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Abstract
We investigate parameterizations of both database instances and queries that make query
evaluation fixed-parameter tractable in combined complexity. We show that clique-
frontier-guarded Datalog with stratified negation (CFG-Datalog) enjoys bilinear-time
evaluation on structures of bounded treewidth for programs of bounded rule size.
Such programs capture in particular conjunctive queries with simplicial decomposi-
tions of bounded width, guarded negation fragment queries of bounded CQ-rank, or
two-way regular path queries. Our result is shown by translating to alternating two-
way automata, whose semantics is defined via cyclic provenance circuits (cycluits)
that can be tractably evaluated.

Keywords Database theory · Datalog · Automata · Provenance · Circuits

1 Introduction

Arguably the most fundamental task performed by database systems is query
evaluation, namely, computing the results of a query over a database instance.
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Unfortunately, this task is well-known to be intractable in combined complexity [59]
even for simple query languages such as conjunctive queries [1].

To address this issue, two main directions have been investigated. The first is to
restrict the class of queries to ensure tractability, for instance, to α-acyclic conjunc-
tive queries [61], this being motivated by the idea that many real-world queries are
simple and usually small. The second approach restricts the structure of database
instances, e.g., requiring them to have bounded treewidth [53] (we call them tree-
like). This has been notably studied by Courcelle [27], to show the tractability of
monadic-second order logic on treelike instances, but in data complexity (i.e., for
fixed queries); the combined complexity is generally nonelementary [48].

This leaves open the main question studied in this paper: Which queries can be effi-
ciently evaluated, in combined complexity, on treelike databases? This question has
been addressed by Gottlob, Pichler, and Fei [38] by introducing quasi-guarded Dat-
alog; however, an unusual feature of this language is that programs must explicitly
refer to the tree decomposition of the instance. Instead, we try to follow Courcelle’s
approach and investigate which queries can be efficiently translated to automata.
Specifically, rather than restricting to a fixed class of “efficient” queries, we study
parameterized query classes, i.e., we define an efficient class of queries for each
value of the parameter. We further make the standard assumption that the signature is
fixed; in particular, its arity is constant. This allows us to aim for low combined com-
plexity for query evaluation, namely, fixed-parameter tractability with linear-time
complexity in the product of the input query and instance, which we call FPT-bilinear
complexity.

Surprisingly, we are not aware of further existing work on tractable combined
query evaluation for parameterized instances and queries, except from an unex-
pected angle: the translation of restricted query fragments to tree automata on treelike
instances was used in the context of guarded logics and other fragments, to decide
satisfiability [14] and containment [11]. To do this, one usually establishes a treelike
model property to restrict the search to models of low treewidth (but dependent on
the formula), and then translates the formula to an automaton, so that the problems
reduce to emptiness testing: expressive automata formalisms, such as alternating
two-way automata, are typically used. Exploiting this connection, we show how
query evaluation on treelike instances can benefit from these ideas: for instance, as
we show, some queries can only be translated efficiently to such concise automata,
and not to the more common bottom-up tree automata.

Contributions From there, the first main contribution of this paper is to consider the
language of clique-frontier-guarded Datalog (CFG-Datalog), and show an efficient
FPT-linear translation procedure for this language, parameterized by the body size of
rules: this implies FPT-bilinear combined complexity on treelike instances. While it is
a Datalog fragment, CFG-Datalog shares some similarities with guarded logics; yet,
its design incorporates several features (fixpoints, clique-guards, negation, guarding
positive subformulas) that are not usually found together in guarded fragments, but
are important for query evaluation. We show how the tractability of this language
captures the tractability of such query classes as two-way regular path queries [10]
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and α-acyclic conjunctive queries. We further show that, in contrast with guarded
negation logics, satisfiability of CFG-Datalog is undecidable.

Already for conjunctive queries, we show that the treewidth of queries is not
the right parameter to ensure efficient translatability. In fact, the second contribu-
tion of our work is a lower bound: we show that bounded-treewidth queries cannot
be efficiently translated to automata at all, so we cannot hope to show combined
tractability for them via automata methods. By contrast, CFG-Datalog implies the
combined tractability of bounded-treewidth queries with an additional requirement
(interfaces between bags must be clique-guarded), which is the notion of simplicial
decompositions previously studied by Tarjan [55]. To our knowledge, we are the
first to introduce this query class and to show its tractability on treelike instances.
CFG-Datalog can be understood as an extension of this fragment to disjunction,
clique-guardedness, stratified negation, and inflationary fixpoints, that preserves
tractability.

To derive our main FPT-bilinear combined complexity result, we define an oper-
ational semantics for our tree automata by introducing a notion of cyclic provenance
circuits, that we call cycluits. These cycluits, the third contribution of our paper, are
well-suited as a provenance representation for alternating two-way automata encod-
ing CFG-Datalog programs, as they naturally deal with both recursion and two-way
traversal of a treelike instance, which is less straightforward with provenance formu-
las [40] or circuits [28]. While we believe that this natural generalization of Boolean
circuits may be of independent interest, it does not seem to have been studied in
detail, except in the context of integrated circuit design [45, 51], where the semantics
often features feedback loops that involve negation; we prohibit these by focusing
on stratified circuits, which we show can be evaluated in linear time. We show that
the provenance of alternating two-way automata can be represented as a stratified
cycluit in FPT-bilinear time, generalizing results on bottom-up automata and circuits
from [6].

The current article is a significant extension of the conference version [4, 5], which
in particular includes all proofs. We improved the definition of our language to a more
natural and more expressive one, allowing us to step away from the world of guarded
negation logics and thus answering a question that we left open in the conclusion
of [4]. We show that, in contrast with guarded negation logics and the ICG-Datalog
language of [4], satisfiability of CFG-Datalog is undecidable. To make space for
the new material, this paper does not include any of the applications to probabilistic
query evaluation that can be found in [4, 5] (see also [7] for a more in-depth study of
the combined complexity of probabilistic query evaluation).

Outline We give preliminaries in Section 2, and then position our approach relative to
existing work in Section 3. We then present our tractable fragment, first for bounded-
simplicial-width conjunctive queries in Section 4, then for CFG-Datalog in Section 5.
We then define the automata variants we use and translate CFG-Datalog to them
in Section 6, before introducing cycluits and showing our provenance computation
result in Section 7. We last present the proof of our translation result in Section 8.
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2 Preliminaries

Relational Instances A relational signature σ is a finite set of relation names writ-
ten R, S, T , . . . , each with its associated arity written arity(R) ∈ N. Throughout
this work, we always assume the signature σ to be fixed (with a single exception,
in Proposition 24): hence, its arity arity(σ ) (the maximal arity of relations in σ ) is
assumed to be constant, and we further assume it is > 0. A (σ -)instance I is a finite
set of facts on σ , i.e., R(a1, . . . , aarity(R)) with R ∈ σ . The active domain dom(I )

consists of the elements occurring in I , and the size of I , denoted |I |, is the number
of tuples that I contains.

Example 1 Table 1 shows an example of relational instance I on signature σ =
{R, S, T } with arity(R) = arity(S) = 2 and arity(T ) = 3. The active domain of I is
dom(I ) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and its size is |I | = 11.

A subinstance of I is a σ -instance that is included in I (as a set of tuples).
An isomorphism between two σ -instances I and I ′ is a bijective function f :
dom(I ) → dom(I ′) such that for every relation name R, for each tuple
(a1, . . . , aarity(R)) in dom(I )arity(R), we have R(a1, . . . , aarity(R)) ∈ I if and only if
R(f (a′

1), . . . , f (a′
arity(R))) ∈ I ′. When there exists such an isomorphism, we say

that I and I ′ are isomorphic: intuitively, isomorphic instances have exactly the same
structure and differ only by the name of the elements in their active domains.

Query Evaluation and Fixed-parameter Tractability We study query evaluation for
several query languages that are subsets of first-order (FO) logic (e.g., conjunctive
queries) or of second-order (SO) logic (e.g., Datalog). Unless otherwise stated, we
only consider queries that are constant-free, and Boolean, so that an instance I either
satisfies a query Q (I |= Q), or violates it (I �|= Q), with the standard semantics
[1]. We recall that a constant-free Boolean query Q cannot differentiate between
isomorphic instances, i.e., for any two isomorphic relational instances I and I ′, we
have I |= Q if and only if I ′ |= Q.

We study the query evaluation (or model checking) problem for a query class
Q and instance class I : given an instance I ∈ I and query Q ∈ Q, check if
I |= Q. Its combined complexity for I and Q is a function of I and Q, whereas
data complexity assumes Q to be fixed. We also study cases where I and Q are

Table 1 Example relational
instance R S T

3 7 3 7 1 2 3
3 4 7 9
5 4 11 9
2 5 2 6
9 10
7 8
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parameterized: given infinite sequences I1, I2, . . . and Q1, Q2, . . ., the query eval-
uation problem parameterized by kI, kQ applies to IkI and QkQ. The parameterized
problem is fixed-parameter tractable (FPT), for (In) and (Qn), if there is a constant
c ∈ N and computable function f such that the problem can be solved with com-
bined complexity O

(
f (kI, kQ) · (|I | + |Q|)c). When the complexity is of the form

O
(
f (kI, kQ) · (|I | · |Q|)), we call it FPT-bilinear (in |I | · |Q|). When there is only

one input (for example when we want to check that an instance I has treewidth ≤ kI)
and the complexity is O (f (kI) · |I |), we call it FPT-linear. Observe that calling the
problem FPT is more informative than saying that it is in PTIME for fixed kI and kQ,
as we are further imposing that the polynomial degree c does not depend on kI and
kQ: this follows the usual distinction in parameterized complexity between FPT and
classes such as XP [32].

