Conjunctive Queries on Probabilistic Graphs: Combined Complexity

Antoine Amarilli¹, **Mikaël Monet**^{1,2}, Pierre Senellart^{2,3} May 16th, 2017

¹LTCI, Télécom ParisTech, Université Paris-Saclay; Paris, France

²Inria Paris; Paris, France

³École normale supérieure, PSL Research University; Paris, France

- Probabilistic databases: model uncertainty about data
- Simplest model: tuple-independent databases (TID)
 - A relational database I
 - A probability valuation π mapping each fact of *I* to [0, 1]
- Semantics of a TID (I, π) : a probability distribution on $I' \subseteq I$:
 - Each fact $F \in I$ is either **present** or **absent** with probability $\pi(F)$
 - Assume independence across facts

	S	
а	b	.5
а	С	.2

	S	
а	b	.5
а	С	.2

	S	
а	b	.5
а	С	.2

.5	× .2
	S
а	b
а	С

	S	
а	b	.5
а	С	.2

.5	× .2	.5 >	< (1 – .2)
S			S
а	b	а	b
а	С		

	S	
а	b	.5
а	С	.2

-5	× .2	.5 ×	(1 – .2)	(1 -	– .5) × .2
S			S		S
а	b	а	b		
а	С			а	С

	S	
а	b	.5
а	С	.2

.5	× .2	.5 ×	(1 – .2)	(1 –	5) × .2	$(15) \times (12)$
	S		S		S	S
а	b	а	b			
а	С			а	С	

Probabilistic query evaluation (PQE)

Let us fix:

- Relational signature σ
- Class ${\mathcal I}$ of relational instances on σ (e.g., acyclic, treelike)
- Class $\mathcal Q$ of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE)

Let us fix:

- Relational signature σ
- Class $\mathcal I$ of **relational instances** on σ (e.g., acyclic, treelike)
- Class $\mathcal Q$ of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE) problem for $\mathcal Q$ and $\mathcal I:$

- Given a query $q \in Q$
- Given an instance $I \in \mathcal{I}$ and a probability valuation π
- Compute the **probability** that (I, π) satisfies q

Probabilistic query evaluation (PQE)

Let us fix:

- Relational signature σ
- Class $\mathcal I$ of **relational instances** on σ (e.g., acyclic, treelike)
- Class $\mathcal Q$ of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE) problem for $\mathcal Q$ and $\mathcal I:$

- Given a query $q \in Q$
- Given an instance $I \in \mathcal{I}$ and a probability valuation π
- Compute the **probability** that (I, π) satisfies q
- $\rightarrow \operatorname{Pr}((I,\pi)\models q) = \sum_{J\subseteq I, J\models q} \operatorname{Pr}(J)$

Question: what is the (data, combined) complexity of PQE depending on the class Q of queries and class I of instances?

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{Q} = \mathsf{UCQs}$
 - $\cdot \,\, \mathcal{I}$ is all instances
 - $\cdot \,$ There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{Q} = \mathsf{UCQs}$
 - $\cdot \,\, \mathcal{I}$ is all instances
 - $\cdot \,$ There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - ightarrow PQE is **PTIME** for any $q\in\mathcal{S}$

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{Q} = \mathsf{UCQs}$
 - $\cdot \,\, \mathcal{I}$ is all instances
 - $\cdot \,$ There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - ightarrow PQE is **PTIME** for any $\pmb{q}\in\mathcal{S}$
 - ightarrow PQE is **#P-hard** for any $q \in \mathcal{Q} ackslash \mathcal{S}$

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{Q} = \mathsf{UCQs}$
 - $\cdot \,\, \mathcal{I}$ is all instances
 - $\cdot \,$ There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - ightarrow PQE is **PTIME** for any $\pmb{q}\in\mathcal{S}$
 - ightarrow PQE is **#P-hard** for any $q \in \mathcal{Q} ackslash \mathcal{S}$
- Existing data dichotomy result on instances

