Conjunctive Queries on Probabilistic Graphs: Combined Complexity

Antoine Amarilli ${ }^{1}$, Mikaël Monet ${ }^{1,2}$, Pierre Senellart ${ }^{2,3}$
May 16th, 2017
${ }^{1}$ LTCI, Télécom ParisTech, Université Paris-Saclay; Paris, France
${ }^{2}$ Inria Paris; Paris, France
³École normale supérieure, PSL Research University; Paris, France

Tuple-independent databases (TID)

- Probabilistic databases: model uncertainty about data
- Simplest model: tuple-independent databases (TID)
- A relational database I
- A probability valuation π mapping each fact of I to $[0,1]$
- Semantics of a TID (I, π) : a probability distribution on $I^{\prime} \subseteq I$:
- Each fact $F \in I$ is either present or absent with probability $\pi(F)$
- Assume independence across facts

Example: TID

	\mathbf{S}	
a	b	.5
a	c	.2

Example: TID

This TID (I, π) represents the following probability distribution:

Example: TID

This TID (I, π) represents the following probability distribution:

$.5 \times .2$	
\mathbf{S}	
a	b
a	c

Example: TID

This TID (I, π) represents the following probability distribution:

Example: TID

This TID (I, π) represents the following probability distribution:

Example: TID

This TID (I, π) represents the following probability distribution:

Probabilistic query evaluation (PQE)

Let us fix:

- Relational signature σ
- Class \mathcal{I} of relational instances on σ (e.g., acyclic, treelike)
- Class \mathcal{Q} of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE)

Let us fix:

- Relational signature σ
- Class \mathcal{I} of relational instances on σ (e.g., acyclic, treelike)
- Class \mathcal{Q} of Boolean queries (e.g., paths, trees)

Probabilistic query evaluation (PQE) problem for \mathcal{Q} and \mathcal{I} :

- Given a query $q \in \mathcal{Q}$
- Given an instance $I \in \mathcal{I}$ and a probability valuation π
- Compute the probability that (I, π) satisfies q

Probabilistic query evaluation（PQE）

Let us fix：
－Relational signature σ
－Class \mathcal{I} of relational instances on σ（e．g．，acyclic，treelike）
－Class \mathcal{Q} of Boolean queries（e．g．，paths，trees）

Probabilistic query evaluation（PQE）problem for \mathcal{Q} and \mathcal{I} ：
－Given a query $q \in \mathcal{Q}$
－Given an instance $I \in \mathcal{I}$ and a probability valuation π
－Compute the probability that (I, π) satisfies q
$\rightarrow \operatorname{Pr}((I, \pi) \models q)=\sum_{J \subseteq I, J ⿰ ⿰ 三 丨 ⿰ 丨 三} \operatorname{Pr}(J)$

Complexity of probabilistic query evaluation (PQE)

Question: what is the (data, combined) complexity of PQE depending on the class \mathcal{Q} of queries and class \mathcal{I} of instances?

Data complexity results

- Existing data dichotomy result on queries [Dalvi \& Suciu, 2012]
- $\mathcal{Q}=\mathrm{UCQs}$
- I is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries

Data complexity results

- Existing data dichotomy result on queries [Dalvi \& Suciu, 2012]
- $\mathcal{Q}=$ UCQs
- \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
\rightarrow PQE is PTIME for any $q \in \mathcal{S}$

Data complexity results

- Existing data dichotomy result on queries [Dalvi \& Suciu, 2012]
- $\mathcal{Q}=$ UCQs
- \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
\rightarrow PQE is PTIME for any $q \in \mathcal{S}$
\rightarrow PQE is \#P-hard for any $q \in \mathcal{Q} \backslash \mathcal{S}$

Data complexity results

- Existing data dichotomy result on queries [Dalvi \& Suciu, 2012]
- $\mathcal{Q}=$ UCQs
- \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
\rightarrow PQE is PTIME for any $q \in \mathcal{S}$
\rightarrow PQE is \#P-hard for any $q \in \mathcal{Q} \backslash \mathcal{S}$
- Existing data dichotomy result on instances