Query Languages We first study fragments of FO, in particular, conjunctive queries
(CQ), i.e., existentially quantified conjunctions of atoms. The canonical model of a
CQ Q is the instance built from Q by seeing variables as elements and atoms as facts.
The primal graph of Q has its variables as vertices, and connects all variable pairs
that co-occur in some atom.

Second, we study Datalog with stratified negation. We summarize the definitions
here, see [1] for details. A Datalog program P (without negation) over σ (called the
extensional signature) consists of an intensional signature σint disjoint from σ (with
the arity of σint being possibly greater than that of σ ), a 0-ary goal predicate Goal in
σint, and a set of rules. Each rule is of the form R(x) ← ψ(x, y), where the head R(x)
is an atom with R ∈ σint, and the body ψ is a CQ over the signature σint � σ (with �
denoting disjoint union), where we require that every variable of x occurs in ψ . The
semantics P(I) of P over an input σ -instance I is the (σ � σint)-instance defined
by as the least fixpoint of the immediate consequence operator ΞP . Formally, start
with P(I) := I , and repeatedly apply the operator ΞP which does the following:
simultaneously consider each rule R(x) ← ψ(x, y) and every tuple a of dom(I ) for
which P(I) |= ∃yψ(a, y), derive the fact R(a), and add all derived facts to P(I)

where they can be used in subsequent iterations to derive more facts. We say that
I |= P iff Goal() is in P(I). The arity of P is max(arity(σ ), arity(σint)), and P is
monadic if σint has arity 1.

Datalog with stratified negation [1] allows negated intensional atoms in bodies,
but requires P to have a stratification, i.e., an ordered partition P1 � · · · � Pn of the
rules where:

(i) Each R ∈ σint has a stratum ζ(R) ∈ {1, . . . , n} such that all rules with R in the
head are in Pζ(R);

(ii) For any 1 ≤ i ≤ n and σint-atom R(z) in a body of a rule of Pi , we have
ζ(R) ≤ i;

(iii) For any 1 ≤ i ≤ n and negated σint-atom R(z) in a body of Pi , we have
ζ(R) < i.

The stratification ensures that we can define the semantics of a stratified Datalog pro-
gram by computing its interpretation for strata P1, . . . , Pn in order: atoms in bodies
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always depend on a lower stratum, and negated atoms depend on strictly lower strata,
whose interpretation was already fixed. Hence, there is a unique least fixpoint and
I |= P is well-defined.

Example 2 The following stratified Datalog program, with σ = {R} and σint =
{T , Goal}, and strata P1, P2, tests if there are two elements that are not connected by
a directed R-path:

P1 : T (x, y) ← R(x, y), T (x, y) ← R(x, z)∧T (z, y) P2 : Goal() ← ¬T (x, y)

Treewidth The treewidth measure [52] quantifies how far a graph is to being a tree:
we will use it to restrict instances and conjunctive queries. The treewidth of a CQ
is that of its canonical model, and the treewidth of an instance I is the smallest k

such that I has a tree decomposition of width k, i.e., a finite, rooted, unranked tree
T , whose nodes b (called bags) are labeled by a subset dom(b) of dom(I ) with
|dom(b)| ≤ k + 1, and which satisfies:

(i) for every fact R(a) ∈ I , there is a bag b ∈ T with a ⊆ dom(b);
(ii) for all a ∈ dom(I ), the set of bags {b ∈ T | a ∈ dom(b)} is a connected subtree

of T .

Example 3 Figure 1 shows a tree decomposition of the instance I from Example 1.
The width of this tree decomposition is 2. Moreover, the width of any tree decompo-
sition of I is at least 2, since there must be a bag containing all elements of the fact
T (1, 2, 3). Hence, the treewidth of I is 2.

A family of instances is treelike if their treewidth is bounded by a constant.

Fig. 1 Tree decomposition of
the instance from Example 1
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3 Approaches for Tractability

We now review existing approaches to ensure the tractability of query evaluation,
starting by query languages whose evaluation is tractable in combined complexity
on all input instances. We then study more expressive query languages which are
tractable on treelike instances, but where tractability only holds in data complexity.
We then present the goals of our work.

3.1 Tractable Queries on All Instances

The best-known query language to ensure tractable query complexity is the language
of α-acyclic queries [30], i.e., those CQs that have a tree decomposition where the
domain of each bag corresponds exactly to an atom: this is called a join tree [36].
With Yannakakis’s algorithm [61], we can evaluate an α-acyclic conjunctive query
Q on an arbitrary instance I in time O(|I | · |Q|).

Yannakakis’s result was generalized in two main directions. One direction [35]
has investigated more general CQ classes, in particular CQs of bounded treewidth
[31], hypertreewidth [36], and fractional hypertreewidth [41]. Bounding these query
parameters to some fixed k makes query evaluation run in time O((|I | · |Q|)f (k))

for some function f , hence in PTIME; for treewidth, since the decomposition can be
computed in FPT-linear time [20], this goes down to O(|I |k · |Q|). However, query
evaluation on arbitrary instances is unlikely to be FPT when parameterized by the
query treewidth, since it would imply that deciding if a graph contains a k-clique
is FPT parameterized by k, which is widely believed to be false in parameterized
complexity theory (this is the W[1] �= FPT assumption). Further, even for treewidth
2 (e.g., triangles), it is not known if we can achieve linear data complexity [2].

In another direction, α-acyclicity has been generalized to queries with more
expressive operators, e.g., disjunction or negation. The result on α-acyclic CQs thus
extends to the guarded fragment (GF) of first-order logic, which can be evaluated on
arbitrary instances in time O(|I | · |Q|) [44]. Tractability is independently known for
FOk , the fragment of FO where subformulas use at most k variables, with a simple
evaluation algorithm in O(|I |k · |Q|) [60].

Other important operators are fixpoints, which can be used to express, e.g., reach-
ability queries. Though FOk is no longer tractable when adding fixpoints [60],
query evaluation is tractable for μGF [18, Theorem 3], i.e., GF with some restricted
least and greatest fixpoint operators, when alternation depth is bounded; without
alternation, the combined complexity is in O(|I | · |Q|). We could alternatively
express fixpoints in Datalog, but, sadly, most known tractable fragments are non-
recursive: nonrecursive stratified Datalog is tractable [31, Corollary 5.26] for rules
with restricted bodies (i.e., strictly acyclic, or bounded strict treewidth). This result
was generalized in [37] when bounding the number of guards: this nonrecursive
fragment is shown to be equivalent to the k-guarded fragment of FO, with con-
nections to the bounded-hypertreewidth approach. One recursive tractable fragment
is Datalog LITE, which is equivalent to alternation-free μGF [34]. Fixpoints were
independently studied for graph query languages such as reachability queries and
regular path queries (RPQ), which enjoy linear combined complexity on arbitrary
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input instances: this extends to two-way RPQs (2RPQs) and even strongly acyclic
conjunctions of 2RPQs (SAC2RPQs), which are expressible in alternation-free μGF.
Tractability also extends to acyclic C2RPQs but with PTIME complexity [10].

3.2 Tractability on Treelike Instances

We now study another approach for tractable query evaluation: this time, we restrict
the shape of the instances, using treewidth. This ensures that we can translate them
to a tree for efficient query evaluation, using tree automata techniques.

Tree Encodings Informally, having fixed the signature σ , for a fixed treewidth k ∈
N, we define a finite tree alphabet Γ k

σ such that σ -instances of treewidth ≤ k can
be translated in FPT-linear time (parameterized by k), following the structure of a
tree decomposition, to a Γ k

σ -tree, i.e., a rooted full ordered binary tree with nodes
labeled by Γ k

σ , which we call a tree encoding. Formally, we define the domain Dk =
{a1, . . . , a2k+2} and the finite alphabet Γ k

σ whose elements are pairs (d, s), with d

being a subset of up to k + 1 elements of Dk , and s being either the empty set or an
instance consisting of a single σ -fact over some subset of d: in the latter case, we will
abuse notation and identify s with the one fact that it contains. A (σ, k)-tree encoding
is simply a rooted, binary, ordered, full Γ k

σ -tree 〈E, λ〉 (λ being the labeling function);
the fact that 〈E, λ〉 is rooted and ordered is merely for technical convenience when
running bNTAs, but it is otherwise inessential.

