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Abstract
Several query evaluation tasks can be done via knowledge compilation: the query result is com-
piled as a lineage circuit from which the answer can be determined. For such tasks, it is important
to leverage some width parameters of the circuit, such as bounded treewidth or pathwidth, to con-
vert the circuit to structured classes, e.g., deterministic structured NNFs (d-SDNNFs) or OBDDs.
In this work, we show how to connect the width of circuits to the size of their structured represen-
tation, through upper and lower bounds. For the upper bound, we show how bounded-treewidth
circuits can be converted to a d-SDNNF, in time linear in the circuit size. Our bound, unlike
existing results, is constructive and only singly exponential in the treewidth. We show a related
lower bound on monotone DNF or CNF formulas, assuming a constant bound on the arity (size of
clauses) and degree (number of occurrences of each variable). Specifically, any d-SDNNF (resp.,
SDNNF) for such a DNF (resp., CNF) must be of exponential size in its treewidth; and the
same holds for pathwidth when compiling to OBDDs. Our lower bounds, in contrast with most
previous work, apply to any formula of this class, not just a well-chosen family. Hence, for our
language of DNF and CNF, pathwidth and treewidth respectively characterize the efficiency of
compiling to OBDDs and (d-)SDNNFs, that is, compilation is singly exponential in the width
parameter. We conclude by applying our lower bound results to the task of query evaluation.
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1 Introduction

Uncertainty and errors in data can be modeled using probabilistic databases [39], annotating
every tuple with a probability of existence. Query evaluation on probabilistic databases must
then handle the uncertainty by computing the probability that each query result holds. A
common technique to evaluate queries on probabilistic databases is the intensional approach:
first compute a representation of the lineage of the query on the database, which intuitively
describes how the query depends on the possible database facts; then use this lineage to
compute probabilities efficiently. Specifically, the lineage can be computed as a circuit [32],
and efficient probability computation can be achieved by restricting to tractable circuit
classes via knowledge compilation. Thus, to evaluate queries on probabilistic databases, we
can use knowledge compilation algorithms to translate circuits to tractable classes; conversely,
lower bounds in knowledge compilation can identify the limits of the intensional approach.

In this paper, we study the relationship between two kinds of tractable circuit classes in
knowledge compilation: width-based classes, specifically, bounded-treewidth and bounded-
pathwidth circuits; and structure-based classes, specifically, OBDDs (ordered binary decision
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6:2 Connecting Width and Structure in Knowledge Compilation

diagrams [17], following a variable order) and d-SDNNFs (structured deterministic decom-
posable negation normal forms [35], following a v-tree). Circuits of bounded treewidth can
be obtained as a result of practical query evaluation [3,6,30], whereas OBDDs and d-DNNFs
have been studied to show theoretical characterizations of the query lineages they can repre-
sent [31]. Both classes enjoy tractable probabilistic computation: for width-based classes,
using message passing [33], in time linear in the circuit and exponential in the treewidth; for
OBDDs and d-SDNNFs, in linear time by definition of the class [22]. Hence the question
that we study: can we compile width-based classes efficiently into structure-based classes?

We first study how to perform this transformation, and show corresponding upper
bounds. Existing work has already studied the compilation of bounded-pathwidth circuits
to OBDDs [32], which can be made constructive [7, Lemma 6.9]. Accordingly, we focus on
compiling bounded-treewidth circuits to d-SDNNF circuits. Our first contribution, stated in
Section 3 and proved in Section 4, is to show the following:
I Result 1 (Theorem 5 and subsequent remark). Given as input a Boolean circuit C of
treewidth k, we can compute a d-SDNNF equivalent to C in time O(|C| × f(k)) where f is
singly exponential.
The algorithm transforms the input circuit bottom-up, considering all possible valuations of
the gates in each bag of the tree decomposition, and keeping track of additional information to
remember which guessed values have been substantiated by a corresponding input. Our result
relates to a recent theorem of Bova and Szeider in [16], except that our bound depends on |C|
(the circuit size) whereas their bound depends on the number of variables of C. In exchange
for this, we improve on their result in two ways. First, our result is constructive, whereas [16]
only shows a bound on the size of the d-SDNNF, without bounding the complexity of
effectively computing it. Second, our bound is singly exponential in k, whereas [16] is
doubly exponential; this allows us to be competitive with message passing (also singly
exponential in k), and we believe it can be useful for practical applications. Indeed, beyond
probabilistic query evaluation, our result implies that all tractable tasks on d-SDNNFs (e.g.,
enumeration [2] and MAP inference [27]) are also tractable on bounded-treewidth circuits.

Second, we study lower bounds on how efficiently we can convert from width-based to
structure-based classes. Our bounds already apply to a weaker formalism of width-based
circuits, namely monotone CNFs and DNFs of bounded width, so we focus on them. Our
second contribution (in Section 5) concerns pathwidth and OBDD representations: we show
that, up to factors in the formula arity (maximal size of clauses) and degree (maximal
number of variable occurrences), any OBDD for a monotone CNF or DNF must be of width
exponential in the pathwidth of the formula. Formally:
I Result 2 (Theorem 15). Let ϕ be a monotone DNF or monotone CNF, let a := arity(ϕ)
and d := degree(ϕ). Then any OBDD for ϕ has width 2Ω

(
pw(ϕ)
a3×d2

)
.

This result generalizes several existing lower bounds in knowledge compilation that exponen-
tially separate CNFs from OBDDs, such as [25] and [15, Theorem 19].

Our third contribution (Section 6) is to show an analogue for treewidth and (d-)SDNNFs:
I Result 3 (Theorem 25). Let ϕ be a monotone DNF (resp., monotone CNF), let a := arity(ϕ)
and d := degree(ϕ). Then any d-SDNNF (resp., SDNNF) for ϕ has size 2Ω

(
tw(ϕ)

a3×d2

)
.

Our two lower bounds contribute to a vast landscape of knowledge compilation results
giving lower bounds on compiling specific Boolean functions to restricted circuits classes,
e.g., [15, 25, 37] to OBDDs, [18] to decision structured DNNF, [9] to sentential decision
diagrams (SDDs), [13,36] to d-SDNNF, [13,19,20] to d-DNNFs and DNNFs. However, all
those lower bounds (with the exception of some results in [19, 20] discussed in Section 6)
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apply to well-chosen families of Boolean functions (usually CNF), whereas Result 2 and 3
apply to any monotone CNF and DNF. Together with Result 1, these generic lower bounds
point to a strong relationship between width parameters and structure representations, on
monotone CNFs and DNFs of constant arity and degree. Specifically, the smallest width of
OBDD representations of any such formula ϕ is in 2Θ(pw(ϕ)), i.e., precisely singly exponential
in the pathwidth; and an analogous bound applies to d-SDNNF size and treewidth of DNFs.