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{Q} = \mathsf{UCQs}$
 - $\cdot \,\, \mathcal{I}$ is all instances
 - $\cdot \,$ There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - ightarrow PQE is **PTIME** for any $\pmb{q}\in\mathcal{S}$
 - \rightarrow PQE is **#P-hard** for any $q \in \mathcal{Q} \setminus \mathcal{S}$
- Existing data dichotomy result on instances
 - → PQE for **MSO** on **bounded-treewidth** instances has **linear** data complexity [Amarilli, Bourhis, & Senellart, 2015]

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{Q} = \mathsf{UCQs}$
 - $\cdot \,\, \mathcal{I}$ is all instances
 - $\cdot \,$ There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - ightarrow PQE is **PTIME** for any $\pmb{q}\in\mathcal{S}$
 - \rightarrow PQE is **#P-hard** for any $q \in \mathcal{Q} \setminus \mathcal{S}$
- Existing data dichotomy result on instances
 - → PQE for **MSO** on **bounded-treewidth** instances has **linear** data complexity [Amarilli, Bourhis, & Senellart, 2015]
 - → There is an FO query for which PQE is **#P-hard** on **any** unbounded-treewidth graph family *I* (under some assumptions) [Amarilli, Bourhis, & Senellart, 2016]

- Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
 - $\cdot \ \mathcal{Q} = \mathsf{UCQs}$
 - $\cdot \,\, \mathcal{I}$ is all instances
 - $\cdot \,$ There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
 - ightarrow PQE is **PTIME** for any $\pmb{q}\in\mathcal{S}$
 - \rightarrow PQE is **#P-hard** for any $q \in \mathcal{Q} \setminus \mathcal{S}$
- Existing data dichotomy result on instances
 - → PQE for **MSO** on **bounded-treewidth** instances has **linear** data complexity [Amarilli, Bourhis, & Senellart, 2015]
 - → There is an FO query for which PQE is **#P-hard** on **any** unbounded-treewidth graph family *I* (under some assumptions) [Amarilli, Bourhis, & Senellart, 2016]

What about combined complexity?

 $\exists x \, y \, z \, t \, R(x, y) \land S(y, z) \land S(t, z)$

R		
а	b	.1
b	С	.1
С	d	.05
d	а	1.
d	b	.8
S		
b	d	.7

$$\exists x \, y \, z \, t \, R(x, y) \land S(y, z) \land S(t, z) \quad \rightarrow \quad x \xrightarrow{R} y \xrightarrow{S} z \xleftarrow{S} t$$

R			
а	b	.1	
b	С	.1	
С	d	.05	
d	а	1.	
d	b	.8	
S			
b	d	.7	

∃xyz	t R	$(x,y) \land$	$S(y,z) \wedge S(z)$	t, z) -	\rightarrow	x <u> </u>	2 →	\xrightarrow{S} z	z
R			-						
а	b	.1	_			.1 >>	b	R	
b	С	.1			R	R	Îs Ì	.1	
С	d	.05	\rightarrow	a					> c
d	а	1.				.8	.7		5
d	b	.8			ĸ	1.	d	R .01	J
_			-						
S									
b d .7		1.7							

Q = one-way paths (1WP), I = polytrees (PT)

Q = one-way paths (1WP), I = polytrees (PT)

$Q: \xrightarrow{T} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{T}$

Q = one-way paths (1WP), I = polytrees (PT)

Q = one-way paths (1WP), I = polytrees (PT)

+ prob. for each edge

Proposition PQE of 1WP on PT is **#P-hard**

Q = one-way paths, I = polytrees, without labels

• What if we do not have labels?

+ prob. for each edge

8/17

Q = one-way paths, I = polytrees, without labels

• What if we do not have labels?