A tree encoding 〈E, λ〉 can be decoded (up to isomorphism) to an instance
dec(〈E, λ〉) with the elements of Dk being decoded to new domain elements: we cre-
ate a fresh element for each occurrence of an element ai ∈ Dk in an ai-connected
subtree of E, i.e., a maximal connected subtree where ai appears in the first compo-
nent of the label of each node. In other words, reusing the same ai in adjacent nodes
in 〈E, λ〉 means that they stand for the same element, and using ai elsewhere in the
tree creates a new element. It is easy to see that decode(〈E, λ〉) has treewidth ≤ k, as
a tree decomposition for it can be constructed from 〈E, λ〉. Conversely, any instance
I of treewidth ≤ k has a (σ, k)-encoding, i.e., a Γ k

σ -tree 〈E, λ〉 such that dec(〈E, λ〉)
is exactly I up to isomorphism: we can construct it from a tree decomposition, repli-
cating each bag of the decomposition to code each fact in its own node of the tree
encoding and to make it binary, and adding empty bags to ensure that the tree encod-
ing is full. We can easily show that this process is FPT-linear for k, so that we will
use the following claim (see [3] for our type of encodings):

Lemma 4 ([31] (see [3] for our type of encodings)) The problem, given an instance
I of treewidth ≤ k, of computing a tree encoding of I , is FPT-linear parameterized
by k.

Example 5 Figure 2 displays a tree encoding 〈E, λ〉 for k = 2 and the signature σ

from Example 1. The domain D2 is {a, b, c, d, e, f }, but we only use {a, b, c, d}.
One way of decoding 〈E, λ〉 would be to decode the elements in bags as given by the
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Fig. 2 Tree encoding of the relational instance from Example 1

mappings drawn in green at the right of the bags. Here, it happens that decode(〈E, λ〉)
is exactly the instance I from Example 1. Hence 〈E, λ〉 is a tree encoding of I . More-
over, we can show that any valid way of decoding 〈E, λ〉 would yield an instance
isomorphic to I . We point out a few details that can help understand how these
encodings work. The elements “a” in bags α and β are decoded to distinct instance
elements, since α and β are not in a same a-connected subtree of the tree encoding.
Bags like γ , that contain elements but no fact, are usually used in order to help mak-
ing the tree encoding binary. Empty bags like δ are used in order to make the tree
encoding full.

Bottom-up Tree Automata We can then evaluate queries on treelike instances by run-
ning tree automata on the tree encoding that represents them. Formally, given an
alphabet Γ , a bottom-up nondeterministic tree automaton on Γ -trees (or Γ -bNTA)
is a tuple A = (Q, F, ι, Δ), where:

(i) Q is a finite set of states;
(ii) F ⊆ Q is a subset of accepting states;

(iii) ι : Γ → 2Q is an initialization function determining the possible states of a
leaf from its label;

(iv) Δ : Γ × Q2 → 2Q is a transition function determining the possible states for
an internal node from its label and the states of its two children.

Given a Γ -tree 〈T , λ〉 (where λ : T → Γ is the labeling function), we define a run
of A on 〈T , λ〉 as a function φ : T → Q such that (1) φ(l) ∈ ι(λ(l)) for every leaf
l of T ; and (2) φ(n) ∈ Δ(λ(n), φ(n1), φ(n2)) for every internal node n of T with
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children n1 and n2. The bNTA A accepts 〈T , λ〉 if it has a run on T mapping the root
of T to a state of F .

We say that a bNTA A tests a query Q on instances of treewidth ≤ k if, for any
Γ k

σ -encoding 〈E, λ〉 coding an instance I (of treewidth ≤ k), A accepts 〈E, λ〉 iff
I |= Q. By a well-known result of Courcelle [27] on graphs (extended to higher-arity
in [31]), we can use bNTAs to evaluate all queries in monadic second-order logic
(MSO), i.e., first-order logic with second-order variables of arity 1. MSO subsumes
in particular CQs and monadic Datalog (but not general Datalog). Courcelle showed
that MSO queries can be translated to a bNTA that tests them:

Theorem 6 ([27, 31]) For any MSO query Q and treewidth k ∈ N, we can compute
a bNTA that tests Q on instances of treewidth ≤ k.

This implies that evaluating any MSO query Q has FPT-linear data complex-
ity when parameterized by Q and the instance treewidth [27, 31], i.e., is in
O (f (|Q| , k) · |I |) for some computable function f . However, this tells little about
the combined complexity, as f is generally nonelementary in Q [48]. A better com-
bined complexity bound is known for unions of conjunctions of two-way regular path
queries (UC2RPQs) that are further required to be acyclic and to have a constant num-
ber of edges between pairs of variables: these can be translated into polynomial-sized
alternating two-way automata [11].

3.3 Restricted Queries on Treelike Instances

Our approach combines both ideas: we use instance treewidth as a parameter, but
also restrict the queries to ensure tractable translatability. We are only aware of two
approaches in this spirit. First, Gottlob, Pichler, and Wei [38] have proposed a quasi-
guarded Datalog fragment on relational structures and their tree decompositions, for
which query evaluation is in O(|I | · |Q|). However, this formalism requires queries
to be expressed in terms of the tree decomposition, and not just in terms of the rela-
tional signature. Second, Berwanger and Grädel [18] remark (after Theorem 4) that,
when alternation depth and width are bounded, μCGF (the clique-guarded fragment
of FO with fixpoints) enjoys FPT-bilinear query evaluation when parameterized by
instance treewidth. Their approach does not rely on automata methods, and subsumes
the tractability of α-acyclic CQs and alternation-free μGF (and hence SAC2RPQs),
on treelike instances. However, μCGF is a restricted query language (the only CQs
that it can express are those with a chordal primal graph), whereas we want a richer
language, with a parameterized definition.

Our goal is thus to develop an expressive parameterized query language, which
can be translated in FPT-linear time to an automaton that tests it (with the treewidth
of instances also being a parameter). We can then evaluate the automaton, and obtain
FPT-bilinear combined complexity for query evaluation. Further, as we will show,
the use of tree automata will yield provenance representations for the query as in [6]
(see Section 7).
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4 Conjunctive Queries on Treelike Instances

To identify classes of queries that can be efficiently translated to tree automata, we
start by the simplest queries: conjunctive queries.

α-acyclic Queries A natural candidate for a tractable query class via automata meth-
ods would be α-acyclic CQs, which, as we explained in Section 3.1, can be evaluated
in time O(|I |·|Q|) on all instances. Sadly, we show that such queries cannot be trans-
lated efficiently to bNTAs, so the translation result of Theorem 6 does not extend
directly:

Proposition 7 There is an arity-two signature σ and an infinite family (Qi)i∈N of
α-acyclic CQs such that, for any i ∈ N, any bNTA that tests Qi on instances of
treewidth ≤ 1 must have �(2|Qi |1−ε

) states for any ε > 0.

Proof We fix the signature σ to consist of binary relations S, S0, S1, and C. We will
code binary numbers as gadgets on this fixed signature. The coding of i ∈ N at length
k, with k ≥ 1 +�log2 i�, consists of an S-chain S(a1, a2), . . . , S(ak−1, ak), and facts
Sbj

(aj+1, a
′
j+1) for 1 ≤ j ≤ k − 1 where a′

j+1 is a fresh element and bj is the j -th
bit in the binary expression of i (padding the most significant bits with 0). We now
define the query family Qi : each Qi is formed by picking a root variable x and gluing
2i chains to x; for 0 ≤ j ≤ 2i − 1, we have one chain that is the concatenation of a
chain of C of length i and the coding of j at length (i + 1) using a gadget. Clearly
the size of Qi is Θ(i × 2i ). Now, fix ε > 0. As |Qi | is in O(i × 2i ), there exist
N, β > 0 such that ∀i ≥ N, |Qi | ≤ β × i × 2i . But there exists M > 0 such that
∀i ≥ M, (β × i × 2i )1−ε ≤ 2i . Hence for i ≥ max(N, M) we have 2i ≥ |Qi |1−ε .

Fix i > 0. Let A be a bNTA testing Qi on instances of treewidth 1. We will show

that A must have at least
( 2i

2i−1

) = �
(

22i− i
2

)
states (the lower bound is obtained

from Stirling’s formula), from which the claim follows since 22i− i
2 ≥ 2|Qi |1−ε− i

2 ≥
2|Qi |1−ε

. In fact, we will consider a specific subset I of the instances of treewidth
≤ 1, and a specific set E of tree encodings of instances of I , and show the claim on
E , which suffices to conclude.

To define I , let Si be the set of subsets of {0, . . . , 2i − 1} of cardinality 2i−1,

so that |Si | is
( 2i

2i−1

)
. We will first define a family I ′ of instances indexed by Si

as follows. Given S ∈ Si , the instance I ′
S of I ′ is obtained by constructing a full

binary tree of the C-relation of height i − 1, and identifying, for all j , the j -th leaf
node with element a1 of the length-(i + 1) coding of the j -th smallest number in S.
We now define the instances of I to consist of a root element with two C-children,
each of which are the root element of an instance of I ′ (we call the two the child
instances). It is clear that instances of I have treewidth 1, and we can check quite
easily that an instance of I satisfies Qi iff the child instances I ′

S1
and I ′

S2
are such

that S1 ∪ S2 = {1, . . . , 2i}.
We now define E to be tree encodings of instances of I . First, define E ′ to consist

of tree encodings of instances of I ′, which we will also index with Si , i.e., ES is a
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tree encoding of I ′
S . We now define E as the tree encodings E constructed as follows:

given an instance I ∈ I , we encode it as a root bag with domain {r}, where r is the
root of the tree I , and no fact, the first child n1 of the root bag having domain {r, r1}
and fact C(r, r1), the second child n2 of the root being defined in the same way. Now,
n1 has one dummy child with empty domain and no fact, and one child which is the
root of some tree encoding in E of one child instance of I . We define n2 analogously
with the other child instance.