To prove our lower bounds, we rephrase pathwidth and treewidth to new notions of
pathsplitwidth and treesplitwidth, which intuitively measure the performance of a variable
ordering or v-tree. We also use the disjoint non-covering prime implicant sets (dncpi-sets),
a tool introduced in [1, 7] by some of the present authors, and generalizing subfunction
width [15]. These dncpi-sets allow us to derive lower bounds on OBDD width directly
using [1]. We show how they can also imply lower bounds on d-SDNNF size, using the recent
communication complexity approach of Bova, Capelli, Mengel and Slivovsky [13].

Our fourth contribution (Section 7) applies our lower bounds to intensional query eval-
uation on relational databases. We reuse the notion of intricate queries of [7], and show
that d-SDNNF representations of the lineage of these queries have size exponential in the
treewidth of any input instance. This extends the result of [7] from OBDDs to d-SDNNFs:

I Result 4 (Theorem 33). There is a constant d ∈ N such that the following is true. Let
σ be an arity-2 signature, and Q be a connected UCQ 6= which is intricate on σ. For any
instance I on σ, any d-SDNNF representing the lineage of Q on I has size > 2Ω(tw(I)1/d).

As in [7], this result shows that, on arity-2 signatures and under constructibility assump-
tions, treewidth is the right parameter on instance families to ensure that all queries (in
monadic second-order) have tractable d-SDNNF lineage representations.

We start in Section 2 with preliminaries. Full proofs of all results are provided in the
extended version [8].

2 Preliminaries

Hypergraphs, treewidth, pathwidth. A hypergraph H = (V,E) consists of a finite set of
nodes (or vertices) V and of a set E of hyperedges (or simply edges) which are non-empty
subsets of V . We always assume that hypergraphs have at least one edge. For a node v of H,
we write E(v) for the set of edges of H that contain v. The arity of H, written arity(H),
is the maximal size of an edge of H. The degree of H, written degree(H), is the maximal
number of edges to which a vertex belongs, i.e., maxv∈V |E(v)|.

A tree decomposition of a hypergraph H = (V,E) is a finite, rooted tree T , whose nodes b
(called bags) are labeled by a subset λ(b) of V , and which satisfies:
1. for every fact e ∈ E, there is a bag b ∈ T with e ⊆ λ(b);
2. for all v ∈ V , the set of bags {b ∈ T | v ∈ λ(b)} is a connected subtree of T .
For brevity, we identify a bag b with its domain λ(b). The width of T is maxb∈T |λ(b)| − 1.
The treewidth of H is the minimal width of a tree decomposition of H. Pathwidth is defined
similarly but with path decompositions, where T is a path rather than a tree.

It is NP-hard to determine the treewidth of a hypergraph, but we can compute a tree
decomposition in linear time when parametrizing by the treewidth:

I Theorem 1 ([10]). Given a hypergraph H and an integer k ∈ N we can check in time
O(|H| × g(k)) whether H has treewidth 6 k, and if yes output a tree decomposition of H of
width 6 k, where g is a fixed function in O(2(32+ε)k3) for any ε > 0.

ICDT 2018



6:4 Connecting Width and Structure in Knowledge Compilation

For simplicity, we will often assume that a tree decomposition is nice, meaning that:
1. it is a full binary tree, i.e., each node has exactly zero or two children;
2. for every internal bag b with children bl, br we have b ⊆ bl ∪ br;
3. for every leaf bag b we have |b| 6 1;
4. for every non-root bag b with parent b′, we have |b \ b′| 6 1;
5. for the root bag b we have |b| 6 1.
I Lemma 2. Given a tree decomposition T of width k having n nodes, we can compute in
time O(k × n) a nice tree decomposition T ′ of width k having O(k × n) nodes.

Boolean circuits and functions. A (Boolean) valuation of a set V is a function ν : V →
{0, 1}. A Boolean function ϕ on variables V is a mapping that associates to each valuation ν
of V a Boolean value in {0, 1} called the evaluation of ϕ according to ν.

A (Boolean) circuit C = (G,W, goutput, µ) is a directed acyclic graph (G,W ) whose
vertices G are called gates, whose edges W are called wires, where goutput ∈ G is the output
gate, and where each gate g ∈ G has a type µ(g) among var (a variable gate), not, or, and.
The inputs of a gate g ∈ G are the gates g′ ∈ G such that (g′, g) ∈W ; the fan-in of g is its
number of inputs. We require not-gates to have fan-in 1 and var-gates to have fan-in 0. The
treewidth of C, and its size, are those of the graph (G,W ). The set Cvar of variable gates
of C are those of type var. Given a valuation ν of Cvar, we extend it to an evaluation of C
by mapping each variable g ∈ Cvar to ν(g), and evaluating the other gates according to their
type. The Boolean function on Cvar captured by the circuit is the one that maps ν to the
evaluation of goutput under ν. Two circuits are equivalent if they capture the same function.

We recall restricted circuit classes from knowledge compilation. We say that C is in
negation normal form (NNF) if the inputs of not-gates are always variable gates. For a gate g
in a Boolean circuit C, we write Vars(g) for the set of variable gates of Cvar that have a
directed path to g in C. An and-gate g of C is decomposable if for every two input gates
g1 6= g2 of g we have Vars(g1) ∩ Vars(g2) = ∅. We call C decomposable if each and-gate is.

A stronger requirement than decomposability is structuredness. A v-tree [35] over a set V
is a rooted ordered binary tree T whose leaves are in bijection with V ; we identify each
leaf with the associated element of V . For n ∈ T , we denote by Tn the subtree of T rooted
at n, and for a subset U ⊆ T of nodes of T , we denote by Leaves(U) the leaves that are in
U , i.e., U ∩ V . We say that T structures a Boolean circuit C (and call it a v-tree for C) if
T is over the set Cvar and if, for every and-gate g of C with inputs g1, . . . , gm and m > 0,
there is a node n ∈ T that structures g, i.e., n has m children n1, . . . , nm and we have
Vars(gi) ⊆ Leaves(Tni) for all 1 6 i 6 m. We call C structured if some v-tree structures it.
Note that structured Boolean circuits are always decomposable, and their and-gates have at
most two inputs because T is binary.

A last requirement on circuits is determinism. An or-gate g of C is deterministic if there
is no pair g1 6= g2 of input gates of g and valuation ν of Cvar such that g1 and g2 both
evaluate to 1 under ν. A Boolean circuit is deterministic if each or-gate is.

The main structured class of circuits that we study in this work are deterministic structured
decomposable NNFs, which we denote d-SDNNF for brevity as in [35].

