Possible and Certain Answers for Queries over
Order-Incomplete Data*!

Antoine Amarilli', Mouhamadou Lamine Ba2, Daniel Deutch?, and
Pierre Senellart*5

LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France

University Alioune Diop of Bambey, Bambey, Senegal

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
DI ENS, ENS, CNRS, PSL Research University, Paris, France

Inria Paris, Paris, France

CUk W N

—— Abstract

To combine and query ordered data from multiple sources, one needs to handle uncertainty

about the possible orderings. Examples of such “order-incomplete” data include integrated event
sequences such as log entries; lists of properties (e.g., hotels and restaurants) ranked by an
unknown function reflecting relevance or customer ratings; and documents edited concurrently
with an uncertain order on edits. This paper introduces a query language for order-incomplete
data, based on the positive relational algebra with order-aware accumulation. We use partial
orders to represent order-incomplete data, and study possible and certain answers for queries in
this context. We show that these problems are respectively NP-complete and coNP-complete,
but identify many tractable cases depending on the query operators or input partial orders.

1998 ACM Subject Classification H.2.1 [Database Management] Logical Design
Keywords and phrases certain answer, possible answer, partial order, uncertain data

Digital Object Identifier 10.4230/LIPIcs. TIME.2017.4

1 Introduction

Many applications need to combine and transform ordered data (e.g., temporal data, rankings,
preferences) from multiple sources. Examples include sequences of readings from multiple
sensors, or log entries from different applications or machines, that must be combined to
form a complete picture of events; rankings of restaurants and hotels published by different
websites, their ranking function being often proprietary and unknown; and concurrent edits
of shared documents, where the order of contributions made by different users needs to
be merged. Even when the order of items from each individual source is known, the order
across sources is often uncertain. For instance, even when sensor readings or log entries have
timestamps, these may be ill-synchronized across sensors or machines; different websites may
follow different rules and rank different hotels, so there are multiple ways to create a unified
ranked list; concurrent document editions may be ordered in multiple ways. We say that the
resulting information is order-incomplete.

This paper studies query evaluation over order-incomplete data in a relational setting [1].
Our running example is that of restaurants and hotels from travel websites, ranked according

* An extended version of this article can be found at https://arxiv.org/abs/1707.07222.
t This research was partially supported by the Israeli Science Foundation (grant 1636/13) and the
Blavatnik ICRC.

© Antoine Amarilli, Mouhamadou Lamine Ba, Daniel Deutch, and Pierre Senellart;
37 licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).

Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 4; pp.4:1-4:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.4
https://arxiv.org/abs/1707.07222
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

Possible and Certain Answers for Queries over Order-Incomplete Data

to proprietary functions. An example query could compute the union of ranked lists of
restaurants from distinct websites, or ask for a ranked list of pairs of a restaurant and a hotel
in the same district. As we do not know how the proprietary order is defined, the query result
may become uncertain: there may be multiple reasonable orderings of restaurants in the
union result, or multiple orderings of restaurant—hotel pairs. We also study the application of
order-aware accumulation to the query result, where each possible order may yield a different
value: e.g., extracting only the highest ranked pairs, concatenating their names, or assessing
the attractiveness of a district based on its best restaurants and hotels.

Our approach is to handle this uncertainty through the classical notions of possible and
certain answers. First, whenever there is a certain answer to the query — i.e., there is only
one possible order on query results or one accumulation result — which is obtained no matter
the order on the input and in intermediate results, we should present it to the user, who can
then browse through the ordered query results (as is typically done in absence of uncertainty,
using constructs such as SQL’s ORDER BY). Certain answers can arise even in non-trivial
cases where the combination of input data admits many possible orders: consider user queries
that select only a small interesting subset of the data (for which the ordering happens to be
certain), or a short summary obtained through accumulation over large data. In many other
cases, the different orders on input data or the uncertainty caused by the query may lead to
several possible answers. In this case, it is still of interest (and non-trivial) to verify whether
an answer is possible, e.g., to check whether a given ranking of hotel-restaurant pairs is
consistent with a combination of other rankings (the latter done through a query). Thus, we
study the problems of deciding whether a given answer is certain, and whether it is possible.

We note that users may wish to focus on the position of some tuples of interest (e.g.,
“is it possible/certain that a particular pair of restaurant-hotel is ranked first?”, or “is it
possible/certain that restaurant A is ranked above restaurant B?). We show these questions
may be expressed in our framework through proper choices of accumulation functions.

Main contributions. We introduce a query language with accumulation for order-incomplete
data, which generalizes the positive relational algebra [1] with aggregation as the outermost
operation. We define a bag semantics for this language, without assuming that a single choice
of order can be made (unlike, e.g., rank aggregation [15]): we use partial orders to represent
all orders that are consistent with the input data. We then undertake the first general study
of the complezity of possible and certain answers for queries over such data. We show that
these problems are respectively NP-complete and coNP-complete, the main difficulties being
the existence of duplicate tuple values in the data and the use of order-aware accumulation.
Fortunately, we can show many realistic tractable cases: certainty is in PTIME without
accumulation, and both problems are tractable under reasonable restrictions on the input
and on the query. The rest of this paper is organized as follows. In Section 2, we introduce
our data model and our query language. We define and exemplify the problems of possible
and certain answers in Section 3. We then study their complexity, first in the general case
(Section 4), then in restricted settings that ensure tractability (Sections 5 and 6). We study
extensions to the language, namely duplicate elimination and group-by, in Section 7. We
compare our model and results with related work in Section 8, and conclude in Section 9.
Proof sketches of some important results are given in an appendix, for lack of space.

2 Data Model and Query Language

We fix a countable set of values D that includes N and infinitely many values not in N. A
tuple t over D of arity a(t) is an element of D*®) denoted (v1, ..., vas)). The simplest notion

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

hotelname distr hotelname distr

restname distr

Mercure 5 Balzac 8
Gagnaire 8 Balzac 8 J Mercure 5 J
TourArgent 5 Mercure 12 Mercure 12

(a) Rest table (b) Hotel table (c¢) Hotels table

Figure 1 Running example: Paris restaurants and hotels.

(TA,5,B,8)

/N

(G,8,B,8) (TA,5,M,5)

N/

(G,8,M,5)
Figure 2 Example 2.

jpJjp

e f

T T

fr it

c d

b

fr it

a b

Figure 3 Example 11.

of ordered relations are then list relations [11, 12]: a list relation of arity n € N is an ordered
list of tuples over D of arity n (where the same tuple value may appear multiple times). List
relations impose a single order over tuples, but when one combines (e.g., unions) them, there
may be multiple plausible ways to order the results.

We thus introduce partially ordered relations (po-relations). A po-relation I' = (ID, T, <)
of arity n € N consists of a finite set of identifiers ID (chosen from some infinite set closed
under product), a strict partial order < on ID, and a (generally non injective) mapping T
from ID to D™. The actual identifiers do not matter, but we need them to refer to occurrences
of the same tuple value. Hence, we always consider po-relations up to isomorphism, where
(ID,T,<) and (ID',T',<') are isomorphic iff there is a bijection ¢ : ID — ID" such that
T'(e(id)) = T(id) for all id € ID, and ¢(id1)<'p(id2) iff id; < idy for all idy, idy € ID.

A special case of po-relations are unordered po-relations (or bag relations), where < is
empty: we write them (ID,T). The underlying bag relation of I' = (ID, T, <) is (ID,T).

The point of po-relations is to represent sets of list relations. Formally, a linear extension
<’ of < is a total order on ID such that for each & < y we have x <’ y. The possible worlds
pw(I") of T are then defined as follows: for each linear extension <’ of <, writing ID as
idy <" -+ <’ id|rp|, the list relation (T'(idy),...,T(id|;p|)) is in pw(I'). As T is generally
not injective, two different linear extensions may yield the same list relation. Po-relations
can thus model uncertainty over the order of tuples (but not on their value: the underlying
bag relation is always certain).