Data complexity results

- Existing data dichotomy result on queries [Dalvi \& Suciu, 2012]
- $\mathcal{Q}=$ UCQs
- \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
\rightarrow PQE is PTIME for any $q \in \mathcal{S}$
\rightarrow PQE is \#P-hard for any $q \in \mathcal{Q} \backslash \mathcal{S}$
- Existing data dichotomy result on instances
\rightarrow PQE for MSO on bounded-treewidth instances has linear data complexity [Amarilli, Bourhis, \& Senellart, 2015]

Data complexity results

- Existing data dichotomy result on queries [Dalvi \& Suciu, 2012]
- $\mathcal{Q}=$ UCQs
- \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
\rightarrow PQE is PTIME for any $q \in \mathcal{S}$
\rightarrow PQE is \#P-hard for any $q \in \mathcal{Q} \backslash \mathcal{S}$
- Existing data dichotomy result on instances
\rightarrow PQE for MSO on bounded-treewidth instances has linear data complexity [Amarilli, Bourhis, \& Senellart, 2015]
\rightarrow There is an FO query for which PQE is \#P-hard on any unbounded-treewidth graph family \mathcal{I} (under some assumptions) [Amarilli, Bourhis, \& Senellart, 2016]

Data complexity results

- Existing data dichotomy result on queries [Dalvi \& Suciu, 2012]
- $\mathcal{Q}=$ UCQs
- \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
\rightarrow PQE is PTIME for any $q \in \mathcal{S}$
\rightarrow PQE is \#P-hard for any $q \in \mathcal{Q} \backslash \mathcal{S}$
- Existing data dichotomy result on instances
\rightarrow PQE for MSO on bounded-treewidth instances has linear data complexity [Amarilli, Bourhis, \& Senellart, 2015]
\rightarrow There is an FO query for which PQE is \#P-hard on any unbounded-treewidth graph family \mathcal{I} (under some assumptions) [Amarilli, Bourhis, \& Senellart, 2016]

What about combined complexity?

Restrict to CQs on graph signatures

$\exists x y z t R(x, y) \wedge S(y, z) \wedge S(t, z)$

\mathbf{R}		
a	b	.1
b	c	.1
c	d	.05
d	a	1.
d	b	.8
	\mathbf{S}	
b	d	.7

Restrict to CQs on graph signatures

$$
\exists x y z t R(x, y) \wedge S(y, z) \wedge S(t, z) \quad \rightarrow \quad x \xrightarrow{R} y \xrightarrow{S} z \stackrel{S}{\longleftarrow} t
$$

\mathbf{R}		
a	b	.1
b	c	.1
c	d	.05
d	a	1.
d	b	.8
	\mathbf{S}	
b	d	.7

Restrict to CQs on graph signatures

$$
\exists x y z t R(x, y) \wedge S(y, z) \wedge S(t, z) \quad \rightarrow \quad x \xrightarrow{R} y \xrightarrow{S} z \stackrel{S}{\longleftarrow} t
$$

\mathbf{R}		
a	b	.1
b	c	.1
c	d	.05
d	a	1.
d	b	.8
	\mathbf{S}	
b	d	.7

Restrict instances to trees

$$
\mathcal{Q}=\text { one-way paths }(1 \mathrm{WP}), \mathcal{I}=\text { polytrees }(\mathrm{PT})
$$

Restrict instances to trees

$$
\mathcal{Q}=\text { one-way paths }(1 \mathrm{WP}), \mathcal{I}=\text { polytrees }(\mathrm{PT})
$$

$$
Q: \xrightarrow{T} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{T}
$$

Restrict instances to trees

$\mathcal{Q}=$ one-way paths (1WP), $\mathcal{I}=$ polytrees (PT)

Restrict instances to trees

$\mathcal{Q}=$ one-way paths (1WP), $\mathcal{I}=$ polytrees (PT)

+ prob. for each edge

$\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees, without labels

-What if we do not have labels?

$\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees, without labels

- What if we do not have labels?