DNFs and CNFs. We also study other representations of Boolean functions, namely, Boolean
formulas in conjunctive normal form (CNFs) and in disjunctive normal form (DNFs). A
DNF (resp., CNF) ϕ on a set of variables V is a disjunction (resp., conjunction) of clauses,
each of which is a conjunction (resp., disjunction) of literals on V , i.e., variables of V (a
positive literal) or their negation (a negative literal). A monotone DNF (resp., monotone
CNF) is one where all literals are positive, in which case we often identify a clause to the
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set of variables that it contains. We always assume that monotone DNFs and monotone
CNFs are minimized, i.e., no clause is a subset of another. This ensures that every monotone
Boolean function has a unique representation as a monotone DNF (the disjunction of its
prime implicants), and likewise for CNF. We assume that CNFs and DNFs always contain
at least one non-empty clause (in particular, they cannot represent constant functions).
Monotone DNFs and CNFs ϕ are isomorphic to hypergraphs: the vertices are the variables
of ϕ, and the hyperedges are the clauses of ϕ. We often identify ϕ to its hypergraph. In
particular, the pathwidth and treewidth of ϕ, and its arity and degree, are defined as that of
its hypergraph.

3 Upper Bounds

Our upper bound result studies how to compile a Boolean circuit to a d-SDNNF, parametrized
by the treewidth of the input circuit. To present it, we first review the independent result
that was recently shown by Bova and Szeider [16] about these circuit classes:

I Theorem 3 ([16, Theorem 3 and Equation (22)]). Given a Boolean circuit C with n variables
and of treewidth 6 k, there exists an equivalent d-SDNNF of size O(f(k)× n), where f is
doubly exponential.

An advantage of their result is that it depends only on the number of variables of the
circuit (and on the width parameter), not on the size of the circuit. None of our results
will have this advantage, and we will always measure complexity as a function of the size of
the input circuit. In exchange for this advantage, their result has two drawbacks: (i) the
doubly exponential dependency on the width; and (ii) its nonconstructive aspect, because [16]
gives no time bound on the computation, leaving open the question of effectively compiling
bounded-treewidth circuits to d-SDNNFs.

Naive constructive bound. We first address the second drawback by showing an easy
constructive result. The argument is very simple and appeals to techniques from our earlier
works on provenance circuits [6, 7]; it is independent from the techniques of [16].

I Theorem 4. Given any circuit C of treewidth k, we can compute an equivalent d-SDNNF
in linear time parametrized by k, i.e., in time O(|C| × f(k)) for some computable function f .

Proof sketch. We encode in linear time the input circuit C to a relational instance I
with same treewidth. We use [7, Theorem 6.11] to construct in linear time a provenance
representation C ′ on I of a fixed MSO formula that describes Boolean circuit evaluation. This
allows us to obtain in linear time from C ′ the desired equivalent d-SDNNF representation. J

This result shows that we can effectively compile in linear time parametrized by the
treewidth k, but does not address the first drawback, namely, the dependency in k.

Improved bound. Our main upper bound result subsumes the naive bound above, with a
more elaborate proof, again independent of the techniques of [16]. It addresses both drawbacks
and shows that we can effectively compile in time singly exponential in k; formally:

I Theorem 5. Given as input a Boolean circuit C and tree decomposition T of width k, we
can compute a d-SDNNF equivalent to C with its v-tree, in O

(
|T | × 2(4+ε)k) for any ε > 0.

We prove Theorem 5 in the next section. Observe how we assume the tree decomposition
to be given as part of the input. If it is not, we can compute one with Theorem 1, but this
becomes the bottleneck: the complexity becomes O

(
|C| × 2(32+ε)k3

)
for any ε > 0.
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Applications. Theorem 5 implies several consequences for bounded-treewidth circuits. The
first one deals with probability computation: we are given a probability valuation π mapping
each variable g ∈ Cvar to a probability that g is true (independently from other variables),
and we wish to compute the probability π(C) that C evaluates to true under π, assuming
that arithmetic operations (sum and product) take unit time. This problem is #P-hard
for arbitrary circuits, but it is tractable for d-SDNNF [22]. Hence, our result implies the
following, where |π| denotes the size of writing the probability valuation π:
I Corollary 6. Given a Boolean circuit C, a tree decomposition T of width k of C, and a
probability valuation π of C, we can compute π(C) in O

(
|π|+ |T | × 2(4+ε)k) for any ε > 0.

This improves the bound obtained when applying message passing techniques [33] directly
on the bounded-treewidth input circuit (as presented, e.g., in [5, Theorem D.2]). Indeed,
message passing applies to moralized representations of the input: for each gate, the tree
decomposition must contain a bag containing all inputs of this gate simultaneously, which is
problematic for circuits of large fan-in. Indeed, if the original circuit has a tree decomposition
of width k, rewriting it to make it moralized results in a tree decomposition of width 3k2

(see [4, Lemmas 53 and 55]), and the bound of [5, Theorem D.2] then yields an overall
complexity of O

(
|π| + |T | × 23k2) for message passing. Our Corollary 6 achieves a more

favorable bound because Theorem 5 uses directly the associativity of and and or. We note
that the connection between message-passing techniques and structured circuits has also
been investigated by Darwiche, but his result [23, Theorem 6] produces arithmetic circuits
rather than d-DNNFs, and it also needs the input to be moralized.

A second consequence concerns the task of enumerating the accepting valuations of
circuits, i.e., producing them one after the other, with small delay between each accepting
valuation. The valuations are concisely represented as assignments, i.e., as a set of variables
that are set to true, omitting those that are set to false. This task is of course NP-hard on
arbitrary circuits (as it implies that we can check whether an accepting valuation exists),
but was recently shown in [2] to be feasible on d-SDNNFs with linear-time preprocessing and
delay linear in the Hamming weight of each produced assignment. Hence, we have:
I Corollary 7. Given a Boolean circuit C and a tree decomposition T of width k of C, we
can enumerate the accepting assignments of C with preprocessing in O

(
|T | × 2(4+ε)k) and

delay linear in the size of each produced assignment.

Other applications of Theorem 5 include counting the number of satisfying valuations
of the circuit (a special case of probability computation), MAP inference [27] or random
sampling of possible worlds (which can be done on the d-SDNNF in an easy manner).

4 Proof of the Main Upper Bound Result

In this section, we present the construction used to prove Theorem 5. We start with
prerequisites, and then describe how to build the d-SDNNF equivalent to the input bounded-
treewidth circuit. Last, we sketch the correctness proof.