For each S ∈ Si , letting S̄ be the complement of S relative to {0, . . . , 2i − 1},
we call IS ∈ I the instance where the first child instance is I ′

S and the second child
instance is I ′̄

S
, and we call ES ∈ E the tree encoding of IS according to the definition

above. We then call QS the set of states q of A such that there exists a run of A on ES

where the root of the encoding of the first child instance is mapped to q. As each IS

satisfies Q, each ES should be accepted by the automaton, so each QS is non-empty.
Further, we show that the QS are pairwise disjoint: for any S1 �= S2 of Si , we

show that QS1 ∩ QS2 = ∅. Assume to the contrary the existence of q in the inter-
section, and let ρS1 and ρS2 be runs of A respectively on IS1 and IS2 that witness
respectively that q ∈ QS1 and q ∈ QS2 . Now, consider the instance I ∈ I where
the first child instance is I1, and the second child instance is Ī2, and let E ∈ E be
the tree encoding of I . We can construct a run ρ of A on E by defining ρ accord-
ing to ρS2 except that, on the subtree of E rooted at the root r ′ of the tree encoding
of the first child instance, ρ is defined according to ρS1 : this is possible because ρS1

and ρS2 agree on r ′
1 as they both map r ′ to q. Hence, ρ witnesses that A accepts E.

Yet, as I1 �= I2, we know that I does not satisfy Q, so that, letting E ∈ E be its
tree encoding, A rejects E. We have reached a contradiction, so indeed the QS are
pairwise disjoint.

As the QS are non-empty, we can construct a mapping from Si to the state set of
A by mapping each S ∈ Si to some state of QS : as the QS are pairwise disjoint, this
mapping is injective. We deduce that the state set of A has size at least |Si |, which
concludes from the bound on the size of Si that we showed previously.

Faced by this, we propose to use different tree automata formalisms, which
are generally more concise than bNTAs. There are two classical generalizations of
nondeterministic automata, on words [19] and on trees [25]: one goes from the inher-
ent existential quantification of nondeterminism to quantifier alternation; the other
allows two-way navigation instead of imposing a left-to-right (on words) or bottom-
up (on trees) traversal. On words, both of these extensions independently allow for
exponentially more compact automata [19]. In this work, we combine both exten-
sions and use alternating two-way tree automata [22, 25], formally introduced in
Section 6, which leads to tractable combined complexity for evaluation. Our general
results in the next section will then imply:

Proposition 8 For any treewidth bound kI ∈ N, given an α-acyclic CQ Q, we can
compute in FPT-linear time in O(|Q|) (parameterized by kI) an alternating two-way
tree automaton that tests it on instances of treewidth ≤ kI.

Hence, if we are additionally given a relational instance I of treewidth ≤ kI, one
can determine whether I |= Q in FPT-bilinear time in |I | · |Q| (parameterized by kI).
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Proof This proof depends on notions and results that are given in the rest of the paper,
and should be read after studying the rest of this paper.

Given the α-acyclic CQ Q, we can compute in linear time in Q a chordal decom-
position T (equivalently, a join tree) of Q using Theorem 5.6 of [31] (attributed to
[56]). As T is in particular a simplicial decomposition of Q of width ≤ arity(σ ) − 1,
i.e., of constant width, we use Proposition 16 to obtain in linear time in |Q| a
CFG-Datalog program P equivalent to Q with body size bounded by a constant kp.

We now use Theorem 32 to construct, in FPT-linear time in |P | (hence, in |Q|),
parameterized by kI and the constant kP, an automaton A testing P on instances of
treewidth ≤ kI; specifically, a stratified isotropic alternating two-way automata or
SATWA (to be introduced in Definition 29).

We now observe that, thanks to the fact that Q is monotone, the SATWA A does
not actually feature any negation: the translation in the proof of Proposition 16 does
not produce any negated atom, and the translation in the proof of Theorem 32 only
produces a negated state within a Boolean formula when there is a corresponding
negated atom in the Datalog program. Hence, A is actually an alternating two-way
tree automaton, which proves the first part of the claim.

For the second part of the claim, we use Theorem 15 to evaluate P on I in FPT-
bilinear time in |I | · |P |, parameterized by the constant kP and kI. This proves the
claim.

Bounded-treewidthQueries Having re-proven the combined tractability of α-acyclic
queries (on bounded-treewidth instances), we naturally try to extend to bounded-
treewidth CQs. Recall from Section 3.1 that these queries have PTIME combined
complexity on all instances, but are unlikely to be FPT when parameterized by the
query treewidth (unless W[1] = FPT). Can they be efficiently evaluated on treelike
instances by translating them to automata? We answer in the negative: that bounded-
treewidth CQs cannot be efficiently translated to automata to test them, even when
using the expressive formalism of alternating two-way tree automata:

Theorem 9 There is an arity-two signature σ for which there is no algorithm A
with exponential running time and polynomial output size for the following task:
given a conjunctive query Q of treewidth ≤ 2, produce an alternating two-way tree
automaton AQ on Γ 5

σ -trees that tests Q on σ -instances of treewidth ≤ 5.

This result is obtained from a variant of the 2EXPTIME-hardness of monadic
Datalog containment [13]. As this result heavily relies on [12], an unpublished exten-
sion of [13] whose relevant results are reproduced in [5], we deport its proof to
Appendix A. Briefly, we show that efficient translation of bounded-treewidth CQs
to automata would yield an EXPTIME containment test, and conclude by the time
hierarchy theorem.

Bounded Simplicial Width We have shown that we cannot translate bounded-
treewidth queries to automata efficiently. We now show that efficient translation can
be ensured with an additional requirement on tree decompositions. As it turns out,
the resulting decomposition notion has been independently introduced for graphs:
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Definition 10 ([29]) A simplicial decomposition of a graph G is a tree decomposi-
tion T of G such that, for any bag b of T and child bag b′ of b, if S is the intersection
of the domains of b and b′, then the subgraph of G induced by S is a complete
subgraph of G.

We extend this notion to CQs, and introduce the simplicial width measure:

Definition 11 A simplicial decomposition of a CQ Q is a simplicial decomposition
of its primal graph. Note that any CQ has a simplicial decomposition (e.g., the trivial
one that puts all variables in one bag). The simplicial width of Q is the minimum,
over all simplicial tree decompositions, of the size of the largest bag minus 1.

Bounding the simplicial width of CQs is of course more restrictive than bounding
their treewidth, and this containment relation is strict: cycles have treewidth ≤ 2
but have unbounded simplicial width. This being said, bounding the simplicial width
is less restrictive than imposing α-acyclicity: the join tree of an α-acyclic CQ is
in particular a simplicial decomposition, so α-acyclic CQs have simplicial width at
most arity(σ ) − 1, which is constant as σ is fixed. Again, the containment is strict: a
triangle has simplicial width 2 but is not α-acyclic.

To our knowledge, simplicial width for CQs has not been studied before. Yet, we
show that bounding the simplicial width ensures that CQs can be efficiently translated
to automata. This is in contrast to bounding the treewidth, which we have shown in
Theorem 9 not to be sufficient to ensure efficient translatability to tree automata.
Hence:

Theorem 12 For any kI, kQ ∈ N, given a CQ Q and a simplicial decomposition T of
simplicial width kQ of Q, we can compute in FPT-linear in |Q| (parameterized by kI
and kQ) an alternating two-way tree automaton that tests Q on instances of treewidth
≤ kI.

Hence, if we are additionally given a relational instance I of treewidth ≤ kI, one
can determine whether I |= Q in FPT-bilinear time in |I |·(|Q|+|T |) (parameterized
by kI and kQ).

Proof This proof depends on notions and results that are given in the rest of the paper,
and should be read after studying the rest of this paper.

We use Proposition 16 to transform the CQ Q to a CFG-Datalog program P with
body size at most kP := fσ (kQ), in FPT-linear time in |Q|+|T | parameterized by kQ.

We now use Theorem 32 to construct, in FPT-linear time in |P | (hence, in |Q|),
parameterized by kI and kP, hence in kI and kQ, a SATWA A testing P on instances of
treewidth ≤ kI (see Definition 29). For the same reasons as in the proof of Proposition
8, it is actually a two-way alternating tree automaton, so we have shown the first part
of the result.

To prove the second part of the result, we now use Theorem 15 to evaluate P on I

in FPT-bilinear time in |I | · |P |, parameterized by kP and kI, hence again by kQ and
kI. This proves the claim.
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Notice the technicality that the simplicial decomposition T must be provided as
input to the procedure, because it is not known to be computable in FPT-linear time,
unlike tree decompositions. While we are not aware of results on the complexity of
this specific task, quadratic-time algorithms are known for the related problem of
computing the clique-minimal separator decomposition [17, 43].