$\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees, without labels

- What if we do not have labels?
- Probability that the instance graph has a path of length $|Q|$

Q: $\longrightarrow \longrightarrow \longrightarrow \longrightarrow$

+ prob. for each edge

$\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees, without labels

- What if we do not have labels?
- Probability that the instance graph has a path of length $|Q|$
- PTIME: Bottom-up, e.g., tree automaton

Q: $\longrightarrow \longrightarrow \longrightarrow \longrightarrow$

+ prob. for each edge

$\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees, without labels

- What if we do not have labels?
- Probability that the instance graph has a path of length $|Q|$
- PTIME: Bottom-up, e.g., tree automaton
- Labels have an impact!

+ prob. for each edge

$\mathcal{Q}=$ two-way paths, $\mathcal{I}=$ polytrees, without labels

- $\mathcal{Q}=$ one-way paths (1WP), $\mathcal{I}=$ polytrees (PT)

$\mathcal{Q}=$ two-way paths, $\mathcal{I}=$ polytrees, without labels

- $\mathcal{Q}=$ two-way paths (2WP), $\mathcal{I}=$ polytrees (PT)

+ prob. for each edge

$\mathcal{Q}=$ two-way paths, $\mathcal{I}=$ polytrees, without labels

- $\mathcal{Q}=$ two-way paths (2WP), $\mathcal{I}=$ polytrees (PT)
- \#P-hard

+ prob. for each edge

$\mathcal{Q}=$ two-way paths, $\mathcal{I}=$ polytrees, without labels

- $\mathcal{Q}=$ two-way paths (2WP), $\mathcal{I}=$ polytrees (PT)
- \#P-hard
- Global orientation of the query has an impact

+ prob. for each edge

$\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ downwards trees

- $\mathcal{Q}=$ one-way paths (1 WP), $\mathcal{I}=$ polytrees (PT)

+ prob. for each edge

$\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ downwards trees

- $\mathcal{Q}=$ one-way paths (1WP), $\mathcal{I}=$ downwards trees (DWT)

+ prob. for each edge

$\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ downwards trees

- $\mathcal{Q}=$ one-way paths (1WP), $\mathcal{I}=$ downwards trees (DWT)
- PTIME also: β-acyclicity of the lineage

+ prob. for each edge

$\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ downwards trees

- $\mathcal{Q}=$ one-way paths (1WP), $\mathcal{I}=$ downwards trees (DWT)
- PTIME also: β-acyclicity of the lineage
- Global orientation of the instance also has an impact!

+ prob. for each edge

$\mathcal{Q}=$ downwards trees, $\mathcal{I}=$ downwards trees, with labels

- $\mathcal{Q}=$ one-way paths (1WP), $\mathcal{I}=$ downwards trees

+ prob. for each edge

$\mathcal{Q}=$ downwards trees, $\mathcal{I}=$ downwards trees, with labels

- $\mathcal{Q}=$ downwards trees (DWT), $\mathcal{I}=$ downwards trees

Q:

$\mathcal{Q}=$ downwards trees, $\mathcal{I}=$ downwards trees, with labels

- $\mathcal{Q}=$ downwards trees (DWT), $\mathcal{I}=$ downwards trees
- \#P-hard

Q:

1 :

+ prob. for each edge

$\mathcal{Q}=$ downwards trees, $\mathcal{I}=$ downwards trees, with labels

- $\mathcal{Q}=$ downwards trees (DWT), $\mathcal{I}=$ downwards trees
- \#P-hard
- Branching has an impact!

Q:

1 :

+ prob. for each edge

Our graph classes

Results

\downarrow Q $\quad 1 \rightarrow$	1WP	2WP	DWT	PT	Connected
1WP	PTIME				
2WP					
DWT					
PT					\#P-hard
Connected					

Results

Results

$\downarrow Q \quad I \rightarrow$	1WP	2WP	DWT	PT	Connected	No labels
1WP					-	
2WP				-		
DWT		PTIME		-		
PT					\#P-hard	
Connected		\bullet	\bullet			

Results

$\downarrow Q \quad I \rightarrow$	1WP	2WP	DWT	PT	Connected
1WP	PTIME			-	
2WP			\#P-hard		
DWT					
PT					
Connected					