Prerequisites. Let C be the input circuit, and T the input tree decomposition. By Lemma 2,
we assume that T is nice. Further, up to adding a constant number of bags and re-rooting T ,
we can assume that the root bag of T contains only the output gate goutput. For any bag b
of T , we define VarT(b) to be the set of variable gates such that b is the topmost bag in
which they appear; as T is nice, VarT(b) is either empty or is a singleton {g}, in which case
we call b responsible for the variable gate g. We can explicitly compute the function VarT
in O(|T |), i.e., compute VarT(b) for each b ∈ T ; see for instance [28, Lemma 3.1].
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To abstract away the type of gates and their values in the construction, we will talk of
strong and weak values. Intuitively, a value is strong for a gate g if any input g′ of g which
carries this value determines the value of g; and weak otherwise. Formally:
I Definition 8. Let g be a gate and c ∈ {0, 1}:

If g is an and-gate, we say that c = 0 is strong for g and c = 1 is weak for g;
If g is an or-gate, we say that c = 1 is strong for g and c = 0 is weak for g;
If g is a not-gate, c = 0 and c = 1 are both strong for g;
For technical convenience, if g is a var-gate, c = 0 and c = 1 are both weak for g.
If we take any valuation ν : Cvar → {0, 1} of the circuit C = (G,W, goutput, µ), and extend

it to an evaluation ν : G→ {0, 1}, then ν will respect the semantics of gates. In particular, it
will respect strong values: for any gate g of C, if g has an input g′ for which ν(g′) is a strong
value, then ν(g) is determined by ν(g′), specifically, it is ν(g′) if g is an or- or an and-gate,
and 1− ν(g′) if g is a not-gate. In our construction, we will need to guess how gates of the
circuit are evaluated, focusing on a subset of the gates (as given by a bag of T ); we will then
call almost-evaluation an assignment of these gates that respects strong values. Formally:
I Definition 9. Let U be a set of gates of C. We call ν : U → {0, 1} a (C,U)-almost-
evaluation if it respects strong values, i.e., for every gate g ∈ U , if there is an input g′ of g
in U and ν(g′) is a strong value for g, then ν(g) is determined from ν(g′) in the sense above.

Respecting strong values is a necessary condition for such an assignment to be extensible
to a valuation of the entire circuit. However, it is not sufficient: an almost-evaluation ν may
map a gate g to a strong value even though g has no input that can justify this value. This
is hard to avoid: when we focus on the set U , we do not know about other inputs of g. For
now, let us call unjustified the gates of U that carry a strong value that is not justified by ν:
I Definition 10. Let U be a set of gates of a circuit C and ν a (C,U)-almost-evaluation. We
call g ∈ U unjustified if ν(g) is a strong value for g, but, for every input g′ of g in U , the value
ν(g′) is weak for g; otherwise, g is justified. The set of unjustified gates is written Unj(ν).

Let us start to explain how to construct the d-SDNNF circuit D equivalent to the input
circuit C. We do so by traversing T bottom-up, and for each bag b of T we create gates Gν,Sb
in D, where ν is a (C, b)-almost-evaluation and S is a subset of Unj(ν) which we call the
suspicious gates of Gν,sb . We will connect the gates of D created for each internal bag b with
the gates created for its children in T , in a way that we will explain later. Intuitively, for a
gate Gν,Sb of D, the suspicious gates g in the set S are gates of b whose strong value is not
justified by ν (i.e., g ∈ Unj(ν)), and is not justified either by any of the almost-evaluations at
descendant bags of b to which Gν,Sb is connected. We call innocent the other gates of b; they
are the gates that are justified in ν (in particular, those who carry weak values), and the
gates that are unjustified in ν but have been justified by an almost-evaluation at a descendant
bag b′ of b. Crucially, in the latter case, the gate g′ justifying the strong value in b′ may no
longer appear in b, making g unjustified for ν; this is why we remember the set S.

We still have to explain how we connect the gates Gν,Sb of D to the gates Gνl,Sl

bl
and Gνr,Sr

br

created for the children bl and br of b in T . The first condition is that νl and νr must mutually
agree, i.e., νl(g) = νr(g) for all g ∈ bl ∩ br, and ν must then be the union of νl and νr,
restricted to b. Remember that T is nice, so b is a subset of bl∪br, and it is easy to verify that
ν is then a (C, b)-almost-evaluation. We impose a second condition to prohibit suspicious
gates from escaping before they have been justified, which we formalize as connectibility of a
pair (ν, S) at bag b to the parent bag of b.
I Definition 11. Let b be a non-root bag, b′ its parent bag, and ν a (C, b)-almost-evaluation.
For any set S ⊆ Unj(ν), we say that (ν, S) is connectible to b′ if S ⊆ b′, i.e., the suspicious
gates of ν must still appear in b′.

ICDT 2018
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If a gate Gν,Sb is such that (ν, S) is not connectible to the parent bag b′, then this gate will
not be used as input to any other gate (but we do not try to preemptively remove these
useless gates in the construction). We are now ready to give the formal definition that will
be used to explain how gates are connected:
I Definition 12. Let b be an internal bag with children bl and br, let νl and νr be respectively
(C, bl) and (C, br)-almost-evaluations that mutually agree, and Sl ⊆ Unj(νl) and Sr ⊆ Unj(νr)
be sets of suspicious gates such that both (νl, Sl) and (νr, Sr) are connectible to b. The result
of (νl, Sl) and (νr, Sr) is then defined as the pair (ν, S) where:

ν is a (C, b)-almost-evaluation defined as the restriction of νl ∪ νr to b.
S ⊆ Unj(ν) is the new set of suspicious gates, defined as follows. A gate g ∈ b is
innocent (i.e., g ∈ b \ S) if it is justified for ν or if it is innocent for some child. Formally,
b \ S := (b \Unj(ν)) ∪

[
b ∩ [(bl \ Sl) ∪ (br \ Sr)]

]
.

Construction. We now use these definitions to present the construction formally. For every
variable gate g of C, we create a corresponding variable gate Gg,1 of D, and we create
Gg,0 := not(Gg,1). For every internal bag b of T , for each (C, b)-almost-evaluation ν and set
S ⊆ Unj(ν) of suspicious gates of ν, we create one and-gate Gν,Sb and one or-gate Gν,Sb,children
which is an input of Gν,Sb . For every leaf bag b of T , we create one gate Gν,Sb for every
(C, b)-almost-evaluation ν, where we set S := Unj(ν); intuitively, in a leaf bag, an unjustified
gate is always suspicious (it cannot have been justified at a descendant bag).

Now, for each internal bag b of T with children bl, br, for each pair of gates Gνl,Sl

bl

and Gνr,Sr

br
that are both connectible to b and where νl and νr mutually agree, letting

(ν, S) be the result of (νl, Sl) and (νr, Sr), we create a gate Gνl,Sl,νr,Sr

b = and(Gνl,Sl

bl
, Gνr,Sr

br
)

and make it an input of Gν,Sb,children. Last, for each bag b which is responsible for a variable
gate g (i.e., VarT(b) = {g}), for each (C, b)-almost-evaluation ν and set of suspicious gates
S ⊆ Unj(ν), we set the gate Gg,ν(g) to be the second input of Gν,Sb . The output gate of D
is the gate Gν,∅broot

where broot is the root of T and ν maps goutput to 1 (remember that broot
contains only goutput).