$\mathcal{Q} =$ one-way paths, $\mathcal{I} =$ polytrees, without labels

- What if we do not have labels?
- Probability that the instance graph has a path of length |Q|

$\mathcal{Q} =$ one-way paths, $\mathcal{I} =$ polytrees, without labels

- What if we do not have labels?
- Probability that the instance graph has a path of length |Q|
- PTIME: Bottom-up, e.g., tree automaton

$\mathcal{Q} =$ one-way paths, $\mathcal{I} =$ polytrees, without labels

- What if we do not have labels?
- Probability that the instance graph has a path of length |Q|
- PTIME: Bottom-up, e.g., tree automaton
- Labels have an impact!

O:

Q = two-way paths, I = polytrees, without labels

• Q =one-way paths (1WP), I =polytrees (PT)

Q = two-way paths, I = polytrees, without labels

• Q =two-way paths (2WP), I =polytrees (PT)

Q = two-way paths, I = polytrees, without labels

- Q =two-way paths (2WP), I =polytrees (PT)
- #P-hard

$\mathcal{Q} =$ two-way paths, $\mathcal{I} =$ polytrees, without labels

- Q =two-way paths (2WP), I =polytrees (PT)
- #P-hard
- Global orientation of the query has an impact /

I:

$\mathcal{Q} =$ one-way paths, $\mathcal{I} =$ downwards trees

• Q =one-way paths (1WP), I =polytrees (PT)

+ prob. for each edge $_{10/17}$
$\mathcal{Q} =$ one-way paths, $\mathcal{I} =$ downwards trees

• Q = one-way paths (1WP), I = **downwards trees** (DWT)

+ prob. for each edge $_{10/17}$

$\mathcal{Q} =$ one-way paths, $\mathcal{I} =$ downwards trees

- Q =one-way paths (1WP), I =**downwards trees** (DWT)
- **PTIME** also: β -acyclicity of the lineage

+ prob. for each edge $_{10/17}$

$\mathcal{Q} =$ one-way paths, $\mathcal{I} =$ downwards trees

- Q =one-way paths (1WP), I =**downwards trees** (DWT)
- **PTIME** also: β -acyclicity of the lineage
- Global orientation of the instance also has an impact!

+ prob. for each edge $_{10/12}$

• Q = one-way paths (1WP), I = downwards trees

+ prob. for each edge

• Q = downwards trees (DWT), I = downwards trees

Q:

+ prob. for each edge

11/17

- $\mathcal{Q} =$ **downwards trees** (DWT), $\mathcal{I} =$ downwards trees
- #P-hard

Q:

+ prob. for each edge

- Q = **downwards trees** (DWT), $\mathcal{I} =$ downwards trees
- #P-hard

Q:

• Branching has an impact!

+ prob. for each edge

Our graph classes

↓Q	$I \rightarrow$	1WP	2WP	DWT	PT	Connected	
1W	/P						
2WP							> 2 labols
DWT			PTIME				
PT						#P-hard	
Conne	ected						

$\downarrow Q$	$I \rightarrow$	1WP	2WP	DWT	PT	Connected	
1WP							
2WP							> 2 labels
DWT		PTIME					
PT						#P-hard	
Conn	Connected						
↓Q	$I \rightarrow$	1WP	2WP	DWT	PT	Connected	
↓Q 1V	$I \rightarrow$	1WP	2WP	DWT	PT	Connected	
↓Q 1V 2V	$I \rightarrow$ VP VP	1WP	2WP	DWT	PT	Connected	Nolahels
↓Q 1V 2V D\	$I \rightarrow $ VP VP NT	1WP	2WP PTIME	DWT	PT	Connected	No labels
↓Q 1V 2V D\ F	I→ VP VP NT PT	1WP	2WP PTIME	DWT	PT	Connected #P-hard	No labels

$\downarrow Q$	$I \rightarrow$	1WP	2WP	DWT	PT	Connected	
1WP				٠	•		
2WP				•			> 2 Jahols
DWT			PTIME	•			≥ Z laDelS
PT						#P-hard	
Connected			٠				
$\downarrow Q$	$I \rightarrow$	1WP	2WP	DWT	PT	Connected	
↓Q 1V	$I \rightarrow$	1WP	2WP	DWT	PT	Connected •	
↓Q 1V 2V	$I \rightarrow$ VP VP	1WP	2WP	DWT	PT	Connected •	Nolabels
↓Q 1V 2V DV	$I \rightarrow$ VP VP NT	1WP	2WP PTIME	DWT	PT •	Connected •	No labels
↓Q 1\ 2\ D\ F	I→ VP VP NT PT	1WP	2WP PTIME	DWT	PT •	Connected • #P-hard	No labels

