 1 C() ~ C(y) A Subway(y,x) ﬁ YESI/NO
“Is it impossible to go from

< anl() -~ C('Chatelet’) station Corvisart to station
Chételet with the subway?"

Answer

Database |
of treewidth < k;

Tree encoding E

" o(g(k) IIl) (&)
T ®
@ @

(Paris Metro map)

10/15

Proof Structure

Two-way Alternating

ICG-Datalog program P
of body-size s k;, Tree Automaton A Answer
C(x) ~ Subway("Corvisart’x) ¢ ok, k) 1P1) O(IA| - |E|)
YESINO

C(x) < C(y) A Subway(y,x)

“Is it impossible to go from
station Corvisart to station

2| Goal() — - C(*Chatelet’)
Chételet with the subway?"

Database |
of treewidth < k;

Tree encoding E

" o(g(k) IIl) (&)
T ®
@ @

(Paris Metro map)

10/15

Provenance

Definition

The provenance Prov(P, 1) of program P on instance [is the function
that takes as input a subinstance I’ C | and outputs TRUE iff I' = P

1/15

Provenance

Definition
The provenance Prov(P, 1) of program P on instance [is the function
that takes as input a subinstance I’ C | and outputs TRUE iff I' = P

Possible representations:

- Boolean formulas (with the facts as variables)

1/15

Provenance

Definition
The provenance Prov(P, 1) of program P on instance [is the function
that takes as input a subinstance I’ C | and outputs TRUE iff I' = P

Possible representations:

- Boolean formulas (with the facts as variables)

- Boolean circuits (with the facts as inputs)

1/15

Provenance

Definition
The provenance Prov(P, 1) of program P on instance [is the function
that takes as input a subinstance I’ C | and outputs TRUE iff I' = P

Possible representations:

- Boolean formulas (with the facts as variables)
- Boolean circuits (with the facts as inputs)
New Boolean circuits... with cycles! (cycluits)

1/15

Provenance

Definition

The provenance Prov(P, 1) of program P on instance [is the function
that takes as input a subinstance I’ C | and outputs TRUE iff I' = P

Possible representations:

- Boolean formulas (with the facts as variables)
- Boolean circuits (with the facts as inputs)

New Boolean circuits... with cycles! (cycluits)

Theorem

Given an ICG-Datalog program P with body-size kp and a relational
instance | of treewidth R, we can compute in time f(Rp,R)) x |P| x |I| a
Boolean cycluit capturing Prov(Q, I)

1/15

ICG-Datalog program P

Two-way Alternating
of body-size < k,

Tree Automaton A Answer
C(x) ~ Subway("Corvisart’x) ¢ a(ke, k) 1P1) O(IA| - [E|)
C(x) < C(y) A Subway(y.x)

YESINO
At alath “Is it impossible to go from
Goal() -~ -~ C('Chatelet’) station Corvisart to station
Chételet with the subway?"
Database | .
of treewidth s k, Tree encoding E

o(g(k) 111 (&)
> ®
@ @

(Paris Metro map)

12/15

ICG-Datalog program P

Two-way Alternating
of body-size < k,

Tree Automaton A
C(x) ~ Subway("Corvisart’x) ¢ ok, k) 1P1) O(IA|- |E|)
C(x) « C(y) A Subway(y,x)

Provenance Cycluit

Goal() < - C("Chatelet")

Database |)
of treewidth s k, Tree encoding E

(Paris Metro map)

12/15

ICG-Datalog program P

Two-way Alternating
of body-size < k,

Tree Automaton A
C(x) — Subway("Corvisart",x) OCa(ke, k) IPI) OCIAI- [E|)
C(x) < C(y) A Subway(y,x)

Provenance Cycluit

Goal() — - C("Chételet")

Database |)
of treewidth s k, Tree encoding E

“Under which conditions is it

impossible to go from station Corvisart
(Paris Metro map) to station Chéatelet with the subway?"

12/15

- Circuit with cycles

13/15

- Circuit with cycles

- Forbid cycles of negation
— the cycluit is stratified

13/15

- Circuit with cycles

- Forbid cycles of negation
— the cycluit is stratified

- Semantics: least fixed-point

13/15

- Circuit with cycles

- Forbid cycles of negation
— the cycluit is stratified

- Semantics: least fixed-point

- Evaluation: linear time

13/15

- Circuit with cycles

- Forbid cycles of negation
— the cycluit is stratified

- Semantics: least fixed-point

- Evaluation: linear time

13/15

Conclusion

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of
program P and instance treewidth: f(Rp, Ry) x |P| x ||

/15

Conclusion

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of
program P and instance treewidth: f(kp, R;) x |P| x |l
- We propose a new concise provenance representation: cycluits

/15

Conclusion

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of
program P and instance treewidth: f(kp, R;) x |P| x |l
- We propose a new concise provenance representation: cycluits

Other results:

/15

Conclusion

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of
program P and instance treewidth: f(kp, R;) x |P| x |l
- We propose a new concise provenance representation: cycluits

Other results:

- Application to probabilistic evaluation, model counting

/15

Conclusion

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of
program P and instance treewidth: f(kp, R;) x |P| x |l
- We propose a new concise provenance representation: cycluits

Other results:

- Application to probabilistic evaluation, model counting
- Lower bounds (bounded treewidth CQs, type of automata)

/15

Conclusion

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of
program P and instance treewidth: f(kp, R;) x |P| x |l
- We propose a new concise provenance representation: cycluits

Other results:

- Application to probabilistic evaluation, model counting
- Lower bounds (bounded treewidth CQs, type of automata)

Future work:

- Improve ICG-Datalog — Clique-Frontier-Guarded Datalog

/15

Conclusion

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of
program P and instance treewidth: f(kp, R;) x |P| x |l
- We propose a new concise provenance representation: cycluits

Other results:

- Application to probabilistic evaluation, model counting
- Lower bounds (bounded treewidth CQs, type of automata)

Future work:

- Improve ICG-Datalog — Clique-Frontier-Guarded Datalog
- Show PTIME combined complexity when body-size only is
bounded (on arbitrary instances) O(|P| x |I|*?)

/15

Conclusion

- Introduced ICG-Datalog, FPT-linear parameterized by body-size of
program P and instance treewidth: f(kp, R;) x |P| x |l
- We propose a new concise provenance representation: cycluits

Other results:

- Application to probabilistic evaluation, model counting
- Lower bounds (bounded treewidth CQs, type of automata)

Future work:

- Improve ICG-Datalog — Clique-Frontier-Guarded Datalog

- Show PTIME combined complexity when body-size only is
bounded (on arbitrary instances) O(|P| x |I|*?)

- Extend cycluit framework to more expressive provenance
semirings

/15

Thank you!

ICG-Datalog program P

Two-way Alternating
of body-size < k,

Provenance Cycluit
Tree Automaton A

C(x) < Subway("Corvisart",x) OCa(ke, k) IPI) OCIAI - EIl)
C(x) < C(y) A Subway(y,x)

Goal() — - C("Chételet")

Database |)
of treewidth s k, Tree encoding E

| O,
~ ot (k) 1)

“Under which conditions is it
@ (4) impossible to go from station Corvisart

to station Chételet with the subway?"

(Paris Metro map)

15/15