Correctness. We have formally described the construction of our d-SDNNF D. The
construction clearly works in linear time, and we can prove that the dependency on k of the
running time is as stated. Further, we easily see that D is structured by a v-tree constructed
from the tree decomposition T . To show that D is equivalent to C, one direction is easier:
any valuation χ that satisfies C also satisfies D, because we can construct an accepting trace
in D using the gates Gν,Sb for ν the restriction of the evaluation χ to b, and for S := Unj(χ|Tb

)
where Tb denotes the gates of C occurring in the bags of the subtree of T rooted at b. The
converse is trickier: we show that any accepting trace of D describes an evaluation of C that
respects strong values by definition of almost-evaluations, and eventually justifies every gate
which is given a strong value thanks to our bookkeeping of suspicious gates. Last, we show
that D is deterministic: this is unexpected because we freely guess the values of gates of C
at leaf bags, but it holds because, when we know the valuation of the variable gates, knowing
the valuation of all gates of a bag b uniquely fixes the valuation at the subtree rooted at b.
This concludes the proof sketch of Theorem 5; see the extended version [8] for the full proof.

5 Lower Bounds on OBDDs

We now move to lower bounds on the size of structured representations of Boolean functions,
in terms of the width of a circuit for that function. Our end goal is to obtain a lower bound
for (d-)SDNNFs, that will form a counterpart to the upper bound of Theorem 5. We will do
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so in Section 6. For now, in this section, we consider a weaker class of lineage representations
than (d-)SDNNFs, namely, OBDDs.
I Definition 13. An ordered binary decision diagram (or OBDD) on a set of variables
V = {v1, . . . , vn} is a rooted DAG O whose leaves are labeled by 0 or 1, and whose internal
nodes are labeled with a variable of V and have two outgoing edges labeled 0 and 1. We
require that there exists a total order v = vi1 , . . . , vin on the variables such that, for every
path from the root to a leaf, the sequence of variables which labels the internal nodes of the
path is a subsequence of v and does not contain duplicate variables. The OBDD O captures
a Boolean function on V defined by mapping each valuation ν to the value of the leaf reached
from the root by following the path given by ν. The size |O| of O is its number of nodes, and
the width w of O is the maximum number of nodes at every level, where a level is defined for
a prefix of v as the set of nodes reached by enumerating all possible valuations of this prefix.
Note that we clearly have |O| 6 |V | × w.

Our upper bound in the previous section applied to arbitrary Boolean circuits; however,
our lower bounds in this section and the next one will already apply to much weaker formalisms
for Boolean functions, namely, monotone DNFs and monotone CNFs (recall their definition
from Section 2). Some lower bounds are already known for the compilation of monotone
CNFs into OBDDs: Bova and Slivovsky have constructed a family of CNFs of bounded degree
whose OBDD width is exponential in their number of variable occurrences [15, Theorem 19],
following an earlier result of this type by Razgon [37, Corollary 1]. The result is as follows:
I Theorem 14 ([15, Theorem 19]). There is a class of monotone CNF formulas of bounded
degree and arity such that every formula ϕ in this class has OBDD size at least 2Ω(|ϕ|).

We adapt some of these techniques to show a more general result: our lower bound applies
to any monotone DNF or monotone CNF, not to one specific family. Specifically, we show:
I Theorem 15. Let ϕ be a monotone DNF or monotone CNF, let a := arity(ϕ) and
d := degree(ϕ). Then any OBDD for ϕ has width > 2

⌊
pw(ϕ)
a3×d2

⌋
.

From our Theorem 15, we can easily derive Theorem 14 using the fact (also used in the
proof of [15, Theorem 19]) that there exists a family of monotone CNFs of bounded degree
and arity whose treewidth (hence pathwidth) is linear in their size, namely, the CNFs built
from expander graphs (see [29, Theorem 5 and Proposition 1]). Note that expander graphs
can also be used to show lower bounds for (non-deterministic and non-structured) DNNFs
for a CNF formula [12]; our lower bound on SDNNFs of Section 6 does not capture this
result (because we need structuredness).

We observe that, for a family of formulas with bounded arity and degree, the bound of
Theorem 15 is optimal, up to constant factors in the exponent. Indeed, following earlier
work [26,37], Bova and Slivovsky have shown that any CNF ϕ can be compiled to OBDDs
of width 2pw(ϕ)+2 [15, Theorem 4 and Lemma 9]. (Their upper bound result also applies
to DNFs, and does not assume monotonicity nor a bound on the arity or degree.) In other
words, for any monotone DNF or monotone CNF of bounded arity and degree, pathwidth
characterizes the width of an OBDD for the formula, in the following sense:
I Corollary 16. For any constant c, for any monotone DNF (or monotone CNF) ϕ with
arity and degree bounded by c, the smallest width of an OBDD for ϕ is 2Θ(pw(ϕ)).

This corollary talks about the pathwidth of ϕ measured as that of its hypergraph, but
note that the same result would hold when measuring the pathwidth of the incidence graph
or dual hypergraph of ϕ. Indeed, all these pathwidths are within a constant factor of one
another when the degree and arity are bounded by a constant.
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We prove Theorem 15 in the rest of this section. We present the proof in the case of
monotone DNFs to reuse existing lower bound techniques from [1,7], but explain at the end of
this section how the proof adapts to monotone CNFs. We first present pathsplitwidth, a new
notion which intuitively measures the performance of a variable ordering for an OBDD on the
monotone DNF ϕ, and connect it to the pathwidth of ϕ. Second, we recall the definition of
dncpi-sets introduced in [1, 7] to show lower bounds from the structure of Boolean functions.
Last, we conclude the proof by connecting pathsplitwidth to the size of dncpi-sets.

Pathsplitwidth. The first step of the proof is to rephrase the bound on pathwidth, arity,
and degree, in terms of a bound on the performance of variable orderings. Intuitively, a good
variable ordering is one which does not split too many clauses. Formally:
I Definition 17. Let H = (V,E) be a hypergraph, and v = v1, . . . , v|V | be an ordering
on the variables of V . For 1 6 i 6 |V |, we define Spliti(v, H) as the set of hyperedges e
of H that contain both a variable at or before vi, and a variable strictly after vi, formally:
Spliti(v, H) := {e ∈ E | ∃l ∈ {1, . . . , i} and ∃r ∈ {i + 1, . . . , |V |} such that {vl, vr} ⊆ e}.
Note that Split|V |(v, H) is always empty. The pathsplitwidth of v relative toH is the maximum
size of the split, formally, psw(v, H) := max16i6|V | |Spliti(v, H)|. The pathsplitwidth psw(H)
of H is then the minimum of psw(v, H) over all variable orderings v of V .

In other words, psw(H) is the smallest integer n ∈ N such that, for any variable ordering v
of the nodes of H, there is a moment at which n hyperedges of H are split, i.e., for n
hyperedges e, we have begun enumerating the nodes of e but we have not enumerated all of
them yet. We note that the pathsplitwidth of H is exactly the linear branch-width [34] of the
dual hypergraph of H, but we introduced pathsplitwidth because it fits our proofs better.