+ prob. for each edge

+ prob. for each edge

Reduction from **#P-hard** problem **#PP2DNF**:

• INPUT: Boolean formula $\varphi = \bigvee_{j=1...m} (X_{x_j} \wedge Y_{y_j})$ on variables $\{X_1, \ldots, X_{n_1}\} \sqcup \{Y_1, \ldots, Y_{n_2}\}$

+ prob. for each edge

Reduction from **#P-hard** problem **#PP2DNF**:

- INPUT: Boolean formula $\varphi = \bigvee_{j=1...m} (X_{x_j} \wedge Y_{y_j})$ on variables $\{X_1, \ldots, X_{n_1}\} \sqcup \{Y_1, \ldots, Y_{n_2}\}$
- OUTPUT: number of satisfying assignments of φ

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

1:

Reduction for $\mathcal{Q} =$ one-way paths, $\mathcal{I} =$ polytrees

$$\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$$

1:

Q:

Q:

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

Q:

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

15/17

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

15/17
Reduction for Q = one-way paths, I = polytrees

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

15/17

Reduction for Q = one-way paths, I = polytrees

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

15/17

Reduction for Q = one-way paths, I = polytrees

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$

Reduction for Q = one-way paths, T = polytrees

 $\varphi = X_1 Y_2 \vee X_1 Y_1 \vee X_2 Y_2$ $#\varphi = \Pr((I, \pi) \models Q) \times 2^{|\operatorname{vars}(\varphi)|}$ 1: S S S S S Q: T S S

15/17

We also introduce the classes [] 1WP (resp., [] 2WP, [] DWT, [] PT) of graphs that are *disjoint unions of* 1WP (*resp.*, 2WP, DWT, PT)

We also introduce the classes [] 1WP (resp., [] 2WP, [] DWT, [] PT) of graphs that are *disjoint unions of* 1WP (*resp.*, 2WP, DWT, PT)

$\downarrow G$	$H \rightarrow$	1WP	2WP	DWT	PT	Connected	
∐ 1WP							
∐2WP							No labels
∐ DWT							Νο ιαρεισ
∐ PT							
All							

We also introduce the classes [] 1WP (resp., [] 2WP, [] DWT, [] PT) of graphs that are *disjoint unions of* 1WP (*resp.*, 2WP, DWT, PT)

With labels, PQE of **1WP** on **1WP** is already **#P-hard**!

Contributions:

• Detailed study of the **combined** complexity of PQE

Contributions:

- Detailed study of the **combined** complexity of PQE
- Focus on CQs on arity-two signatures

Contributions:

- Detailed study of the **combined** complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness

Contributions:

- Detailed study of the **combined** complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem: **labels, global orientation, branching, connectedness**
- Established the complexity for all combinations of the graph classes we considered

Contributions:

- Detailed study of the **combined** complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness
- Established the complexity for all combinations of the graph classes we considered

Drawbacks and future work:

• Our graph classes may seem "arbitrary"

Contributions:

- Detailed study of the **combined** complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem: **labels, global orientation, branching, connectedness**
- Established the complexity for all combinations of the graph classes we considered

Drawbacks and future work:

- Our graph classes may seem "arbitrary"
- Not yet a dichotomy, just starting to understand the problem
- Practical applications?

Contributions:

- Detailed study of the **combined** complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem: **labels, global orientation, branching, connectedness**
- Established the complexity for all combinations of the graph classes we considered

Drawbacks and future work:

- Our graph classes may seem "arbitrary"
- Not yet a dichotomy, just starting to understand the problem
- Practical applications?

Thanks for your attention!