Query language. We now define a bag semantics for positive relational algebra operators,
to manipulate po-relations with queries. The positive relational algebra, written PosRA, is a
standard query language for relational data [1]. We will extend PosRA later in this section

4:3

TIME 2017

4:4

Possible and Certain Answers for Queries over Order-Incomplete Data

with accumulation, and add further extensions in Section 7. Each PosRA operator applies to
po-relations and computes a new po-relation; we present them in turn.

The selection operator restricts the relation to a subset of its tuples, and the order is
the restriction of the input order. The tuple predicates allowed in selections are Boolean
combinations of equalities and inequalities, which can use tuple attributes and values in D.

selection: For any po-relation I' = (ID, T, <) and tuple predicate ¢, we define the selection
oy(T) := (ID', T\1p, <|1p’) where ID" := {id € ID | ¢(T'(id)) holds}.

The projection operator changes tuple values in the usual way, but keeps the original tuple
ordering in the result, and retains all copies of duplicate tuples (following our bag semantics):

projection: For a po-relation I' = (ID, T, <) and attributes Aq,..., A,, we define the projec-
tion I4,, . a,(T) := (ID,T’, <) where T" maps each id € ID to Il4,, . a,(T(id)).

n yAn

As for union, we impose the minimal order constraints that are compatible with those of
the inputs. We use the parallel composition [7] of two partial orders < and <’ on disjoint
sets ID and ID', i.e., the partial order <”:= (< || <’) on ID U ID defined by: every id € ID
is incomparable for <” with every id’ € ID'; for each idy, ids € ID, we have id; <" idy iff
idy < idy; for each id},idy € ID’', we have id} <" id, iff id| <’ id,.

union: Let I' = (ID, T, <) and I'" = (ID", T', <') be two po-relations of the same arity. We
assume that the identifiers of I have been renamed if necessary to ensure that ID and ID’
are disjoint. We then define T UT’ := (IDU ID', T", < || <’), where T" maps id € ID to
T(id) and id" € ID" to T'(id").

The union result I' UI” does not depend on the exact definition of I'”, i.e., it is unique up to
isomorphism. Our definition also implies that I' U T is different from I', as per bag semantics.
In particular, when I" and I” have only one possible world, I' U T" usually does not.

We next introduce two possible product operators. First, the direct product [40] <prg :=
(< xpmr <) of two partial orders < and <’ on sets ID and ID' is defined by (idy, id}) <pm
(ida, idy) for each (idy,id}), (ide,idy) € ID x ID' iff id; < idy and id] <’ idy. We define
the direct product operator over po-relations accordingly: two identifiers in the product are
comparable only if both components of both identifiers compare in the same way.

direct product: For any po-relations I' = (ID, T, <) and I'" = (ID', T, <'), remembering that
the sets of possible identifiers is closed under product, we let I' xprg IV := (ID x ID", T",
< Xpmg <'), where T” maps each (id, id") € ID x ID' to the concatenation (T(id),T’(id')).

Again, the direct product result often has multiple possible worlds even when inputs do not.

The second product operator uses the lexicographic product (or ordinal product [40])
<1ex = (< xpex <') of two partial orders < and <, defined by (idy, id}) <pex (idz,ids) for
all (idq, id}), (idz,idy) € ID x ID" iff either idy < ida, or idy = idy and id} <’ id5.

lexicographic product: For any po-relations I' = (ID, T, <) and I'' = (ID', T’, <’), we define
[xpex IV as (ID x ID', T", < xpgx <') with T"” defined like for direct product.

Last, we define the constant expressions that we allow:

const: e for any tuple ¢, the singleton po-relation [¢] has only one tuple with value t;
o for any n € N, the po-relation [<n] has arity 1 and has pw([<n]) = {(1,...,n)}.

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

A natural question is then to determine whether any of our operators is subsumed by the
others, but we show that this is not the case:

» Theorem 1. No PosRA operator can be expressed through a combination of the others.

We have now defined a semantics on po-relations for each PosRA operator. We define a
PosRA query in the expected way, as a query built from these operators and from relation
names. Calling schema a set S of relation names and arities, with an attribute name for
each position of each relation, we define a po-database D as having a po-relation D[R] of the
correct arity for each relation name R in S. For a po-database D and a PosRA query @ we
denote by Q(D) the po-relation obtained by evaluating Q over D.

» Example 2. The po-database D in Figure 1 contains information about restaurants and
hotels in Paris: each po-relation has a total order (from top to bottom) according to customer
ratings from a given travel website, and for brevity we do not represent identifiers.

Let @ := Rest Xptr (T aistr2<127(Hotel)). Its result Q(D) has two possible worlds:
((G,8,M,5), (G, 8,B,8), (TA, 5,M,5), (TA,5,B,8)), ((G,8,M,5), (TA,5,M,5), (G,8,B,8), (TA, 5, B, 8)).
In a sense, these list relations of hotel-restaurant pairs are consistent with the order in D: we
do not know how to order two pairs, except when both the hotel and restaurant compare in
the same way. The po-relation Q(D) is represented in Figure 2 as a Hasse diagram (ordered
from bottom to top), again writing tuple values instead of tuple identifiers for brevity.

Consider now Q' := (0 Rest. distr—Hotel. distr (@)), where II projects out Hotel.distr. The
possible worlds of Q' (D) are ((G, B, 8), (TA, M, 5)) and ((TA, M, 5), (G, B, 8)), intuitively reflecting
two different opinions on the order of restaurant—hotel pairs in the same district. Defining Q"

similarly to @’ but replacing Xprr by Xpex in @, we have pw(Q” (D)) = ((G, B, 8), (TA, M, 5)).

We conclude by observing that we can efficiently evaluate PosRA queries on po-relations:

» Proposition 3. For any fized PosRA query Q, given a po-database D, we can construct the
po-relation Q(D) in polynomial time in the size of D (the polynomial degree depends on Q).

Accumulation. We now enrich PosRA with order-aware accumulation as the outermost
operation, inspired by right accumulation and iteration in list programming, and aggregation
in relational databases. We fix a monoid (M, ®,¢) for accumulation and define:

» Definition 4. For n € N, let h : D" xN* — M be a function called an arity-n accumulation
map. We call accumyp, g an arity-n accumulation operator; its result accumy g (L) on an
arity-n list relation L = (t1,...,t,) is h(t1,1) B - - - @ h(t,, n), and it is € on an empty L. For
complexity purposes, we always require accumulation operators to be PTIME-evaluable, i.e.,
given any list relation L, we can compute accumy, ¢,(L) in PTIME.

The accumulation operator maps the tuples with h to M, where accumulation is performed
with @. The map h may use its second argument to take into account the absolute position

of tuples in L. In what follows, we omit the arity of accumulation when clear from context.

The PosRA?°C language. We define the language PosRA?“¢ that contains all queries of
the form @ = accumy, g(Q'), where accumy, g is an accumulation operator and @’ is a PosRA
query. The possible results of @) on a po-database D, denoted Q(D), is the set of results
obtained by applying accumulation to each possible world of Q’(D), namely:

» Definition 5. For a po-relation I', we define: accumy, (I') := {accumy, (L) | L € pw(T')}.