For a monotone DNF ϕ with hypergraph H, the quantity psw(H) is intuitively connected
to the quantity of information that an OBDD will have to remember when evaluating ϕ
following any variable ordering, which we will formalize via dncpi-sets. This being said, the
definition of pathsplitwidth is also reminiscent of that of pathwidth, and we can indeed
connect the two (up to a factor of the arity):
I Lemma 18. For any hypergraph H = (V,E), we have pw(H) 6 arity(H)× psw(H).
Proof sketch. From a variable ordering v, we construct a path decomposition of H by
creating |V | bags in sequence, each of which containing vi plus

⋃
Spliti(v, H). The width is

6 arity(H)× psw(H), and we check the two conditions of path decompositions. First, each
hyperedge of H is contained in a bag where it is split. Second, each vertex vi occurs in the
corresponding bag bi and at all positions where the edges containing v are split, which forms
a segment of v: thus, the connectedness condition of tree decompositions is respected. J

Thanks to Lemma 18, it suffices to show that an OBDD for ϕ has width > 2
⌊

psw(ϕ)
(a×d)2

⌋
,

which we will do in the rest of this section.

dncpi-sets. To show this lower bound, we use the technical tool of dncpi-sets [1, 7]. We
recall the definitions here, adapting the notation slightly. Remember that our monotone
DNFs are assumed to be minimized. Note that dncpi-sets are reminiscent of subfunction
width in [15] (see Theorem 17 in [15]), but the latter notion is only defined for graph CNFs.
I Definition 19 ([1, Definition 6.4.6]). Given a monotone DNF ϕ on variables V , a disjoint
non-covering prime implicant set (dncpi-set) of ϕ is a set S of clauses of ϕ which:

are pairwise disjoint: for any D1 6= D2 in S, we have D1 ∩D2 = ∅.
are non-covering in the following sense: for any clause D of ϕ, if D ⊆

⋃
S, then D ∈ S.

The size of S is the number of clauses that it contains.
Given a variable ordering v of V , we say that v shatters a dncpi-set S if there exists

1 6 i 6 |V | such that S ⊆ Spliti(v, H), where H is the hypergraph of ϕ.
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Observe the analogy between shattering and splitting, which we will substantiate below.
We recall the main result on dncpi-sets:
I Lemma 20 ([1, Lemma 6.4.7]). Let ϕ be a monotone DNF on variables V and n ∈ N.
Assume that, for every variable ordering v of V , there is some dncpi-set S of ϕ with |S| > n,
such that v shatters S. Then any OBDD for ϕ has width > 2n.
Proof sketch. Considering the point at which the dncpi-set is shattered, the OBDD must
remember exactly the status of each clause of the set: any valuation that satisfies a subset of
these clauses gives rise to a different continuation function. This is where we use the fact
that the DNF is monotone: it ensures that we can freely choose a valuation of the variables
that do not occur in the dncpi-set without making the formula true. J

Concluding the proof. We conclude the proof of Theorem 15 by showing that any variable
ordering of the variables of a monotone DNF ϕ shatters a dncpi-set of the right size. The
formal statement is as follows, and it is the last result to prove:
I Lemma 21. Let ϕ be a monotone DNF, H its hypergraph, and v an enumeration of its vari-
ables. Then there is a dncpi-set S of ϕ shattered by v such that |S| >

⌊
psw(H)

(arity(H)×degree(H))2

⌋
.

We prove this result in the rest of the section. Our goal is to construct a dncpi-set, which
intuitively consists of clauses that are disjoint and which do not cover another clause. We
can do so by picking clauses sufficiently “far apart”. Let the exclusion graph of H = (V,E)
be the graph on E where two edges e 6= e′ are adjacent if there is an edge e′′ of E with
which they both share a node: this is in particular the case when e and e′ intersect as we
can take e′′ := e. Formally, the exclusion graph is GH = (E, {{e, e′} ∈ E2 | e 6= e′ ∧ ∃e′′ ∈
E, (e ∩ e′′) 6= ∅ ∧ (e′ ∩ e′′) 6= ∅}). In other words, two hyperedges are adjacent in GH iff they
are different and are at distance at most 4 in the incidence graph of H.

Remember that an independent set in the graph GH is a subset S of E such that no two
elements of S are adjacent in GH . The definition of GH then ensures:
I Lemma 22. For any monotone DNF ϕ, letting H be its hypergraph, any independent set
of the exclusion graph GH is a dncpi-set of ϕ.

In other words, our goal is to compute a large independent set of the exclusion graph. To
do this, we will use the following straightforward lemma about independent sets:
I Lemma 23. Let G = (V,E) be a graph and let V ′ ⊆ V . Then G has an independent set

S ⊆ V ′ of size at least
⌊

|V ′|
degree(G)+1

⌋
.

Moreover, we can bound the degree of GH using the degree and arity of H:
I Lemma 24. Let H be a hypergraph. Then degree(GH) 6 (arity(H)× degree(H))2 − 1.
Proof sketch. The bound on the arity and degree of H implies a bound on the number
of edges that can be at distance 6 4 of another edge in the incidence graph of H, hence
bounding the degree of the exclusion graph. J

We are now ready to conclude the proof of Lemma 21:

Proof of Lemma 21. Let ϕ be a monotone DNF, H = (V,E) its hypergraph, and v an
enumeration of its variables. By definition of pathsplitwidth, there is vi ∈ V such that, for
E′ := Spliti(v, H), we have |E′| > psw(H). Now, by Lemma 23, GH has an independent

set S ⊆ E′ of size at least
⌊

|E′|
degree(GH)+1

⌋
which is >

⌊
psw(H)

(arity(H)×degree(H))2

⌋
by Lemma 24.

Hence, S is a dncpi-set by Lemma 22, has the desired size, and is shattered since S ⊆ E′. J

Combining this result with Lemma 18 and Lemma 20 concludes the proof of Theorem 15.
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From DNFs to CNFs. We now argue that Theorem 15 also holds for monotone CNFs. Let
ϕ be a monotone CNF, a := arity(ϕ) and d := degree(ϕ), and suppose for a contradiction
that there is an OBDD O for ϕ of width < 2

⌊
pw(ϕ)
a3×d2

⌋
. Consider the monotone DNF ϕ′ built

from ϕ by replacing each ∧ by a ∨ and each ∨ by a ∧. Now, let O′ be the OBDD built from
O by replacing the label b ∈ {0, 1} of each edge by 1− b, and replacing the label b of each
leaf by 1− b. It is clear, by De Morgan’s laws, that O′ is an OBDD for ϕ′ of size < 2

⌊
pw(ϕ)
a3×d2

⌋
,

which contradicts Theorem 15 applied to monotone DNFs.

6 Lower Bounds on d-SDNNFs

In the previous section, we have shown that pathwidth measures how concisely an OBDD
can represent a monotone DNF or CNF formula with bounded degree and arity. In this
section, we move from OBDDs to (d-)SDNNFs, and show that treewidth plays a similar role
to pathwidth in this setting. Formally, we show the following analogue of Theorem 15:

I Theorem 25. Let ϕ be a monotone DNF (resp., monotone CNF), let a := arity(ϕ) and
d := degree(ϕ). Then any d-SDNNF (resp., SDNNF) for ϕ has size > 2

⌊
tw(ϕ)

3×a3×d2

⌋
− 1.