The intuition for the efficient translation of bounded-simplicial-width CQs is as
follows. The interface variables shared between any bag and its parent must be
“clique-guarded” (each pair is covered by an atom). Hence, consider any subquery
rooted at a bag of the query decomposition, and see it as a non-Boolean CQ with
the interface variables as free variables. Each result of this CQ must then be covered
by a clique of facts of the instance, which ensures [33] that it occurs in some bag of
the instance tree decomposition and can be “seen” by a tree automaton. This intu-
ition can be generalized, beyond conjunctive queries, to design an expressive query
language featuring disjunction, negation, and fixpoint, with the same properties of
efficient translation to automata and FPT-linear combined complexity of evaluation
on treelike instances. We introduce such a Datalog variant in the next section.

5 CFG-Datalog on Treelike Instances

To design a Datalog fragment with efficient translation to automata, we must of
course impose some limitations, as we did for CQs. In fact, we can even show that
the full Datalog language (even without negation) cannot be translated to automata,
no matter the complexity:

Proposition 13 There is a signature σ and Datalog program P such that the
language of Γ 1

σ -trees that encode instances satisfying P is not a regular tree
language.

Proof Let σ be the signature containing two binary relations Y and Z and two unary
relations Begin and End. Consider the following program P :

Goal() ← S(x, y), Begin(x), End(y)

S(x, y) ← Y (x, w), S(w, u), Z(u, y)

S(x, y) ← Y (x, w), Z(w, y)

Let L be the language of the tree encodings of instances of treewidth 1 that satisfy P .
We will show that L is not a regular tree language, which clearly implies the second
claim, as a bNTA or an alternating two-way tree automaton can only recognize regu-
lar tree languages [25]. To show this, let us assume by contradiction that L is a regular
tree language, so that there exists a Γ 1

σ -bNTA A that accepts L, i.e., that tests P .
We consider instances that are chains of facts which are either Y - or Z-facts, and

where the first end is the only node labeled Begin and the other end is the only node
labeled End. This condition on instances can clearly be expressed in MSO, so that by
Theorem 6 there exists a bNTA Achain on Γ 1

σ that tests this property. In particular, we
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can build the bNTA A′ which is the intersection of A and Achain, which tests whether
instances are of the prescribed form and are accepted by the program P .

We now observe that such instances must be the instance

Ik = {Begin(a1), Y (a1, a2), . . . , Y (ak−1, ak), Y (ak, ak+1),

Z(ak+1, ak+2), . . . , Z(a2k−1, a2k), Z(a2k, a2k+1), End(a2k+1)}
for some k ∈ N. Indeed, it is clear that Ik satisfies P for all k ∈ N, as we derive the
facts

S(ak, ak+2), S(ak−1, ak+3), . . . , S(ak−(k−1), ak+2+(k−1)), that is,S(a1, a2k+1),

and finally Goal(). Conversely, for any instance I of the prescribed shape that satis-
fies P , it is easily seen that the derivation of Goal justifies the existence of a chain in
I of the form Ik , which by the restrictions on the shape of I means that I = Ik .

We further restrict our attention to tree encodings that consist of a single branch
of a specific form, namely, their contents are as follows (given from leaf to root) for
some integer n ≥ 0: ({a1}, Begin(a1)), ({a1, a2}, X(a1, a2)), ({a2, a3}, X(a2, a3)),
({a3, a1}, X(a3, a1)), . . . , ({an, an+1}, X(an, an+1)), ({an+1}, End(an+1)), where we
write X to mean that we may match either Y or Z, where addition is modulo 3, and
where we add dummy nodes (⊥, ⊥) as left children of all nodes, and as right children
of the leaf node ({a1}, Begin(a1)), to ensure that the tree is full. It is clear that we can
design a bNTA Aencode which recognizes tree encodings of this form, and we define
A′′ to be the intersection of A′ and Aencode. In other words, A′′ further enforces that
the Γ 1

σ -tree encodes the input instance as a chain of consecutive facts with a certain
prescribed alternation pattern for elements, with the Begin end of the chain at the top
and the End end at the bottom.

Now, it is easily seen that there is exactly one tree encoding of every Ik which is
accepted by A′′, namely, the one of the form tested by Aencode where n = 2k, the first
k X are matched to Y and the last k X are matched to Z.

Now, we observe that as A′′ is a bNTA which is forced to operate on chains
(completed to full binary trees by a specific addition of binary nodes). Thus, we
can translate it to a deterministic automaton A′′′ on words on the alphabet Σ =
{B, Y, Z, E}, by looking at its behavior in terms of the X-facts. Formally, A′′′ has
same state space as A′′, same final states, initial state δ(ι((⊥, ⊥)), ι((⊥, ⊥))) and
transition function δ(q, x) = δ(ι((⊥, ⊥)), q, (s, f )) for every domain s, where
f is a fact corresponding to the letter x ∈ Σ (B stands here for Begin, and E

for End). By definition of A′′, the automaton A′′′ on words recognizes the lan-
guage {BYkZkE | k ∈ N}. However, this language is not regular. This contradicts
our hypothesis about the existence of automaton A, which establishes the desired
result.

Hence, there is no bNTA or alternating two-way tree automaton that tests P for
treewidth 1. To work around this problem and ensure that translation is possible and
efficient, the key condition that we impose on Datalog programs, pursuant to the intu-
ition of simplicial decompositions, is that the rules must be clique-frontier-guarded,
i.e., the variables in the head must co-occur in positive predicates of the rule body.
We can then use the body size of the program rules as a parameter, and will show that
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the fragment can then be translated to automata in FPT-linear time. Remember that
we assume that the arity of the extensional signature is fixed.

Definition 14 Let P be a stratified Datalog program. A rule r of P is clique-frontier-
guarded if for any two variables xi �= xj in the head of r , we have that xi and xj

co-occur in some positive (extensional or intensional) predicate of the body of r . P

is clique-frontier-guarded (CFG) if all its rules are clique-frontier-guarded. The body
size of P is the maximal number of atoms in the body of its rules, multiplied by
its arity.

The main result of this paper is that evaluation of CFG-Datalog is FPT-bilinear in
combined complexity, when parameterized by the body size of the program and the
instance treewidth.

Theorem 15 Given a CFG-Datalog program P of body size kP and a relational
instance I of treewidth kI, checking if I |= P is FPT-bilinear time in |I | · |P |
(parameterized by kP and kI).

We will show this result in the next section by translating CFG-Datalog programs
in FPT-linear time to a special kind of tree automata (Theorem 32), and showing in
Section 7 that we can efficiently evaluate such automata and even compute prove-
nance representations. The rest of this section presents consequences of our main
result for various languages.

Conjunctive Queries Our tractability result for bounded-simplicial-width CQs (The-
orem 12), including α-acyclic CQs, is shown by rewriting to CFG-Datalog of
bounded body size:

Proposition 16 There is a function fσ (depending only on σ ) such that for all k ∈ N,
for any conjunctive query Q and simplicial tree decomposition T of Q of width at
most k, we can compute in O(|Q| + |T |) an equivalent CFG-Datalog program with
body size at most fσ (k).

To prove Proposition 16, we first prove the following lemma about simplicial tree
decompositions:

Lemma 17 For any simplicial decomposition T of width k of a query Q, we can
compute in linear time a simplicial decomposition Tbounded of Q such that each bag
has degree at most 2k+1.

Proof Fix Q and T . We construct the simplicial decomposition Tbounded of Q in a
process which shares some similarity with the routine rewriting of tree decompo-
sitions to make them binary, by creating copies of bags. However, the process is
more intricate because we need to preserve the fact that we have a simplicial tree
decomposition, where interfaces are guarded.
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We go over T bottom-up: for each bag b of T , we create a bag b′ of Tbounded with
same domain as b. Now, we partition the children of b depending on their intersection
with b: for every subset S of the domain of b such that b has some children whose
intersection with b is equal to S, we write these children bS,1, . . . , bS,nS

(so we have
S = dom(b) ∩ dom(bS,j ) for all 1 ≤ j ≤ nS), and we write b′

S,1, . . . , b
′
S,nS

for the
copies that we already created for these bags in Tbounded. Now, for each S, we create
nS fresh bags b′=S,j in Tbounded (for 1 ≤ j ≤ nS) with domain equal to S, and we set
b′=S,1 to be a child of b′, b′=S,j+1 to be a child of b′=S,j for all 1 ≤ j < nS , and we
set each b′

S,i to be a child of b′=S,i .
This process can clearly be performed in linear time. Now, the degree of the fresh

bags in Tbounded is at most 2, and the degree of the copies of the original bags is at
most 2k+1, as stated. Further, it is clear that the result is still a tree decomposition
(each fact is still covered, the occurrences of each element still form a connected
subtree because they are as in T with the addition of some paths of the fresh bags),
and the interfaces in Tbounded are the same as in T , so they still satisfy the requirement
of simplicial decompositions.