4:5

TIME 2017

4:6

Possible and Certain Answers for Queries over Order-Incomplete Data

Of course, accumulation has exactly one result whenever the operator accumy, ¢ does
not depend on the order of input tuples: this covers, e.g., the standard sum, min, max, etc.
Hence, we focus on accumulation operators which depend on the order of tuples (e.g., defining
@ as concatenation), so there may be more than one accumulation result:

» Example 6. As a first example, let Ratings(user, restaurant, rating) be an unordered po-
relation describing the numerical ratings given by users to restaurants, where each user rated
each restaurant at most once. Let Relevance(user) be a po-relation giving a partially-known
ordering of users to indicate the relevance of their reviews. We wish to compute a total rating
for each restaurant which is given by the sum of its reviews weighted by a PTIME-computable
weight function w. Specifically, w(i) gives a nonnegative weight to the rating of the i-th
most relevant user. Consider Qq := accumy, 1 (oy(Relevance xigx Ratings)) where we set
hi(t,n) := t.rating x w(n), and where ¢ is the tuple predicate: restaurant = “Gagnaire” A
Ratings.user = Relevance.user. The query)1 gives the total rating of “Gagnaire”, and each
possible world of Relevance may lead to a different accumulation result.

As a second example, consider an unordered po-relation HotelCity(hotel, city) indicating
in which city each hotel is located, and consider a po-relation City(city) which is (partially)
ranked by a criterion such as interest level, proximity, etc. Now consider the query Qs :=
aCcurnhg,concat (Hhotel(Qé))v where QIQ = UC’ity.city:HotelCity.city(City X LEX HOtelCity)a where
ha(t,n) :=t, and where “concat” denotes standard string concatenation. Q3 concatenates
the hotel names according to the preference order on the city where they are located, allowing
any possible order between hotels of the same city and between hotels in incomparable cities.

3 Possibility and Certainty

Evaluating a PosRA or PosRA?° query) on a po-database D yields a set of possible results:
for PosRA?°¢, it yields an explicit set of accumulation results, and for PosRA, it yields a
po-relation that represents a set of possible worlds (list relations). The uncertainty among
the results may be due to the order of the input relations being partial, due to uncertainty
yielded by the query, or both. In some cases, there is only one possible result, i.e., a certain
answer. In other cases, we may wish to examine multiple possible answers. We thus define:

» Definition 7 (Possibility and Certainty). Let @ be a PosRA query, D be a po-database, and
L a list relation. The possibility problem (POSS) asks if L € pw(Q(D)), i.e., if L is a possible
result. The certainty problem (CERT) asks if pw(Q(D)) = {L}, i.e., if L is the only possible
result. Likewise, if @ is a PosRA?°¢ query with accumulation monoid M, for a result v € M,
the POSS problem asks whether v € Q(D), and CERT asks whether Q(D) = {v}.

Discussion. For PosRA2°, our definition follows the usual notion of possible and certain
answers in data integration [28] and incomplete information [30]. For PosRA, we ask
for possibility or certainty of an entire output list relation, i.e., instance possibility and
certainty [3]. We now justify that these notions are useful and discuss more “local” alternatives.

First, as we exemplify below, the output of a query may be certain even for complex
queries and uncertain input. It is important to identify such cases and present the user with
the certain answer in full, like order-by query results in current DBMSs. Our CERT problem
is useful for this task, because we can use it to decide if a certain output exists, and if yes, we
can compute it in PTIME (by choosing any linear extension). However, CERT is a challenging
problem to solve, because of duplicate values (see “Technical difficulties” below).

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

» Example 8. Consider the po-database D of Figure 1 with the po-relations Rest and Hotels.
To find recommended pairs of hotels and restaurants in the same district, the user can
write Q := O Rest.distr—Hotely. distr (Rest Xp1r Hotels). Evaluating Q(D) yields only one possible
world, namely, the list relation ({G, 8, B,8), (TA, 5, M,5)), which is a certain result.

This could also happen with larger input relations. Imagine for example that we join
hotels and restaurants to find pairs of a hotel and a restaurant located in that hotel. The
result can be certain if the relative ranking of the hotels and of their restaurants agree.

If there is no certain answer, deciding possibility of an instance may be considered as
“best effort”. It can be useful, e.g., to check if a list relation (obtained from another source) is
consistent with a query result. For example, we may wish to check if a website’s ranking of
hotel-restaurant pairs is consistent with the preferences expressed in its rankings for hotels
and restaurants, to detect when a pair is ranked higher than its components would warrant.

When there is no overall certain answer, or when we want to check the possibility of some
aggregate property of the relation, we can use a PosRA?°° query. In particular, in addition
to the applications of Example 6, accumulation allows us to encode alternative notions of
P0OSS and CERT for PosRA queries, and to express them as POSS and CERT for PosRA?°. For
example, instead of possibility or certainty for a full relation, we can express possibility or
certainty of the location! of particular tuples of interest:

» Example 9. With accumulation we can model position-based selection queries. Consider for
instance a top-k operator on list relations, which retrieves a list relation of the first & tuples.
For a po-relation, the set of results is all possible such list relations. We can implement top-k
as acCUlp, concat With hg(t,n) being (¢) for n < k and e otherwise, and with concat being
list concatenation. We can similarly compute select-at-k, i.e., return the tuple at position k,
via accump, concat With hy(t,n) being (¢) for n = k and e otherwise.

Accumulation can also be used for a tuple-level comparison. To check whether the
first occurrence of a tuple t; precedes any occurrence of to, we define hy for all n € N by
hs(t1,n) := T, hs(te,n) := L and hs(t,n) := ¢ for t # 1, t2, and a monoid operator @ such
that T@T=TaL=T, L& 1L=1&T= L: the result is ¢ if neither ¢; not ¢ is present,
T if the first occurrence of ¢, precedes any occurrence of to, 1 otherwise.

We study the complexity of these variants in Section 6. We now give examples of their use:

» Example 10. Consider Q = ;s (0 Rest. distr=Hotel. distr (Rest Xprg Hotel)), which computes
ordered recommendations of districts including both hotels and restaurants. Using accumula-
tion as in Example 9, the user can compute the best district to stay in with @' = top-1(Q).
If ' has a certain answer, then there is a dominating hotel-restaurant pair in this district,
which answers the user’s need. If there is no certain answer, POSS allows the user to determine
the possible top-1 districts.

We can also use POSS and CERT for PosRA?°“ queries to restrict attention to tuples of
interest. If the user hesitates between districts 5 and 6, they can apply tuple-level comparison
to see whether the best pair of district 5 may be better (or is always better) than that of 6.

Technical difficulties. The main challenge to solve POSS and CERT for a PosRA query @ on
an input po-database D is that the tuple values of the desired result L may occur multiple
times in the po-relation Q(D), making it hard to match L and Q(D). In other words, even

! Remember that the existence of a tuple is not order-dependent and thus vacuous in our setting.

4:7

TIME 2017

4:8

Possible and Certain Answers for Queries over Order-Incomplete Data

though we may compute the po-relation Q(D) in PTIME (by Proposition 3) and present it
to the user, they still cannot easily “read” possible and certain answers out of the po-relation:

» Example 11. Consider a po-relation I' = (ID, T, <) with ID = {id,, idy, id., idq, ide, ids},
with T'(id,) := (Gagnaire, fr), T(idy,) := (Italia,it), T(id.) := (TourArgent, fr), T(idq) :=
(Verdi, it), T'(ide) := (Tsukizi,jp), T(id¢) := (Sola,jp), and with id, < id., idy, < ide,
ide < ide, idg < ide, and idq < ids. Intuitively, I' describes a preference relation over
restaurants, with their name and the type of their cuisine. Consider the PosRA query
Q@ :=TI(T") that projects I on type; we illustrate the result (with the original identifiers) in
Figure 3. Let L be the list relation (it, fr, jp, it, fr, jp), and consider POSS for @, T', and L.
We have that L € pw(Q(T)), as shown by the linear extension idg <’ id, <’ ids <’ idy <’
id. <' id. of <. However, this is hard to see, because each of it, fr, jp appears more than once
in the candidate list as well as in the po-relation; there are thus multiple ways to “map” the
elements of the candidate list to those of the po-relation, and only some of these mappings
lead to the existence of a corresponding linear extension. It is also challenging to check if L is
a certain answer: here, it is not, as there are other possible answers, e.g.: (it, fr, fr, it, jp, jp).