Combined with Theorem 5 (or with existing results specific to CNF formulas such
as [14, Corollary 1]), this yields an analogue of Corollary 16. However, its statement is less
neat: unlike OBDDs, (d-)SDNNFs have no obvious notion of width, so the lower bound above
refers to size rather than width, and it does not exactly match our upper bound. We obtain:

I Corollary 26. For any constant c, for any monotone DNF (resp., monotone CNF) ϕ with
arity and degree bounded by c, there is a d-SDNNF for ϕ having size |ϕ| × 2O(tw(ϕ)), and any
d-SDNNF (resp., SDNNF) for ϕ has size 2Ω(tw(ϕ)).

Our proof of Theorem 25 will follow the same overall structure as in the previous section.
We present the proof for monotone DNFs and d-DNNFs: see the extended version [8] for the
extension to monotone CNFs and SDNNFs. Recall that d-SDNNFs are structured by v-trees,
which generalize variable orders. We first introduce treesplitwidth, a width notion that
measures the performance of a v-tree by counting how many clauses it splits; and we connect
treesplitwidth to treewidth. We use again dncpi-sets, and argue that a d-SDNNF structured
by a v-tree must shatter a dncpi-set whose size follows the treesplitwidth of the v-tree. We
then show that shattering a dncpi-set forces d-SDNNFs to be large: instead of the easy
OBDD result of the previous section (Lemma 20), we will need a much deeper result of
Pipatsrisawat and Darwiche [36, Theorem 3], rephrased in the setting of communication
complexity by Bova, Capelli, Mengel, and Slivovsky [13].

Note that [13], by a similar approach, shows an exponential lower bound on the size of
d-SDNNF which is reminiscent of ours. However, their bound again applies to one well-chosen
family of Boolean functions; our contribution is to show a general lower bound. In essence,
our result is shown by observing that the family of functions used in their lower bound
occurs “within” any bounded-degree, bounded-arity monotone DNF. Also note that a result
similar to the lower bound of Corollary 26 is proven by Capelli [19, Corollary 6.35] as an
auxiliary statement to separate structured DNNFs and FBDDs. The result uses MIM-width,
but Theorem 4.2.5 of [40], as degree and arity are bounded, implies that we could rephrase
it to treewidth; further, the result assumes arity-2 formulas, but it could be extended to
arbitrary arity as in [20, Theorem 12]. More importantly, the result applies only to monotone
CNFs and not to DNFs .
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Treesplitwidth. Informally, treesplitwidth is to v-trees what pathsplitwidth is to variable
orders: it bounds the “best performance” of any v-tree.
I Definition 27. Let H = (V,E) be a hypergraph, and T be a v-tree over V . For any node n
of T , we define Splitn(T,H) as the set of hyperedges e of H that contain both a variable
in Tn and one outside Tn (recall that Tn denotes the subtree of T rooted at n). Formally:
Splitn(T,H) := {e ∈ E | ∃vi ∈ Leaves(Tn) and ∃vo ∈ Leaves(T \ Tn) such that {vi, vo} ⊆ e}.

The treesplitwidth of T relative to H is tsw(T,H) := maxn∈T |Splitn(T,H)|. The
treesplitwidth tsw(H) of H is then the minimum of tsw(T,H) over all v-trees T of V .

Again, the treesplitwidth of H is exactly the branch-width [38] of the dual hypergraph
of H, but treesplitwidth is more convenient for our proofs. As with pathsplitwidth and
pathwidth (Lemma 18), we can bound the treewidth of a hypergraph by its treesplitwidth:
I Lemma 28. For any hypergraph H = (V,E), we have tw(H) 6 3× arity(H)× tsw(H).
Proof sketch. We construct a tree decomposition from a v-tree T : it has same skeleton as T ,
its leaf bags contain the corresponding variable in the v-tree, and its internal bags contain
the split at this v-tree node unioned with the split at the child nodes. This is indeed a tree
decomposition because each non-singleton edge is split, and the nodes of the v-tree where a
vertex of H occurs always form a connected subtree. J

Moreover, using the same techniques that we used in the last section, we can show the
analogue of Lemma 21. Specifically, given a monotone DNF ϕ on variables V , a v-tree T
over V , and a dncpi-set S of ϕ, we say that T shatters S if there is a node n in T such
that S ⊆ Splitn(T, ϕ). We now show that any v-tree over V must shatter a large dncpi-set
(depending on the treewidth, degree, and arity):
I Lemma 29. Let ϕ be a monotone DNF, H its hypergraph, and T be a v-tree over its vari-
ables. Then there is a dncpi-set S of ϕ shattered by T such that |S| >

⌊
tsw(H)

(arity(H)×degree(H))2

⌋
.

Proof sketch. The proof is just like that of Lemma 21, except with the new definition of
split on v-trees. In particular, we use Lemmas 22, 23, and 24. J

Hence, to prove Theorem 25, the only missing ingredient is a lower bound on the size of
d-SDNNFs that shatter large dncpi-sets. Specifically, we need an analogue of Lemma 20:
I Lemma 30. Let ϕ be a monotone DNF on variables V and n ∈ N. Assume that, for every
v-tree T over V , there is some dncpi-set S of ϕ with |S| > n, such that T shatters S. Then
any d-SDNNF for ϕ has size > 2n − 1.

We will prove Lemma 30 in the rest of this section using a recent lower bound by Bova,
Capelli, Mengel, and Slivovsky [13]. They bound the size of any d-SDNNF for the set
intersection function, defined as SINTn := (x1 ∧ y1) ∨ . . . ∨ (xn ∧ yn). This bound is useful
for us: a dncpi-set intuitively isolates some variables on which ϕ computes exactly SINTn:
I Lemma 31. Let ϕ be a DNF with variables V , and let S = {D1, . . . , Dn} be a dncpi-set
of ϕ where every clause has size > 2. Pick two variables xi 6= yi in Di for each 1 6 i 6 n, and
let V ′ := {x1, y1, . . . , xn, yn}. Then there is a partial valuation ν of V with domain V \ V ′
such that ν(ϕ) = SINTn.
Proof sketch. The valuation ν sets to 1 the variables V ′′ which are in

⋃
S but not in V ′,

and sets to 0 all remaining variables. This amounts to discarding the clauses not in the
dncpi-set, and discarding the variables of V ′′ in the dncpi-set: what remains of the DNF is
then precisely SINTn. Note that this result relies on monotonicity, and on the fact that ϕ is
a DNF. (However, in the full version [8], we show a dual result for monotone CNF.) J

This observation allows us to leverage the bound of [13] on the size of d-SDNNFs that
compute SINTn, assuming that they are structured by an “inconvenient” v-tree:
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I Proposition 32 ([13, Proposition 14]). Let Xn = {x1, . . . , xn} and Yn = {y1, . . . , yn}
for n ∈ N, and let T be a v-tree over Xn t Yn such that there exists a node n ∈ T with
Xn ⊆ Leaves(Tn) and Yn ⊆ Leaves(T \ Tn). Then any d-SDNNF structured by T computing
SINTn has size > 2n − 1.