We can now prove Proposition 16. In fact, as will be easy to notice from the proof,
our construction further ensures that the equivalent CFG-Datalog program is positive,
nonrecursive, and conjunctive. Recall that a Datalog program is positive if it contains
no negated atoms. It is nonrecursive if there is no cycle in the directed graph on σint
having an edge from R to S whenever a rule contains R in its head and S in its body.
It is conjunctive [16] if each intensional relation R occurs in the head of at most one
rule.

Proof of Proposition 16 Using Lemma 17, we can start by rewriting in linear time
the input simplicial decomposition to ensure that each bag has degree at most 2k+1.
Hence, let us assume without loss of generality that T has this property. We further
add an empty root bag if necessary to ensure that the root bag of T is empty and has
exactly one child.

We start by using Lemma 3.1 of [31] to annotate in linear time each node b of T

by the set of atoms Ab of Q whose free variables are in the domain of b and such that
for each atom A of Ab, b is the topmost bag of T which contains all the variables of
A. As the signature σ is fixed, note that we have |Ab| ≤ gσ (k) for some function gσ

depending only on σ .
We now perform a process similar to Lemma 3.1 of [31]. We start by precomputing

in linear time a mapping μ that associates, to each pair {x, y} of variables of Q,
the set of all atoms in Q where {x, y} co-occur. We can compute μ in linear time
by processing all atoms of Q and adding each atom as an image of μ for each pair
of variables that it contains (remember that the arity of σ is constant). Now, we do
the following computation: for each bag b which is not the root of T , letting S be
its interface with its parent bag, we annotate b by a set of atoms A

guard
b defined as

follows: for all x, y ∈ S with x �= y, letting A(z) be an atom of Q where x and
y appear (which must exist, by the requirement on simplicial decompositions, and
which we retrieve from μ), we add A(w) to A

guard
b , where, for 1 ≤ i ≤ |z|, we

set wi := zi if zi ∈ {x, y}, and wi to be a fresh variable otherwise. In other words,
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A
guard
b is a set of atoms that ensures that the interface S of b with its parent is covered

by a clique, and we construct it by picking atoms of Q that witness the fact that it
is guarded (which it is, because T is a simplicial decomposition), and replacing their
irrelevant variables to be fresh. Note that A

guard
b consists of at most k × (k + 1)/2

atoms, but the domain of these atoms is not a subset of dom(b) (because they include
fresh variables). This entire computation is performed in linear time.

We now define the function fσ (k) as follows, remembering that arity(σ ) denotes
the arity of the extensional signature:

fσ (k) := (k + 1) ×
(
gσ (k) + 2k+1 + k(k + 1)/2

)
.

We now build our CFG-Datalog program P of body size fσ (k) which is equivalent
to Q. We define the intensional signature σint by creating one intensional predicate
Pb for each non-root bag b of T , whose arity is the size of the intersection of b with
its parent. As we ensured that the root bag br of T is empty and has exactly one child
b′

r, we use Pb′
r

as our 0-ary Goal() predicate (because its interface with its parent br
is necessarily empty). We now define the rules of P by processing T bottom-up: for
each bag b of T , we add one rule ρb with head Pb(x), defined as follows:

– If b is a leaf, then ρb is Pb ← ∧
A

guard
b ∧ ∧

Ab.
– If b is an internal node with children b1, . . . , bm (remember that m ≤ 2k+1), then

ρb is Pb ← ∧
A

guard
b ∧ ∧

Ab ∧ ∧
1≤i≤m Pbi

.

We first check that P is clique-frontier-guarded, but this is the case because by
construction the conjunction of atoms

∧
A

guard
b is a suitable guard for x: for each

{x, y} ∈ x, it contains an atom where both x and y occur.
Second, we check that the body size of P is indeed fσ (k). It is clear that

arity(P ) = arity(σint ∪ σ) ≤ k + 1. Further, the maximal number of atoms in the
body of a rule is gσ (k) + 2k+1 + k(k + 1)/2, so we obtain the desired bound.

What is left to check is that P is equivalent to Q. It will be helpful to reason
about P by seeing it as the conjunctive query Q′ obtained by recursively inlining the
definition of rules: observe that this a conjunctive query, because P is conjunctive,
i.e., for each intensional atom Pb, the rule ρb is the only one where Pb occurs as head
atom. It is clear that P and Q′ are equivalent, so we must prove that Q and Q′ are
equivalent.

For the forward direction, it is obvious that Q′ implies Q, because Q′ contains
every atom of Q by construction of the Ab. For the backward direction, noting that
the only atoms of Q′ that are not in Q are those added in the sets A

guard
b , we observe

that there is a homomorphism from Q′ to Q defined by mapping each atom A(w)

occurring in some A
guard
b to the atom A(z) of Q used to create it; this mapping is the

identity on the two variables x and y used to create A(w), and maps each fresh vari-
ables wi to zi : the fact that these variables are fresh ensures that this homomorphism
is well-defined. This shows Q and Q′, hence P , to be equivalent, which concludes
the proof.

This implies that CFG-Datalog can express any CQ up to increasing the body size
parameter (since any CQ has a simplicial decomposition), unlike, e.g., μCGF [18].
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Conversely, we can show that bounded-simplicial-width CQs characterize the queries
expressible in CFG-Datalog when disallowing negation, recursion, and disjunction.

Proposition 18 For any positive, conjunctive, nonrecursive CFG-Datalog program
P with body size k, there is a CQ Q of simplicial width ≤ k that is equivalent to P .

To prove Proposition 18, we will use the notion of call graph of a Datalog pro-
gram. This is the graph G on the relations of σint which has an edge from R to
S whenever a rule contains relation R in its head and S in its body. From the
requirement that P is nonrecursive, we know that this graph G is a DAG.

Proof of Proposition 18 We first check that every intensional relation reachable from
Goal in the call graph G of P appears in the head of a rule of P (as P is conjunctive,
this rule is then unique). Otherwise, it is clear that P is not satisfiable (it has no
derivation tree), so we can simply rewrite P to the query False. We also assume
without loss of generality that each intensional relation except Goal() occurs in the
body of some rule, as otherwise we can simply drop them and drop all rules where
they appear as the head relation.

In the rest of the proof we will consider the rules of P in some order, and create an
equivalent CFG-Datalog program P ′ with rules r ′

0, . . . , r
′
m. We will ensure that P ′ is

also positive, conjunctive, and nonrecursive, and that it further satisfies the following
additional properties:

1. Every intensional relation other than Goal appears in the body of exactly one
rule of P ′, and appears there exactly once;

2. For every 0 ≤ i ≤ m, for every variable z in the body of rule r ′
i that does not

occur in its head, then for every 0 ≤ j < i, z does not occur in r ′
j .

We initialize a queue that contains only the one rule that defines Goal in P , and
we do the following until the queue is empty:

– Pop a rule r from the queue. Let r ′ be defined from r as follows: for every
intensional relation R that occurs in the body of r , letting R(x1), . . . , R(xn) be
its occurrences, rewrite these atoms to R1

r (x
1), . . . , Rn

r (xn), where the Ri
r are

fresh intensional relations.
– Add r ′ to P ′.
– For each intensional atom Ri

r(x) of r ′, letting R be the relation from which Ri
r

was created, let rR be the rule of P that has R in its head (by our initial consider-
ations, there is one such rule, and as the program is conjunctive there is exactly
one such rule). Define r ′

Ri from rR by changing its head relation to be Ri
r instead

of R, and by renaming its head and body variables such that the head is exactly
Ri

r(x). Further rename all variables that occur in the body but not in the head, to
replace them by fresh new variables. Add r ′

Ri to the queue.

We first argue that this process terminates. Indeed, considering the graph G, when-
ever we pop from the queue a rule with head relation R (or a fresh relation created
from a relation R), we add to the queue a finite number of rules for head relations
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created from relations R′ such that the edge (R, R′) is in the graph G. The fact that
G is acyclic ensures that the process terminates (but note that its running time may
generally be exponential in the input). Second, we observe that, by construction, P

satisfies the first property, because each occurrence of an intensional relation in a
body of P ′ is fresh, and satisfies the second property, because each variable which is
in the body of a rule but not in its head is fresh, so it cannot occur in a previous rule.

Last, we verify that P and P ′ are equivalent, but this is immediate, because any
derivation tree for P can be rewritten to a derivation tree for P ′ (by renaming relations
and variables), and vice-versa.

We define Q to be the conjunction of all extensional atoms occurring in P ′. To
show that it is equivalent to P ′, the fact that Q implies P ′ is immediate as the leaves
are sufficient to construct a derivation tree, and the fact that P ′ implies Q is because,
letting G′ be the call graph of P ′, by the first property of P ′ we can easily observe
that it is a tree, so the structure of derivation trees of G′ also corresponds to P , and
by the second property of P ′ we know that two variables are equal in two extensional
atoms iff they have to be equal in any derivation tree. Hence, P ′ and Q are indeed
equivalent.