For PosRA?°¢ queries, this technical difficulty is even accrued because of the need to figure
out the possible ways in which the desired accumulation result can be obtained.

4 General Complexity Results

We have defined the PosRA and PosRA2°¢ query languages, and defined and motivated the
problems P0OSS and CERT. We now start the study of their complexity, which is the main
technical contribution of our paper. We will always study their data complezity?, where the
query @ is fixed: in particular, for PosRA?¢, the accumulation map and monoid, which we
assumed to be PTIME-evaluable, is fixed as part of the query, though it is allowed to be
infinite. The input to POSS and CERT for the fixed query @ is the po-database D and the
candidate result (a list relation for PosRA, an accumulation result for PosRA°¢).

Possibility. We start with POSS, which we show to be NP-complete in general.

» Theorem 12. The POSS problem is in NP for any PosRA or PosRA® query. Further,
there exists a PosRA query and a PosRA®¢ query for which the POSS problem is NP-complete.

In fact, as we will later point out, hardness holds even for quite a restrictive setting, with
a more intricate proof: see Theorem 18.

Certainty. We show that CERT is coNP-complete for PosRA2¢:

» Theorem 13. The CERT problem is in coNP for any PosRA** query, and there is a
PosRA?¢ query for which it is coNP-complete.

For PosRA queries, however, we show that CERT is in PTIME. As we will see later, this
follows from the tractability of CERT for PosRA®°° on cancellative monoids (Theorem 26).

» Theorem 14. CERT is in PTIME for any PosRA query.
We next identify further tractable cases, first for PosRA and then for PosRA?°.

2 In combined complezity, with Q part of the input, POSS and CERT are easily seen to be respectively
NP-hard and coNP-hard, by reducing from the evaluation of Boolean conjunctive queries (which is
NP-hard in data complexity [1]) even without order.

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

5 Tractable Cases for POSS on PosRA Queries

We show that POSS is tractable for PosRA queries if we restrict the allowed operators and if

we bound some order-theoretic parameters of the input po-database, such as poset width.
We call PosRAgx the fragment of PosRA that disallows the xprg operator, but allows all

other operators (including xigx). We also define PosRApg that disallows Xipgx but not Xprg.

Totally ordered inputs. We start by the natural case where the individual po-relations are
totally ordered, i.e., their order relation is a total order (so they actually represent a list
relation). This applies to situations where we integrate data from multiple sources that are
certain (totally ordered), and where uncertainty only results from the integration query (so
that the result may still have exponentially many possible worlds, e.g., the union of two
total orders has exponentially many possible interleavings). In a sense, the Xpg operator is
the one introducing the most uncertainty and “complexity” in the result, so we consider the
fragment PosRApgx of PosRA queries without Xprr, and show:

» Theorem 15. PSS is in PTIME for PosRArgy queries if input po-relations are totally
ordered.

In fact, we can show tractability for relations of bounded poset width:

» Definition 16 ([36]). An antichain in a po-relation I' = (ID,T,<) is a set A C ID of

pairwise incomparable tuple identifiers. The width of T" is the size of its largest antichain.

The width of a po-database is the maximal width of its po-relations.

In particular, totally ordered po-relations have width 1, and unordered po-relations have
a width equal to their size (number of tuples); the width of a po-relation can be computed in
PTIME [18]. Po-relations of low width are a common practical case: they cover, for instance,
po-relations that are totally ordered except for a few tied identifiers at each level. We show:

» Theorem 17. For any fixred k € N and fized PosRAgx query @, the POSS problem for Q
is in PTIME when all po-relations of the input po-database have width < k.

We last justify our choice of disallowing the Xprp product. Indeed, if we allow Xpg, then
POSS is hard on totally ordered po-relations, even if we disallow Xpgx:

» Theorem 18. There is a PosRAprr query for which the POSS problem is NP-complete even
when the input po-database is restricted to consist only of totally ordered po-relations.

Unordered inputs We now show the tractability of POSS for unordered input relations, i.e.,
po-relations that allow all possible orderings over their tuples. This applies, e.g., to contexts
where the order on input tuples is irrelevant or unknown; all order information must then be
imposed by the (fixed) query, using the ordered constant relations [<e]. We show:

» Theorem 19. P0SS is in PTIME for any PosRA query if input po-relations are unordered.

Here again we prove a more general result, capturing the case where the input is “almost
unordered”. We introduce for this purpose a novel order-theoretic notion, ‘a-width, which
decomposes the relation in classes of indistinguishable sets of incomparable elements.

» Definition 20. Given a poset (V,<) , a subset S C V is an indistinguishable antichain if
it is both an antichain (there are no x,y € S such that x < y) and an indistinguishable set
(or interval [17]): for all z,y € Sand z € V\S, z < ziff y < z, and z < z iff z < y.

4:9

TIME 2017

4:10

Possible and Certain Answers for Queries over Order-Incomplete Data

An indistinguishable antichain partition (ia-partition) of a poset is a partition of its
domain into indistinguishable antichains. The cardinality of such a partition is its number of
classes. The ia-width of a poset (or po-relation) is the cardinality of its smallest ia-partition.
The ia-width of a po-database is the maximal ia-width of its relations.

Hence, any po-relation T' has ia-width at most |T'|, and unordered relations have an
ia-width of 1. Po-relations may have low ia-width in practice if order is completely unknown
except for a few comparability pairs given by users, or when objects of a constant number of
types are ordered based only on some order on the types. We show that ia-width, like width,
can be computed in PTIME, and that bounding it ensures tractability (for all PosRA):

» Proposition 21. The ia-width of any poset, and a corresponding ia-partition, can be
computed in PTIME.

» Theorem 22. For any fized k € N and fized PosRA query Q, the POSS problem for Q is
in PTIME when all po-relations of the input po-database have ia-width < k.

Mixing both kinds of relations. We have shown the tractability of POSS assuming constant
width (only for PosRAgx queries) or assuming constant ia-width. A natural question is then
whether we can allow both totally ordered and unordered po-relations. For instance, we may
combine sources whose order is fully unknown or irrelevant, with sources that are completely
ordered (or almost totally ordered). More generally, can we allow both bounded-width
and bounded-ia-width relations? We show that this is the case if we disallow both product
operators, i.e., restrict to the language PosRA,,x of PosRA queries with no product.

» Theorem 23. For any fized k € N and fized PosRAno«x query Q, the POSS problem for Q
1s in PTIME when all po-relations of the input po-database have either ia-width < k or
width < k.

Disallowing product is severe, but we can still integrate sources by taking the union of
their tuples, selecting subsets, and modifying tuple values with projection. In fact, allowing
product makes POSS intractable when allowing both unordered and totally ordered input:

» Theorem 24. There is a PosRAgx query and a PosRApmp query for which the POSS
problem is NP-complete even when the input po-database is restricted to consist only of one
totally ordered and one unordered po-relation.

6 Tractable Cases for Accumulation Queries

We next study tractable cases for POSS and CERT in presence of accumulation.

Cancellative monoids. We first consider a natural restriction on the accumulation function:

» Definition 25 ([23]). For any monoid (M, ®,¢), we call a € M cancellable if, for all b, c €
M, we have that a ® b = a ® ¢ implies b = ¢, and we also have that b ® a = ¢ @ a implies
b= c. We call M a cancellative monoid if all its elements are cancellable.

Many interesting monoids are cancellative; in particular, this is the case of both monoids
in Example 6. More generally, all groups are cancellative monoids (but some infinite
cancellative monoids are not groups, e.g., the monoid of concatenation). For this large class
of accumulation functions, we design an efficient algorithm for certainty.

