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Tuple-independent databases (TID)

• Probabilistic databases: model uncertainty about data
• Simplest model: tuple-independent databases (TID)

• A relational database I
• A probability valuation π mapping each fact of I to [0, 1]

• Semantics of a TID (I, π): a probability distribution on I′ ⊆ I:
• Each fact F ∈ I is either present or absent with probability π(F)
• Assume independence across facts
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Example: TID

S

a b .5
a c .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a b
a c

.5× (1− .2)

S

a b

(1− .5)× .2

S

a c

(1− .5)× (1− .2)

S
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Probabilistic query evaluation (PQE)

Let us fix:

• Relational signature σ
• Class I of relational instances on σ (e.g., acyclic, treelike)
• Class Q of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE) problem for Q and I :

• Given a query q ∈ Q
• Given an instance I ∈ I and a probability valuation π
• Compute the probability that (I, π) satisfies q
→ Pr((I, π) |= q) =

∑
J⊆I, J|=q Pr(J)
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Complexity of probabilistic query evaluation (PQE)

Question: what is the (data, combined) complexity of PQE
depending on the class Q of queries and class I of instances?
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Data complexity results

• Existing data dichotomy result on queries [Dalvi & Suciu, 2012]
• Q = UCQs
• I is all instances
• There is a class S ⊆ Q of safe queries

→ PQE is PTIME for any q ∈ S
→ PQE is #P-hard for any q ∈ Q\S

• Existing data dichotomy result on instances
→ PQE for MSO on bounded-treewidth instances has linear data

complexity [Amarilli, Bourhis, & Senellart, 2015]
→ There is an FO query for which PQE is #P-hard on any

unbounded-treewidth graph family I (under some assumptions)
[Amarilli, Bourhis, & Senellart, 2016]

What about combined complexity?
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Restrict to CQs on graph signatures

∃x y z t R(x, y) ∧ S(y, z) ∧ S(t, z)

→ x y z t
R S S

R

a b .1
b c .1
c d .05
d a 1.
d b .8

S

b d .7

→

d

c

b

a

1.
R

.1
R

R
.1

R
.05

S
a
.7

R
a
.8
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Restrict instances to trees

Q = one-way paths (1WP), I = polytrees (PT)

Q: T S S S T
I:

+ prob. for each edge

T T

T T

S S

S S

S

S

T
S

T

Proposition
PQE of 1WP on PT is #P-hard
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Q = one-way paths, I = polytrees, without labels

• What if we do not have labels?

• Probability that the instance graph has a path of length |Q|
• PTIME: Bottom-up, e.g., tree automaton
• Labels have an impact!

Q: T S S S T
I:

+ prob. for each edge

T T

T T

S S

S S

S

S

T
S

T
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Q = two-way paths, I = polytrees, without labels

• Q = one-way paths (1WP), I = polytrees (PT)

• #P-hard
• Global orientation of the query has an impact

Q:

I:

+ prob. for each edge
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Q = one-way paths, I = downwards trees

• Q = one-way paths (1WP), I = polytrees (PT)

• PTIME also: β-acyclicity of the lineage
• Global orientation of the instance also has an impact!

Q: T S S S T
I:

+ prob. for each edge

T T

T T

S S

S S

S

S

T
S

T
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Q = one-way paths, I = downwards trees
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Q = downwards trees, I = downwards trees, with labels

• Q = one-way paths (1WP), I = downwards trees

• #P-hard
• Branching has an impact!
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Our graph classes

1WP

2WP

R S S T

R S S T R

DWT PT

1WP
2WP

DWT
PT Connected All⊆ ⊆
⊆ ⊆⊆ ⊆
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Results

↓Q I→ 1WP 2WP DWT PT Connected
1WP

• •

2WP

•

DWT PTIME

•

PT #P-hard
Connected

•

> 2 labels

↓Q I→ 1WP 2WP DWT PT Connected
1WP

•

2WP

•

DWT PTIME

•

PT #P-hard
Connected

• •

No labels
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Reduction forQ = one-way paths, I = polytrees

Q: T S S S T
I:

+ prob. for each edge

T T

T T

S S

S S

S

S

T
S

T

Reduction from #P-hard problem #PP2DNF:

• INPUT: Boolean formula ϕ =
∨
j=1...m(Xxj ∧ Yyj) on variables

{X1, . . . , Xn1} t {Y1, . . . , Yn2}

• OUTPUT: number of satisfying assignments of ϕ

14/17
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Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X2 Y1 Y2Y2

Q:

15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X2 Y1 Y2Y2

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X2 Y1 Y2Y2

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2

Y1 Y2Y2

S
S

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T T

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T

Q:
15/17



Reduction forQ = one-way paths, I = polytrees

ϕ = X1Y2 ∨ X1Y1 ∨ X2Y2

#ϕ = Pr((I, π) |= Q)× 2|vars(ϕ)|

I:

•

X1 X2 Y1 Y2

Y2

S
S S

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

T

T
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Disconnected graphs

We also introduce the classes
⊔
1WP (resp.,

⊔
2WP,

⊔
DWT,

⊔
PT) of

graphs that are disjoint unions of 1WP (resp., 2WP, DWT, PT)

↓G H→ 1WP 2WP DWT PT Connected⊔
1WP⊔
2WP⊔
DWT⊔
PT
All

No labels

With labels, PQE of
⊔
1WP on 1WP is already #P-hard!
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Conclusion

Contributions:

• Detailed study of the combined complexity of PQE

• Focus on CQs on arity-two signatures
• Showed the importance of various features on the problem:
labels, global orientation, branching, connectedness

• Established the complexity for all combinations of the graph
classes we considered

Drawbacks and future work:

• Our graph classes may seem “arbitrary”
• Not yet a dichotomy, just starting to understand the problem
• Practical applications?

Thanks for your attention!
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