We now justify that Q has simplicial width at most k. We do so by building from
P ′ a simplicial decomposition T of Q of width ≤ k. The structure of T is the same
as G′ (which is actually a tree). For each bag b of T corresponding to a node of G′
standing for a rule r of P ′, we set the domain of b to be the variables occurring in
r . It is clear that T is a tree decomposition of Q, because each atom of Q is covered
by a bag of T (namely, the one for the rule whose body contained that atom) and
the occurrences of each variable form a connected subtree (whose root is the node
of G′ standing for the rule where it was introduced, using the second condition of
P ′). Further, T is a simplicial decomposition because P ′ is clique-frontier-guarded;
further, from the second condition, the variables shared between one bag and its
child are precisely the head variables of the child rule. The width is ≤ k because the
body size of a CFG-Datalog program is an upper bound on the maximal number of
variables in a rule body.

However, our CFG-Datalog fragment is still exponentially more concise than such
CQs:

Proposition 19 There is a signature σ and a family (Pn)n∈N of CFG-Datalog pro-
grams with body size at most 6 which are positive, conjunctive, and nonrecursive,
such that |Pn| = O(n) and any conjunctive query Qn equivalent to Pn has size
�(2n).

To prove Proposition 19, we recall the following classical notion:

Definition 20 A match of a conjunctive query Q in an instance I is a subinstance M

of I which is an image of a homomorphism from the canonical instance of Q to I ,
i.e., M witnesses that I |= Q, in particular M |= Q.

Our proof will rely on the following elementary observation:
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Lemma 21 If a CQ Q has a match M in an instance I , then necessarily |Q| ≥ |M|.

Proof As M is the image of Q by a homomorphism, it cannot have more facts than
Q has atoms.

We are now ready to prove Proposition 19:

Proof of Proposition 19 Fix σ to contain a binary relation R and a binary relation G.
Consider the rule ρ0 : R0(x, y) ← R(x, y) and define the following rules, for all
i > 0:

ρi : Ri(x, y) ← G(x, y), Ri−1(x, z), Ri−1(z, y)

For each i > 0, we let Pi consist of the rules ρj for 0 ≤ j ≤ i, as well as the rule
Goal() ← Ri(x, y). It is clear that each Pi is positive, conjunctive, and nonrecursive;
further, the predicate G ensures that it is a CFG-Datalog program. The arity is 2 and
the maximum number of atoms is the body is 3, so the body size is indeed 6.

We first prove by an immediate induction that, for each i ≥ 0, considering the
rules of Pi and the intensional predicate Ri , whenever an instance I satisfies Ri(a, b)

for two elements a, b ∈ dom(I ) then there is an R-path of length 2i from a to b.
Now, fixing i ≥ 0, this clearly implies there is an instance Ii of size (number of facts)
≥ 2i , namely, an R-path of this length with the right set of additional G-facts, such
that Ii |= Pi but any strict subset of Ii does not satisfy Pi .

Now, let us consider a CQ Qi which is equivalent to Pi , and let us show the desired
size bound. By equivalence, we know that Ii |= Qi , hence Qi has a match Mi in
Ii , but any strict subset of Ii does not satisfy Qi , which implies that, necessarily,
Mi = Ii (indeed, otherwise Mi would survive as a match in some strict subset of Ii).
Now, by Lemma 21, we deduce that |Qi | ≥ |Mi |, and as |Mi | = |Ii | ≥ 2i , we obtain
the desired size bound, which concludes the proof.

Guarded Negation Fragments Having explained the connections between CFG-
Datalog and CQs, we now study its connections to the more expressive languages
of guarded logics, specifically, the guarded negation fragment (GNF), a fragment of
first-order logic [9]. Indeed, when putting GNF formulas in GN-normal form [9] or
even weak GN-normal form [15], we can translate them to CFG-Datalog, and we
can use the CQ-rank parameter [15] (that measures the maximal number of atoms in
conjunctions) to control the body size parameter. We first recall from [15], Appendix
B.1, the definitions of a weak GN-normal form formulas and of CQ-rank:

Definition 22 A weak GN-normal form formulas is a φ-formula in the inductive
definition below:

– A disjunction of existentially quantified conjunctions of ψ-formulas is a φ-
formula;

– An atom is a ψ-formula;
– The conjunction of a φ-formula and of a guard is a ψ-formula;
– The conjunction of the negation of a φ-formula and of a guard is a ψ-formula.
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The CQ-rank of a φ-formula is the overall number of conjuncts occurring in the
disjunction of existentially quantified conjunctions that defines this subformula.

We can then show:

Proposition 23 There is a function fσ (depending only on σ ) such that, for any weak
GN-normal form GNF query Q of CQ-rank r , we can compute in time O(|Q|) an
equivalent nonrecursive CFG-Datalog program P of body size fσ (r).

Proof We define fσ : n �→ arity(σ ) × n.
We consider an input Boolean GN-normal form formula Q of CQ-rank r , and call

T its abstract syntax tree. We rewrite T in linear time to inline in φ-formulas the
definition of their ψ-formulas, so all nodes of T consist of φ-formulas, in which all
subformulas are guarded (but they can be used positively or negatively).

We now process T bottom-up. We introduce one intensional Datalog predicate
Rn per node n in T : its arity is the number of variables that are free at n. We then
introduce one rule ρn,δ for each disjunct δ of the disjunction that defines n in T : the
head of ρn,δ is an Rn-atom whose free variables are the variables that are free in n,
and the body of ρn,δ is the conjunction that defines δ, with each subformula replaced
by the intensional relation that codes it. Of course, we use the predicate Rr for the
root r of T as our goal predicate; note that it must be 0-ary, as Q is Boolean so there
are no free variables at the root of T . This process defines our CFG-Datalog program
P : it is clear that this process runs in linear time.

We first observe that body size for an intensional predicate Rn is less than the CQ-
rank of the corresponding subformula. Hence, as the arity of σ is bounded, clearly P

has body size ≤ fσ (r). We next observe that intentional predicates in the bodies of
rules of P are always guarded, thanks to the guardedness requirement on Q. Further,
it is obvious that P is nonrecursive, as it is computed from the abstract syntax tree
T . Last, it is clear that P is equivalent to the original formula Q, as we can obtain Q

back simply by inlining the definition of the intensional predicates.

In fact, the efficient translation of bounded-CQ-rank normal-form GNF programs
(using the fact that subformulas are “answer-guarded”, like our guardedness require-
ments) has been used recently (e.g., in [14]), to give efficient procedures for GNF
satisfiability. The satisfiability problem for a logic formally asks, given a sentence
in this logic, whether it is satisfiable (i.e., there is an instance that satisfies it), and
two variants of the problem exist: finite satisfiability, where we ask for the existence
of a finite instance (as we defined them in this work), and unrestricted satisfiabil-
ity, where we also allow the satisfying instance to be infinite. The decidability of
both finite and unrestricted satisfiability for GNF is shown by translating GNF to
automata (for a treewidth which is not fixed, unlike in our context, but depends on
the formula). CFG-Datalog further allows clique guards (similar to CGNFO [9]), can
reuse subformulas (similar to the idea of DAG-representations in [15]), and supports
recursion (similar to GNFP [9], or GN-Datalog [8] but whose combined complexity
is intractable — PNP-complete). CFG-Datalog also resembles μCGF [18], but recall
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that μCGF is not a guarded negation logic, so, e.g., μCGF cannot express all CQs,
unlike CFG-Datalog or GNF.

Hence, the design of CFG-Datalog, and its translation to automata, has similarities
with guarded logics. However, to our knowledge, the idea of applying it to query eval-
uation is new, and CFG-Datalog is designed to support all relevant features to capture
interesting query languages (e.g., clique guards are necessary to capture bounded-
simplicial-width queries). Moreover CFG-Datalog is intrinsically more expressive
than guarded negation logics as its satisfiability is undecidable, in contrast with GNF
[9], CGNFO [9], GNFP [9], GN-Datalog [8], μCGF [39], the satisfiability of all of
which is decidable.

Proposition 24 Given a signature σ and a CFG-Datalog P over σ , determining if
P is satisfiable is undecidable, in both the finite and unrestricted cases.

Proof We reduce from the implication problem for functional dependencies and
inclusion dependencies, a problem known to be undecidable [24, 49] over both
finite and unrestricted instances. See also [1] for a general presentation of the prob-
lem and formal definitions and notation for functional dependencies and inclusion
dependencies.

Let σ be a relational signature, let d be a functional dependency or an inclusion
dependency over σ , and let Δ be a set of functional dependencies and inclusion
dependencies over σ . The problem is to determine if Δ implies d.

We construct a CFG-Datalog program P over σ which is satisfiable over
finite (resp., unrestricted) instances iff Δ implies d over finite (resp., unrestricted)
instances, which establishes that CFG-Datalog satisfiability is undecidable.

The intensional signature of the program P is made of:

– a binary relation Eq;
– a nullary relation P¬δ for every dependency δ ∈ Δ ∪ {d};
– a relation P�Z(S) whose arity is |Z| whenever there is at least one inclusion

dependency R[Y ] ⊆ S[Z] ∈ Δ ∪ {d};
– the nullary relation Goal.

For every extensional relation R and for every 1 ≤ i ≤ arity(R), we add rules of
the form:

Eq(xi, xi) ← R(x).

Consequently, for every instance I over σ , the Eq-facts of P(I) will be exactly
{Eq(v, v) | v ∈ dom(I )}.