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

» Theorem 26. CERT is in PTIME for any PosRA*° query that performs accumulation in
a cancellative monoid.

Hence, CERT is tractable for PosRA (Theorem 14), via the concatenation monoid, and
CERT is also tractable for top-k (defined in Example 9). The hardness of POSS for PosRA
(Theorem 12) then implies that POSS, unlike CERT, is hard even on cancellative monoids.

Other restrictions on accumulation. We next revisit the results of Section 5 for PosRA2.
However, we need to make other assumptions on accumulation (besides PTIME-evaluability).
First, in the next results in this section, we assume that the accumulation monoid is finite:

» Definition 27. A PosRA?“¢ query is said to perform finite accumulation if the accumulation
monoid (M, @,) is finite.

For instance, if the domain of the output is assumed to be fixed (e.g., ratings in {1, ...,10}),
then select-at-k and top-k (the latter for fixed k), as defined in Example 9, are finite.

Second, for some of the next results, we require position-invariant accumulation, namely,
that the accumulation map does not depend on the absolute position of tuples:

» Definition 28. Recall that the accumulation map h has in general two inputs: a tuple
and its position. A PosRA?° query is said to be position-invariant if its accumulation map
ignores the second input, so that effectively its only input is the tuple itself.

Note that accumulation in the monoid is still performed in order, so we can still perform,
e.g., concatenation. These two restrictions do not suffice to make POSS and CERT tractable,
but we will use them to lift the results of Section 5.

Revisiting Section 5. We now extend our previous results to queries with accumulation, for
P0OSS and CERT, under the additional assumptions on accumulation that we presented. We

call PosRA#g; and PosRA2SS, the extension of PosRAgx and PosRA,,x with accumulation.

We can first generalize Theorem 17 to PosRA?gE queries with finite accumulation:

» Theorem 29. For any PosRA%sy query performing finite accumulation, POSS and CERT
are in PTIME on po-databases of bounded width.

We then extend Theorem 22 to PosRA?°¢ with finite and position-invariant accumulation:

» Theorem 30. For any PosRA*C query performing finite and position-invariant accumula-
tion, POSS and CERT are in PTIME on po-databases of bounded ia-width.

Last, we can adapt the tractability result for queries without product (Theorem 23):

» Theorem 31. For any PosRA query performing finite and position-invariant accumu-
lation, POSS and CERT are in PTIME on po-databases whose relations have either bounded
width or bounded ia-width.

The finiteness assumption is important, as the previous result does not hold otherwise.
Specifically, there exists a query that performs position-invariant but not finite accumulation,
for which P0OSS is NP-hard even on unordered po-relations.

4:11

TIME 2017

4:12

Possible and Certain Answers for Queries over Order-Incomplete Data

Other definitions. Finally, recall that we can use accumulation as in Example 9 to capture
position-based selection (top-k, select-at-k) and tuple-level comparison (whether the first
occurrence of a tuple precedes all occurrences of another tuple) for PosRA queries. Using a
direct construction for these problems, we can show that they are tractable:

» Proposition 32. For any PosRA query Q, the following problems are in PTIME:

select-at-k: Given a po-database D, tuple value t, and position k € N, whether it is
possible/certain that Q(D) has value t at position k;

top-k: For any fixed k € N, given a po-database D and list relation L of length k, whether
it is possible/certain that the top-k values in Q(D) are exactly L;

tuple-level comparison: Given a po-database D and two tuple values t1 and to, whether it
is possible/certain that the first occurrence of t1 precedes all occurrences of to.

7 Extensions

We next briefly consider two extensions to our model: group-by and duplicate elimination.

Group-by. First, we extend accumulation with a group-by operator, inspired by SQL.

» Definition 33. Let (M, ®,¢) be a monoid and h : D¥ — M be an accumulation map (cf.
Definition 4), and let A = Ay, ..., A, be a sequence of attributes: we call accumGroupBy,, 4 a
an accumulation operator with group-by. Letting L be a list relation with compatible schema,
we define accumGroupBy), o (L) as an unordered relation that has, for each tuple value
t € ma(L), one tuple (t,v;) where v, is accump, g (0a,=¢.4;,...A,=t.4, (L)) with 7 and o on
the list relation L having the expected semantics. The result on a po-relation I' is the set of
unordered relations {accumGroupByy, 4 A (L) | L € pw(T')}.

In other words, the operator “groups by” the values of Ay, ..., A,, and performs accumula-
tion within each group, forgetting the order across groups. As for standard accumulation, we
only allow group-by as an outermost operation, calling PosRA?*“SBY the language of PosRA
queries followed by one accumulation operator with group-by. Note that the set of possible
results is generally not a po-relation, because the underlying bag relation is not certain.

We next study the complexity of POSS and CERT for PosRA2°GBY queries. Of course,
whenever POSS and CERT are hard for some PosRA*° query @) on some kind of input po-
relations, then there is a corresponding PosRA*““BY query for which hardness also holds
(with empty A). The main point of this section is to show that the converse is not true: the
addition of group-by increases complexity. Specifically, we show that the POSS problem for
PosRA?°GBY ig hard even on totally ordered po-relations and without the xpmp operator:

» Theorem 34. There is a PosRA**SBY query Q with finite and position-invariant accumu-
lation, not using Xpe, such that POSS for Q) is NP-hard even on totally ordered po-relations.

This result contrasts with the tractability of POSS for PosRArgx queries (Theorem 15) and
for PosRA2SS queries with finite accumulation (Theorem 29) on totally ordered po-relations.
By contrast, it is not hard to see that the CERT problem for PosRA#“GBY reduces to CERT
for the same query without group-by, so it is no harder than the latter problem. Specifically:

» Theorem 35. All CERT tractability results from Section 6 extend to PosRA**“SBY when
imposing the same restrictions on query operators, accumulation, and input po-relations.

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

Duplicate elimination. We last study the problem of consolidating tuples with duplicate
values. To this end, we define a new operator, dupElim, and introduce a semantics for it.
The main problem is that tuples with the same values may be ordered differently relative to
other tuples. To mitigate this, we introduce the notion of id-sets:

» Definition 36. Given a totally ordered po-relation (ID,T, <), a subset ID’ of ID is an
indistinguishable duplicate set (or id-set) if for every idy,idy € ID', we have T'(idy) = T (idz),
and for every id € ID\ID', we have id < idy iff id < ids, and idy < id iff idy < id.

» Example 37. Consider the totally ordered relation I'y := Iljoteimame (Hotel), with Hotel as
in Figure 1. The two “Mercure” tuples are not an id-set: they disagree on their ordering
with “Balzac”. Consider now a totally ordered relation 'y = (ID3, T3, <2) whose only
possible world is a list relation (A4, B, B, C) for some tuples A, B, and C over D. The set
{id € ID5 | T5(id) = B} is an id-set in I's. Note that a singleton is always an id-set.

We define a semantics for dupElim on a totally ordered po-relation I' = (ID, T, <) via id-sets.
First, check that for every tuple value ¢ in the image of T', the set {id € ID | T'(id) = t} is an
id-set in . If this holds, we call I safe, and set dupElim(T") to be the singleton {L} of the
only possible world of the restriction of I" obtained by picking one representative element per
id-set (clearly L does not depend on the chosen representatives). Otherwise, we call T unsafe
and say that duplicate consolidation has failed; we then set dupElim(T") to be an empty set
of possible worlds. Intuitively, duplicate consolidation tries to reconcile (or “synchronize”)
order constraints for tuples with the same values, and fails when it cannot be done.

» Example 38. In Example 37, we have dupElim(I';) = 0 but dupElim(I's) = (A, B, C).