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

Reduction from \#P-hard problem \#PP2DNF:

- INPUT: Boolean formula $\varphi=\bigvee_{j=1 . . . m}\left(X_{x_{j}} \wedge Y_{y_{j}}\right)$ on variables $\left\{X_{1}, \ldots, X_{n_{1}}\right\} \sqcup\left\{Y_{1}, \ldots, Y_{n_{2}}\right\}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

+ prob. for each edge
Reduction from \#P-hard problem \#PP2DNF:
- INPUT: Boolean formula $\varphi=\bigvee_{j=1 . . . m}\left(X_{x_{j}} \wedge Y_{y_{j}}\right)$ on variables $\left\{X_{1}, \ldots, X_{n_{1}}\right\} \sqcup\left\{Y_{1}, \ldots, Y_{n_{2}}\right\}$
- OUTPUT: number of satisfying assignments of φ

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

1 :

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

I:

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Q:

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$
$1:$

Q:

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Q:

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

1 :

Q:

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Q:

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Q:

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

$Q: \xrightarrow{\top} \xrightarrow{s} \xrightarrow{s} \xrightarrow{s}{ }^{s}{ }^{s}{ }^{\top}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

$Q: \xrightarrow{T} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$\varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2}$

Reduction for $\mathcal{Q}=$ one-way paths, $\mathcal{I}=$ polytrees

$$
\begin{aligned}
& \varphi=X_{1} Y_{2} \vee X_{1} Y_{1} \vee X_{2} Y_{2} \\
& \# \varphi=\operatorname{Pr}((I, \pi) \models Q) \times 2^{|\operatorname{vars}(\varphi)|}
\end{aligned}
$$

$Q: \xrightarrow{T} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S} \xrightarrow{S}$

Disconnected graphs

We also introduce the classes $\bigsqcup 1$ WP (resp., $ل 2 \mathrm{WP}, ~ \sqcup \mathrm{DWT}, ~ \sqcup \mathrm{PT}$) of graphs that are disjoint unions of 1WP (resp., 2WP, DWT, PT)

Disconnected graphs

We also introduce the classes $\bigsqcup 1$ WP (resp., $ل 2 \mathrm{WP}, ~ \sqcup \mathrm{DWT}, ~ \sqcup \mathrm{PT}$) of graphs that are disjoint unions of 1WP (resp., 2WP, DWT, PT)

No labels

Disconnected graphs

We also introduce the classes $\bigsqcup 1$ WP (resp., $ل 2 \mathrm{WP}, \sqcup \mathrm{DWT}, ~ \sqcup \mathrm{PT}$) of graphs that are disjoint unions of 1WP (resp., 2WP, DWT, PT)

No labels

With labels, PQE of $\bigsqcup 1$ WP on 1WP is already \#P-hard!

Conclusion

Contributions:

- Detailed study of the combined complexity of PQE

Conclusion

Contributions:

- Detailed study of the combined complexity of PQE
- Focus on CQs on arity-two signatures

Conclusion

Contributions:

- Detailed study of the combined complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness

Conclusion

Contributions:

- Detailed study of the combined complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness
- Established the complexity for all combinations of the graph classes we considered

Conclusion

Contributions:

- Detailed study of the combined complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem: labels, global orientation, branching, connectedness
- Established the complexity for all combinations of the graph classes we considered

Drawbacks and future work:

- Our graph classes may seem "arbitrary"

Conclusion

Contributions:

- Detailed study of the combined complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem:

labels, global orientation, branching, connectedness

- Established the complexity for all combinations of the graph classes we considered

Drawbacks and future work:

- Our graph classes may seem "arbitrary"
- Not yet a dichotomy, just starting to understand the problem
- Practical applications?

Conclusion

Contributions:

- Detailed study of the combined complexity of PQE
- Focus on CQs on arity-two signatures
- Showed the importance of various features on the problem:

labels, global orientation, branching, connectedness

- Established the complexity for all combinations of the graph classes we considered

Drawbacks and future work:

- Our graph classes may seem "arbitrary"
- Not yet a dichotomy, just starting to understand the problem
- Practical applications?

Thanks for your attention!

