Probabilistic Graph Homomorphism: Combined Complexity

Antoine Amarilli, Mikaël Monet, Pierre Senellart

Probabilistic Graph Homomorphism

Probabilistic instance graph:

- Each edge is present or absent with given probability
- Independence across edges

means

$\xrightarrow[45 \%]{\stackrel{R_{S}}{ }}$

15\%

Instance graph G Probability distribution on graphs

$$
\text { Query graph } \mathrm{G}_{\mathrm{Q}} \xrightarrow{R} \xrightarrow{S} \longleftarrow S
$$

Probabilistic graph homomorphism:

- INPUT: query graph G_{Q} and probabilistic instance graph G_{1}
- OUTPUT: probability that G_{Q} has a homomorphism to G_{1}

Example: for G_{Q} and G_{1} above, prob. $=30 \%+10 \%=40 \%$

Known Results about Data Complexity

Data complexity:

- Fix query graph G_{Q}
- Study the complexity as a function of $\left|G_{1}\right|$

Dalvi \& Suciu [1] imply:

- There is a class S of safe query graphs
\rightarrow Data complexity is PTIME if $G_{Q} \in S$
\rightarrow Data complexity is \#P-hard if $\mathrm{G}_{\mathrm{Q}} \notin \mathrm{S}$
Amarilli \& al [2] imply:
- $G_{k}=$ all graphs of treewidth $<k$
\rightarrow Data complexity of any query on G_{k} is linear-time

What about the combined complexity? (complexity as a function of both $\left|G_{\mid}\right|$and $\left.\left|G_{Q}\right|\right)$

Problem
Study the combined complexity of the probabilistic graph homomorphism problem

Our Graph Classes

We intoduce the following graph classes: one-way paths (1WP), two-way paths (2WP), downwards trees (DWT) and polytrees (PT)

Results
Without labels

With >1 labels

Proof Techniques

- Tree automata
- β-acyclicity
- X-property
- Various coding techniques for \#P-hardness (\#PP2DNF and \#Bipartite-Edge-Cover)

References
[1] N. Dalvi, D. Suciu The Dichotomy of Probabilistic Inference for Unions of JACM, 2012
[2] A. Amarilli, P. Bourhis, P. Senellart Provenance Circuits for Trees and Treelike Instances Proc. ICALP, 2015

Relationship between classes

ENS

Features

- Labeling
- Global orientation
- Branching
- (Connectedness)

Conclusion

- First study of the combined complexity of Probabilistic Graph Homomorphism
- Shows the importance of various features
- Establishes complexity for all combinations of the graph classes we consider

However:

- Graph classes very weak
- Nowhere near a dichotomy
- Probabilistic equivalent of Feder-Vardi conjecture for combined complexity?
- Practical application? (probabilistic databases)