We then extend dupElim to po-relations by considering all possible results of duplicate
elimination on the possible worlds, ignoring the unsafe possible worlds. If no possible worlds
are safe, then we completely fail:

» Definition 39. For each list relation L, we let I';, be a po-relation such that pw(I'r) = {L}.
Letting I' be a po-relation, we set dupElim(I") := U} ¢, dupElim(I'z). We say that
dupElim(T") completely fails if dupElim(T) = 0, i.e., dupElim(T'z,) = @ for every L € pw(T).

» Example 40. Consider the totally ordered po-relation Rest from Figure 1, and a to-
tally ordered po-relation Rests whose only possible world is (Tsukizi, Gagnaire). Consider
Q = dupElim(I1,¢stname (Rest) U Rests). Intuitively, @) combines restaurant rankings, using
duplicate consolidation to collapse two occurrences of the same name to a single tuple. The
only possible world of @ is (Tsukizi, Gagnaire, TourArgent), since duplicate elimination fails
in the other possible worlds: indeed, this is the only possible way to combine the rankings.

We next show that the result of dupElim can still be represented as a po-relation, up to
complete failure (which may be efficiently identified).

» Theorem 41. For any po-relation T', we can test in PTIME if dupElim(T") completely fails;
if it does not, we can compute in PTIME a po-relation T’ such that pw(I”) = dupElim(T).

We note that dupElim is not redundant with any of the other PosRA operators, general-
izing Theorem 1:

» Theorem 42. No operator among those of PosRA and dupElim can be expressed through
a combination of the others.

Last, we observe that dupElim can indeed be used to undo some of the effects of bag
semantics. For instance, we can show the following:

4:13

TIME 2017

4:14

Possible and Certain Answers for Queries over Order-Incomplete Data

» Proposition 43. For any po-relation T', we have dupElim(T' UT) = dupElm(T): in
particular, one completely fails iff the other does.

We can also show that most of our previous tractability results still apply when the
duplicate elimination operator is added:

» Theorem 44. All POSS and CERT tractability results of Sections 4—6, except Theorem 23
and Theorem 31, extend to PosRA and PosRA* where we allow dupElim (but impose the
same restrictions on query operators, accumulation, and input po-relations).

Furthermore, if in a set-semantics spirit we require that the query output has no duplicates,
POSS and CERT are always tractable (as this avoids the technical difficulty of Example 11):

» Theorem 45. For any PosRA query Q, POSS and CERT for dupElim(Q) are in PTIME.

Discussion. The introduced group-by and duplicate elimination operators have some short-
comings: the result of group-by is in general not representable by po-relations, and duplicate
elimination may fail. These are both consequences of our design choices, where we capture
only uncertainty on order (but not on tuple values) and design each operator so that its
result corresponds to the result of applying it to each individual world of the input (see
further discussion in Section 8). Avoiding these shortcomings is left for future work.

8 Comparison With Other Formalisms

We next compare our formalism to previously proposed formalisms: query languages over
bags (with no order); a query language for partially ordered multisets; and other related
work. To our knowledge, however, none of these works studied the possibility or certainty
problems for partially ordered data, so that our technical results do not follow from them.

Standard bag semantics. We first compare to related work on the bag semantics for
relational algebra. Indeed, a natural desideratum for our semantics on (partially) ordered
relations is that it should be a faithful extension of bag semantics. We first consider the BALG!
language on bags [21] (the “flat fragment” of their language BALG on nested relations). We
denote by BALG}F the fragment of BALG' that includes the standard extension of positive
relational algebra operations to bags: additive union, cross product, selection, projection. We
observe that, indeed, our semantics faithfully extends BALG1+: query evaluation commutes
with “forgetting” the order. Formally, for a po-relation I', we denote by bag(I') its underlying
bag relation, and define likewise bag(D) for a po-database D as the database of underlying
bag relations. For the following comparison, we identify Xpp and xipgx with the x of [21]
and our union with the additive union of [21]; the following holds:

» Proposition 46. For any PosRA query Q and a po-relation D, bag(Q(D)) = Q(bag(D))
where Q(D) is defined according to our semantics and Q(bag(D)) is defined by BALG", .

The full BALG' language includes additional operators, such as bag intersection and
subtraction, which are non-monotone and as such may not be expressed in our language: it is
also unclear how they could be extended to our setting (see further discussion in “Algebra on
pomsets” below). On the other hand, BALG' does not include aggregation, and so PosRA?
and BALG! are incomparable in terms of expressive power.

A better yardstick to compare against for accumulation could be [33]: they show that
their basic language BQL is equivalent to BALG, and then further extend the language

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

with aggregate operators, to define a language called N'RL*®" on nested relations. On
flat relations, N"RL*8" captures functions that cannot be captured in our language: in
particular the average function AVG is non-associative and thus cannot be captured by our
accumulation function (which anyway focuses on order-dependent functions, as POSS/CERT
are trivial otherwise). On the other hand, N"RL*#" cannot test parity (Corollary 5.7 in [33])
whereas this is easily captured by our accumulation operator. We conclude that N RL*&8"
and PosRA? are incomparable in terms of captured transformations on bags, even when
restricted to flat relations.

Algebra on pomsets. We now compare our work to algebras defined on pomsets [20, 22],
which also attempt to bridge partial order theory and data management (although, again,
they do not study possibility and certainty). Pomsets are labeled posets quotiented by
isomorphism (i.e., renaming of identifiers), like po-relations. A major conceptual difference
between our formalism and that of [20, 22] is that their language focuses on processing
connected components of the partial order graph, and their operators are tailored for that
semantics. As a consequence, their semantics is not a faithful extension of bag semantics,
i.e., their language would not satisfy the counterpart of Proposition 46 (see for instance
the semantics of union in [20]). By contrast, we manipulate po-relations that stand for
sets of possible list relations, and our operators are designed accordingly, unlike those of
[20] where transformations take into account the structure (connected components) of the
entire poset graph. Because of this choice, [20] introduces non-monotone operators that we
cannot express, and can design a duplicate elimination operator that cannot fail. Indeed, the
possible failure of our duplicate elimination operator is a direct consequence of its semantics
of operating on each possible world, possibly leading to contradictions.

If we consequently disallow duplicate elimination in both languages for the sake of
comparison, we note that the resulting fragment Pom-Alg, of the language of [20] can yield
only series-parallel output (Proposition 4.1 of [20]), unlike PosRA queries whose output order
may be arbitrary. Hence, Pom-Alg. does not subsume PosRA.

Incompleteness in databases. Our work is inspired by the field of incomplete information
management, studied for various models [5, 30], in particular relational databases [24]. This
field inspires our design of po-relations and study of possibility and certainty [3, 34]. However,
uncertainty in these settings typically focuses on whether tuples exist or on their values
(e.g., with nulls [10], including the novel approach of [31, 32]; with c-tables [24], probabilistic
databases [42] or fuzzy numerical values as in [38]). To our knowledge, though, our work

is the first to study possible and certain answers in the context of order-incomplete data.

Combining order incompleteness with standard tuple-level uncertainty is left as a challenge
for future work. Note that some works [8, 29, 32] use partial orders on relations to compare
the informativeness of representations. This is unrelated to our partial orders on tuples.

Ordered domains. Another line of work has studied relational data management where the
domain elements are (partially) ordered [25, 35, 43]. However, the perspective is different:
we see order on tuples as part of the relations, and as being constructed by applying our
operators; these works see order as being given outside of the query, hence do not study the
propagation of uncertainty through queries. Also, queries in such works can often directly
access the order relation [43, 6]. Some works also study uncertainty on totally ordered
numerical domains [38, 39], while we look at general order relations.