In our setting, an “inconvenient” v-tree for a dncpi-set is one that shatters it: each clause
of the dncpi-set is then partitioned in two non-empty subsets where we can pick xi and yi for
Lemma 31. Hence, when every v-tree shatters a large dncpi-set of ϕ, Proposition 32 allows
us to deduce the lower bound on the size of every d-SDNNF for ϕ. We have thus shown
Lemma 30, and this concludes the proof of Theorem 25 (in the DNF case).

7 Application to Query Lineages

In this section, we adapt the lower bound of the previous section to the computation of query
lineages on relational instances. Like in [7], for technical reasons, we must assume a graph
signature. We first recall some preliminaries and then state our result.

Preliminaries. We fix a graph signature σ of relation names and arities in {1, 2}, with at
least one relation of arity 2. An instance I on σ is a finite set of facts of the form R(a1, . . . , an)
for n the arity of R; we call a1, . . . , an elements of I. An instance I ′ is a subinstance of I if
the facts of I ′ are a subset of those of I. The Gaifman graph of I has the elements of I as
vertices and has one edge between each pair of elements that co-occur in some fact of I. The
treewidth tw(I) of I is that of its Gaifman graph.

A Boolean conjunctive query (CQ) is an existentially quantified conjunction of atoms of
the form R(x1, . . . , xn) where the xi are variables. A UCQ is a disjunction of CQs, and a
UCQ 6= also allows atoms of the form x 6= y. A UCQ 6= is connected if the Gaifman graph
of each disjunct (seen as an instance, and ignoring 6=-atoms) is connected. For instance,
letting σR consist of one arity-2 relation R, the following connected UCQ 6= tests if there are
two facts that share one element: Qp : ∃xyz (R(x, y)∨R(y, x)))∧ (R(y, z)∨R(z, y))∧ x 6= z.
(While Qp is not given as a disjunction of CQs, it can be rewritten to one using distributivity.)

The lineage of a UCQ 6= Q over I is a Boolean formula ϕ(Q, I) on the facts of I that maps
each Boolean valuation ν : I → {0, 1} to 1 or 0 depending on whether Iν satisfies Q or not,
where Iν := {F ∈ I | ν(F ) = 1}. The lineage intuitively represents which facts of I suffice
to satisfy Q. Lineages are useful to evaluate queries on probabilistic databases [39]: we can
obtain the probability of the query from an OBDD or d-DNNF representing its lineage.

Problem statement. We study when query lineages can be computed efficiently in data
complexity, i.e., as a function of the input instance, with the query being fixed. A first question
asks which queries have tractable lineages on all instances: Jha and Suciu [32, Theorem 3.9]
showed that inversion-free UCQ 6= queries admit OBDD representations in this sense, and Bova
and Szeider [16, Theorem 5] have recently shown that UCQ 6= queries with inversions do not
even have tractable d-SDNNF lineages. A second question asks which instance classes ensure
that all queries have tractable lineages on them. This was studied for OBDD representations
in [7]: bounded-treewidth instances have tractable OBDD lineage representations for any
MSO query ([7, Theorem 6.5], using [32]); conversely there are intricate queries (a class of
connected UCQ 6= queries) whose lineages never have tractable OBDD representations in the
instance treewidth [7, Theorem 8.7]. The query Qp above is an example of an intricate query
on the signature σR (refer to [7, Definition 8.5] for the formal definition of intricate queries).
This result shows that we must bound instance treewidth for all queries to have tractable
OBDDs, but leaves the question open for more expressive lineage representations.
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Result. Our bound in the previous section allows us to extend Theorem 8.7 of [7] from
OBDDs to d-SDNNFs, yielding the following:
I Theorem 33. There is a constant d ∈ N such that the following is true. Let σ be an
arity-2 signature, and Q a connected UCQ 6= which is intricate on σ. For any instance I
on σ, any d-SDNNF representing the lineage of Q on I has size 2Ω(tw(I)1/d).
Proof sketch. As in [7], we use a result of Chekuri and Chuzhoy [21] to show that the
Gaifman graph of I has a degree-3 topological minor S of treewidth Ω(tw(I)1/d) for some
constant d ∈ N; we also ensure that S has sufficiently high girth relative to Q. We focus on
a subinstance I ′ of I that corresponds to S: this suffices to show our lower bound, because
we can always compute a tractable representation of ϕ(Q, I ′) from one of ϕ(Q, I). Now,
we can represent ϕ(Q, I ′) as a minimized DNF ψ by enumerating its minimal matches: ψ
has constant arity because the number of atoms of Q is fixed, and it has constant degree
because S has constant degree and Q is connected. Further, as Q is intricate and I ′ has high
girth relative to Q, we can ensure that this DNF has treewidth Ω(tw(I ′)). We conclude by
Theorem 25: d-SDNNFs representing ϕ(Q, I ′), hence ϕ(Q, I), have size 2Ω(tw(I)1/d). J

To summarize, given an instance family I satisfying the constructibility requirement of
Theorem 8.1 of [7], there are two regimes: (i.) I has bounded treewidth and then all MSO
queries have d-SDNNF lineages on instances of I that are computable in linear time; or (ii.)
the treewidth is unbounded and then there are UCQ6= queries (the intricate ones) whose
lineages on instances of I have no d-SDNNF representations polynomial in the instance size.

8 Conclusion

We have shown tight connections between structured circuit classes and width measures on
circuits. We constructively rewrite bounded-treewidth circuits to d-SDNNFs in time linear
in the circuit and singly exponential in the treewidth, and show matching lower bounds for
arbitrary monotone CNFs or DNFs under degree and arity assumptions; we also show a lower
bound for pathwidth and OBDDs. Our results have applications to rich query evaluation:
probabilistic query evaluation, computation of lineages, enumeration, etc.

Our work also raises a number of open questions. First, the d-SDNNF obtained in the
proof of Theorem 5 does not respect the definition of a sentential decision diagram (SDD) [24].
Can this be fixed, and Theorem 5 extended to SDDs? Or is it impossible, which could solve
the open question [11] of separating SDDs and d-SDNNFs? Second, can we weaken the
hypotheses of bounded degree and arity in Corollaries 16 and 26, and can we rephrase the
latter to a notion of (d-)SDNNF width to match more closely the statement of the former?
Last, Section 7 shows that d-SDNNF representations of the lineages of intricate queries are
exponential in the treewidth; we conjecture a similar result for pathwidth and OBDDs, but
this would require a pathwidth analogue of the minor extraction results of [21].
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