4:15

TIME 2017

4:16

Possible and Certain Answers for Queries over Order-Incomplete Data

Temporal databases. Temporal databases [9, 37] consider order on facts, but it is usually
induced by timestamps, hence total. A notable exception is [16] which considers that some
facts may be more current than others, with constraints leading to a partial order. In
particular, they study the complexity of retrieving query answers that are certainly current,
for a rich query class. In contrast, we can manipulate the order via queries, and we can also
ask about aspects beyond currency, as shown throughout the paper (e.g., via accumulation).

Using preference information. Order theory has been also used to handle preference
information in database systems [26, 4, 27, 2, 41], with some operators being the same as
ours, and for rank aggregation [15, 26, 14], i.e. retrieving top-k query answers given multiple
rankings. However, such works typically try to resolve uncertainty by reconciling many
conflicting representations (e.g. via knowledge on the individual scores given by different
sources and a function to aggregate them [15], or a preference function [2]). In contrast,
we focus on maintaining a faithful model of all possible worlds without reconciling them,
studying possible and certain answers in this respect.

9 Conclusion

This paper introduced an algebra for order-incomplete data. We have studied the complexity
of possible and certain answers for this algebra, have shown the problems to be generally
intractable, and identified multiple tractable cases. In future work we plan to study the
incorporation of additional operators (in particular non-monotone ones), investigate how to
combine order-uncertainty with uncertainty on values, and study additional semantics for
dupElim. Last, it would be interesting to establish a dichotomy result for the complexity of
P0OSS, and a complete syntactic characterization of cases where POSS is tractable.

Acknowledgements We are grateful to Marzio De Biasi, Palvolgyi Domotor, and Mikhail
Rudoy, from http://cstheory.stackexchange.com, for helpful suggestions.

—— References

1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Addison-
Wesley, 1995.

2 Bogdan Alexe, Mary Roth, and Wang-Chiew Tan. Preference-aware integration of temporal
data. PVLDB, 8(4), 2014. doi:10.14778/2735496.2735500.

3 Lyublena Antova, Christoph Koch, and Dan Olteanu. World-set decompositions: Expres-
siveness and efficient algorithms. In ICDT, volume 4353 of Lecture Notes in Computer
Science, pages 194-208. Springer, 2007. URL: https://arxiv.org/abs/0705.4442.

4 Anastasios Arvanitis and Georgia Koutrika. PrefDB: Supporting preferences as first-class
citizens in relational databases. IEEE TKDE, 26(6), 2014.

5 Pablo Barceld, Leonid Libkin, Antonella Poggi, and Cristina Sirangelo. XML with incom-
plete information. J. ACM, 58(1), 2010. doi:10.1145/1870103.1870107.

6 Michael Benedikt and Luc Segoufin. Towards a characterization of order-invariant queries

over tame graphs. Journal of Symbolic Logic, 74, 2009.

7 Andeas Brandstddt, Van Bang Le, and Jeremy P. Spinrad. Posets. In Graph Classes. A
Survey, chapter 6. STAM, 1987.

8 Peter Buneman, Achim Jung, and Atsushi Ohori. Using powerdomains to generalize rela-
tional databases. T'CS, 91(1), 1991.

http://cstheory.stackexchange.com
http://webdam.inria.fr/Alice/pdfs/all.pdf
http://www.vldb.org/pvldb/vol8/p365-roth.pdf
http://www.vldb.org/pvldb/vol8/p365-roth.pdf
http://dx.doi.org/10.14778/2735496.2735500
https://arxiv.org/abs/0705.4442
http://www.dblab.ntua.gr/~tasosarvanitis/pubs/TKDE13.pdf
http://www.dblab.ntua.gr/~tasosarvanitis/pubs/TKDE13.pdf
http://homepages.inf.ed.ac.uk/libkin/papers/jacm-pods09.pdf
http://homepages.inf.ed.ac.uk/libkin/papers/jacm-pods09.pdf
http://dx.doi.org/10.1145/1870103.1870107
http://www.lsv.ens-cachan.fr/~segoufin/Papers/Mypapers/invfo.pdf
http://www.lsv.ens-cachan.fr/~segoufin/Papers/Mypapers/invfo.pdf
http://www.sciencedirect.com/science/article/pii/0304397591902665
http://www.sciencedirect.com/science/article/pii/0304397591902665

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

10

11

12

13

14

15

16

17

18

19

20
21

22

23
24

25

26

27
28

29

30

31
32

33

34

35

Jan Chomicki and David Toman. Time in database systems. In Handbook of Temporal
Reasoning in Artificial Intelligence. Elsevier, 2005.

Edgar F. Codd. Extending the database relational model to capture more meaning. TODS,
4(4), 1979.

Latha S. Colby, Edward L. Robertson, Lawrence V. Saxton, and Dirk Van Gucht. A query
language for list-based complex objects. In PODS, 1994.

Latha S. Colby, Lawrence V. Saxton, and Dirk Van Gucht. Concepts for modeling and
querying list-structured data. Information Processing & Management, 30(5), 1994.
Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Math-
ematics, 1950.

Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggregation
methods for the Web. In WWW, 2001.

Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middle-
ware. In PODS, 2001.

Wentfei Fan, Floris Geerts, and Jef Wijsen. Determining the currency of data. TODS, 37(4),
2012.

Roland Fraissé. L’intervalle en théorie des relations; ses genéralisations, filtre intervallaire
et cloture d’une relation. North-Holland Math. Stud., 99, 1984.

D. R. Fulkerson. Note on Dilworth’s decomposition theorem for partially ordered sets. In
Proc. Amer. Math. Soc, 1955.

Michael R. Garey and David S. Johnson. Computers And Intractability. A Guide to the
Theory of NP-completeness. W. H. Freeman, 1979.

Stéphane Grumbach and Tova Milo. An algebra for pomsets. In ICDT, 1995.

Stéphane Grumbach and Tova Milo. Towards tractable algebras for bags. JCSS, 52(3),
1996. doi:10.1006/jcss.1996.0042.

Stéphane Grumbach and Tova Milo. An algebra for pomsets. Inf. Comput., 150(2), 1999.
doi:10.1006/inco.1998.2777

John M. Howie. Fundamentals of semigroup theory. Oxford: Clarendon Press, 1995.
Tomasz Imielinski and Witold Lipski. Incomplete information in relational databases. .J.
ACM, 31(4), 1984.

Neil Immerman. Relational queries computable in polynomial time. Inf. Control, 68(1-3),
1986.

Marie Jacob, Benny Kimelfeld, and Julia Stoyanovich. A system for management and
analysis of preference data. VLDB Endow., 7(12), 2014.

Werner Kiessling. Foundations of preferences in database systems. In VLDB, 2002.
Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, 2002. doi:
10.1145/543613.543644.

Leonid Libkin. A semantics-based approach to design of query languages for partial infor-
mation. In Semantics in Databases, 1998.

Leonid Libkin. Data exchange and incomplete information. In PODS, 2006. doi:10.1145/
1142351.1142360

Leonid Libkin. Incomplete data: What went wrong, and how to fix it. In PODS, 2014.

Leonid Libkin. SQL’s three-valued logic and certain answers. In ICDT, 2015. doi:10.

4230/LIPIcs.ICDT.2015.94.

Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate functions. J.
Comput. Syst. Sci., 55(2), 1997. doi:10.1006/jcss.1997.1523.

Witold Lipski, Jr. On semantic issues connected with incomplete information databases.
TODS, 4(3), 1979.

Wilfred Ng. An extension of the relational data model to incorporate ordered domains.
TODS, 26(3), 2001.

4:17

TIME 2017

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.9469
https://www.cs.indiana.edu/~vgucht/p179-colby.pdf
https://www.cs.indiana.edu/~vgucht/p179-colby.pdf
http://www.sciencedirect.com/science/article/pii/0306457394900787
http://www.sciencedirect.com/science/article/pii/0306457394900787
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8702
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.8702
http://researcher.watson.ibm.com/researcher/files/us-fagin/jcss03.pdf
http://researcher.watson.ibm.com/researcher/files/us-fagin/jcss03.pdf
http://homepages.inf.ed.ac.uk/fgeerts/pdf/currency.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.652
http://www.cs.tau.ac.il/~milo/projects/query_languages/papers/icdt95.ps
http://www.sciencedirect.com/science/article/pii/S0022000096900422
http://dx.doi.org/10.1006/jcss.1996.0042
http://www.sciencedirect.com/science/article/pii/S0890540198927778
http://dx.doi.org/10.1006/inco.1998.2777
http://www.sciencedirect.com/science/article/pii/S0019995886800298
http://www.vldb.org/pvldb/vol7/p1255-jacob.pdf
http://www.vldb.org/pvldb/vol7/p1255-jacob.pdf
http://www.vldb.org/conf/2002/S09P04.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.9907
http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1145/543613.543644
http://homepages.inf.ed.ac.uk/libkin/papers/th-wsh.pdf
http://homepages.inf.ed.ac.uk/libkin/papers/th-wsh.pdf
http://homepages.inf.ed.ac.uk/libkin/papers/pods06a.pdf
http://dx.doi.org/10.1145/1142351.1142360
http://dx.doi.org/10.1145/1142351.1142360
http://homepages.inf.ed.ac.uk/libkin/papers/pods14.pdf
http://drops.dagstuhl.de/opus/volltexte/2015/4979/
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.94
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.94
http://www.sciencedirect.com/science/article/pii/S0022000097915233
http://dx.doi.org/10.1006/jcss.1997.1523
https://www.cse.ust.hk/faculty/wilfred/paper/tods01.pdf

4:18

Possible and Certain Answers for Queries over Order-Incomplete Data

36 Bernd Schroder. Ordered Sets: An Introduction. Birkhduser, 2003.

37 Richard T. Snodgrass, Jim Gray, and Jim Melton. Developing time-oriented database
applications in SQL. Morgan Kaufmann, 2000.

38 Mohamed A. Soliman and Thab F. Ilyas. Ranking with uncertain scores. In ICDE, 2009.
doi:10.1109/ICDE.2009.102.

39 Mohamed A. Soliman, Thab F. Ilyas, and Shalev Ben-David. Supporting ranking queries
on uncertain and incomplete data. VLDBJ, 19(4), 2010.

40 Richard P. Stanley. Enumerative Combinatorics. Cambridge University Press, 1986.

41 Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. A survey on representation,
composition and application of preferences in database systems. TODS, 36(3), 2011.

42 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

43 Ron van der Meyden. The complexity of querying indefinite data about linearly ordered
domains. JCSS, 54(1), 1997.

44 Manfred K Warmuth and David Haussler. On the complexity of iterated shuffle. JCSS,
28(3), 1984.

A Proof Sketches for Section 4 (General Complexity Results)

» Theorem 12. The P0OSS problem is in NP for any PosRA or PosRA*° query. Further,
there exists a PosRA query and a PosRA*° query for which the POSS problem is NP-complete.

Proof Sketch. The membership for PosRA in NP is clear: guess a linear extension and
check that it realizes the candidate possible result. For hardness, as in previous work [44], we
reduce from the UNARY-3-PARTITION problem [19]: given a number B and 3m numbers
written in unary, decide if they can be partitioned in triples that all sum to B. We reduce
this to POSS for the identity PosRA query, on an arity-1 input po-relation where each input
number n is represented as a chain of n+ 2 elements. The first and last elements of each chain
are respectively called start and end markers, and elements of distinct chains are pairwise
incomparable. The candidate possible world L consists of m repetitions of the following
pattern: three start markers, B elements, three end markers. A linear extension achieves L iff
the triples matched by < to each copy of the pattern are a solution to UNARY-3-PARTITION,
hence P0OSS for) is NP-hard. This implies hardness for PosRA?°¢] when accumulating with
the identity map and concatenation (so that any list relation is mapped to itself). |

» Theorem 13. The CERT problem is in coNP for any PosRA* query, and there is a
PosRA?¢ query for which it is coNP-complete.

Proof Sketch. Again, membership is immediate. We show hardness of CERT by studying
a PosRA?° query @, that checks if two input po-relations I' and I have some common
possible world: @, does so so by testing if one can alternate between elements of I' and I
with the same label, using accumulation in the transition monoid of a deterministic finite
automaton. We show hardness of POSS for (), (as in the previous result), and further ensure
that @, always has at most two possible accumulation results, no matter the input. Hence,
POSS for @), reduces to the negation of CERT for),, so that CERT is also hard. <

B Proof Sketches for Section 5 (Tractable Cases for POSS on
PosRA Queries)

» Theorem 17. The POSS problem is in NP for any PosRA or PosRA* query. Further,
there exists a PosRA query and a PosRA*C query for which the POSS problem is NP-complete.

https://cs.uwaterloo.ca/~ilyas/papers/SolimanICDE09.pdf
http://dx.doi.org/10.1109/ICDE.2009.102
https://cs.uwaterloo.ca/~ilyas/papers/SolimanVLDBJ2010.pdf
https://cs.uwaterloo.ca/~ilyas/papers/SolimanVLDBJ2010.pdf
http://people.uta.fi/~kostas.stefanidis/docs/tods11.pdf
http://people.uta.fi/~kostas.stefanidis/docs/tods11.pdf
http://www.sciencedirect.com/science/article/pii/S0022000097914550
http://www.sciencedirect.com/science/article/pii/S0022000097914550
http://www.sciencedirect.com/science/article/pii/0022000084900187

A. Amarilli, M. L. Ba, D. Deutch, and P. Senellart

Proof Sketch. As xpp is disallowed, we can show that the po-relation I' := Q(D) has
width &’ depending only on k& and the query @ (but not on D). We can then compute in
PTIME a chain partition of T' [13, 18], namely, a decomposition of T" in totally ordered chains,
with additional order constraints between them. This allows us to apply a dynamic algorithm
to decide POSS: the state of the algorithm is the position on the chains. The number of states
is polynomial with degree k', which is a constant when @ and k are fixed. <

» Theorem 22. For any fized k € N and fixred PosRA query @Q, the POSS problem for @ is
in PTIME when all po-relations of the input po-database have ia-width < k.

Proof Sketch. As in the proof of Theorem 17, we first show that the query result I" also
has ia-width depending only on k£ and the query. We then consider the order relation on
indistinguishable antichains of I". For each linear extension 7 of this order, we apply a greedy
algorithm to decide P0OSS, for which we show correctness. The algorithm reads the candidate
possible world in order and maps each tuple to an identifier of I' with the correct value that
was not mapped yet: we pick it in the first possible class according to the order 7. |

C Proof sketches for Section 6 (Tractable Cases for Accumulation
Queries)

» Theorem 26. CERT is in PTIME for any PosRA*° query that performs accumulation in
a cancellative monoid.

Proof Sketch. We show that the accumulation result in cancellative monoids is certain iff
the po-relation on which we apply accumulation respects the following safe swaps criterion:
for all tuples t; and ¢ and consecutive positions p and p + 1 where they may appear, we
have h(t1,p) ® h(t2,p+ 1) = h(ta,p) ® h(t1,p + 1). We can check this in PTIME. <

4:19

TIME 2017

	Introduction
	Data Model and Query Language
	Possibility and Certainty
	General Complexity Results
	Tractable Cases for POSS on PosRA Queries
	Tractable Cases for Accumulation Queries
	Extensions
	Comparison With Other Formalisms
	Conclusion
	Proof Sketches for Section 4 (General Complexity Results)
	Proof Sketches for Section 5 (Tractable Cases for POSS on PosRA Queries)
	Proof sketches for Section 6 (Tractable Cases for Accumulation Queries)