For every functional dependency δ in Δ ∪ {d} with δ = R[Y ] → R[Z], we add
the following rules, for 1 ≤ j ≤ |Z|:

P¬δ() ← R(x), R(x′), Eq(y1, y
′
1), . . . , Eq(y|Y |, y′|Y |),¬Eq(zj , z

′
j )
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where for each 1 ≤ i ≤ |Y |, the variables yi and y′
i are those at the Yi-th position

in R(x) and R(x′), respectively; and where the variables zj and z′
j are those at the

Zj -th position in R(x) and R(x′), respectively.
For every inclusion dependency δ ∈ Δ ∪ {d}, with δ = R[Y ] ⊆ S[Z] we add two

rules:
P�Z(S)(z) ← S(x) P¬δ() ← R(x), ¬P�Z(S)(y)

where z are the variables at positions Z within S(x) and y are the variables at positions
Y within R(x).

Finally, we add one rule for the goal predicate:

Goal() ← P¬d(), ¬P¬δ1(), · · · , ¬P¬δk
()

where Δ = { δ1, . . . , δk }.
Note that all the rules that we have written are clearly in CFG-Datalog. Now, let

I be some instance. It is clear that for each functional dependency δ, P¬δ() is in
P(I) iff I does not satisfy δ. Similarly, for each inclusion dependency δ, P¬δ() is
in P(I) iff I does not satisfy δ. Therefore, for each instance I , Goal() is in P(I)

iff I satisfies Δ and I does not satisfy d. Thus P is satisfiable over finite instances
(resp., unrestricted instances) iff there exists a finite instance (resp., a finite or infinite
instance) that satisfies Δ and does not satisfy d, i.e., iff Δ does imply d over finite
instances (resp., over unrestricted instances).

We point out that the extensional signature is not fixed in this proof, unlike in the
rest of the article. This is simply to establish the expressiveness of CFG-Datalog, it
has no impact on our study of the combined complexity of query evaluation.

Recursive Languages The use of fixpoints in CFG-Datalog, in particular, allows
us to capture the combined tractability of interesting recursive languages. First,
observe that our guardedness requirement becomes trivial when all intensional pred-
icates are monadic (arity-one), so our main result implies that monadic Datalog of
bounded body size is tractable in combined complexity on treelike instances. This is
reminiscent of the results of [38]. We show:

Proposition 25 The combined complexity of monadic Datalog query evaluation on
bounded-treewidth instances is FPT when parameterized by instance treewidth and
body size (as in Definition 14) of the monadic Datalog program.

Proof This is simply by observing that any monadic Datalog program is a CFG-
Datalog program with the same body size, so we can simply apply Theorem 15.

Second, CFG-Datalog can capture two-way regular path queries (2RPQs) [10, 23],
a well-known query language in the context of graph databases and knowledge bases:

Definition 26 We assume that the signature σ contains only binary relations. A reg-
ular path query (RPQ) QL is defined by a regular language L on the alphabet Σ of
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the relation symbols of σ . Its semantics is that QL has two free variables x and y, and
QL(a, b) holds on an instance I for a, b ∈ dom(I ) precisely when there is a directed
path π of relations of σ from a to b such that the label of π is in L. A two-way regu-
lar path query (2RPQ) is an RPQ on the alphabet Σ± := Σ � {R− | R ∈ Σ}, which
holds whenever there is a path from a to b with label in L, with R− meaning that
we traverse an R-fact in the reverse direction. A Boolean 2RPQ is a 2RPQ which is
existentially quantified on its two free variables.

Proposition 27 ([10, 47]) 2RPQ query evaluation (on arbitrary instances) has linear
time combined complexity.

CFG-Datalog allows us to capture this result for Boolean 2RPQs on treelike
instances. In fact, the above result extends to SAC2RPQs, which are trees of 2RPQs
with no multi-edges or loops. We can prove the following result, for Boolean 2RPQs
and SAC2RPQs, which further implies translatability to automata (and efficient com-
putation of provenance representations). We do not know whether this extends to the
more general classes studied in [11].

Proposition 28 Given a Boolean SAC2RPQ Q, we can compute in time O(|Q|) an
equivalent CFG-Datalog program P of body size 4.

Proof We first show the result for 2RPQs, and then explain how to extend it to
SAC2RPQs.

We have not specified how RPQs are provided as input. We assume that they are
provided as a regular expression, from which we can use Thompson’s construction
[58] to compute in linear time an equivalent NFA A (with ε-transitions) on the alpha-
bet Σ±. Note that the result of Thompson’s construction has exactly one final state,
so we may assume that each automaton has exactly one final state.

We now define the intensional signature of the CFG-Datalog program to consist of
one unary predicate Pq for each state q of the automaton, in addition to Goal(). We
add the rule Goal() ← Pqf(x) for the final state qf, and for each extensional relation
R(x, y), we add the rules Pq0(x) ← R(x, y) and Pq0(y) ← R(x, y), where q0 is the
initial state. We then add rules corresponding to automaton transitions:

– for each transition from q to q ′ labeled with a letter R, we add the rule Pq ′(y) ←
Pq(x), R(x, y);

– for each transition from q to q ′ labeled with a negative letter R−, we add the rule
Pq ′(y) ← Pq(x), R(y, x);

– for each ε-transition from q to q ′ we add the rule Pq ′(x) ← Pq(x)

This transformation is clearly in linear time, and the result clearly satisfies the
desired body size bound. Further, as the result is a monadic Datalog program, it is
clearly a CFG-Datalog program. Now, it is clear that, in any instance I where Q

holds, from two witnessing elements a and b and a path π : a = c0, c1, . . . , cn = b

from a to b satisfying Q, we can build a derivation tree of the Datalog program by
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deriving Pq0(a), Pq1(c1), . . . , Pqn(cn), where q0 is the initial state and qn is final,
to match the accepting path in the automaton A that witnesses that π is a match
of Q. Conversely, any derivation tree of the Datalog program P that witnesses that
an instance satisfies P can clearly be used to extract a path of relations which
corresponds to an accepting run in the automaton.

We now extend this argument to SAC2RPQs. Recall that a C2RPQ is a conjunction
of 2RPQs, i.e., writing a 2RPQ as Q(x, y) with its two free variables, a C2RPQ
is a CQ built on 2RPQs. An AC2RPQ is a C2RPQ where the undirected graph on
variables defined by co-occurrence between variables is acyclic, and a SAC2RPQ
further imposes that there are no loops (i.e., atoms of the C2RPQ of the form Q(x, x))
and no multiedges (i.e., for each variable pair, there is at most one atom where it
occurs).

We will also make a preliminary observation on CFG-Datalog programs: any rule
of the form (*) A(x) ← A1(x), . . . , An(x), where A and each Ai is a unary atom, can
be rewritten in linear time to rules with bounded body size, by creating unary inten-
sional predicates A′

i for 1 ≤ i ≤ n, writing the rule A′
n(x) ← An(x), writing the rule

A′
i (x) ← A′

i+1(x), Ai(x) for each 1 ≤ i < n, and writing the rule A(x) ← A′
1(x).

Hence, we will write rules of the form (*) in the transformation, with unbounded
body size, being understood that we can finish the process by rewriting out each rule
of this form to rules of bounded body size.

Given a SAC2RPQ Q, we compute in linear time the undirected graph G on
variables, and its connected components. Clearly we can rewrite each connected
component separately, by defining one Goali () 0-ary predicate for each connected
component i, and adding the rule Goal() ← Goal1(), . . . , Goaln(): this is a rule
of form (*), which we can rewrite. Hence, it suffices to consider each connected
component separately.

Hence, assuming that the graph G is connected, we root it at an arbitrary vertex to
obtain a tree T . For each node n of T (corresponding to a variable of the SAC2RPQ),
we define a unary intensional predicate P ′

n which will intuitively hold on elements
where there is a match of the sub-SAC2RPQ defined by the subtree of T rooted at n,
and one unary intensional predicate P ′′

n,n′ for all non-root n and children n′ of n in T

which will hold whenever there is a match of the sub-SAC2RPQ rooted at n which
removes all children of n except n′. Of course we add the rule Goal() ← P ′

nr
(x),

where nr is the root of T .
Now, we rewrite the SAC2RPQ to monadic Datalog by rewriting each edge of T

independently, as in the argument for 2RPQs above. Specifically, we assume that the
edge when read from bottom to top corresponds to a 2RPQ; otherwise, if the edge is
oriented in the wrong direction, we can clearly compute an automaton for the reverse
language in linear time from the Thompson automaton, by reversing the direction of
transitions in the automaton, and swapping the initial state and the final state. We
modify the previous construction by replacing the rule for the initial state Pq0 by
Pq0(x) ← P ′

n′(x) where n′ is the lower node of the edge that we are rewriting, and
the rule for the goal predicate in the head is replaced by a rule P ′′

n,n′(x) ← Pqf(x),
where n is the upper node of the edge, and qf is the final state of the automaton for
the edge: this is the rule that defines the P ′′

n,n′ .
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Now, we define each P ′
n as follows:

– If n is a leaf node of T , we define P ′
n by the same rules that we used to define

Pq0 in the previous construction, so that P ′
n holds of all elements in the active

domain of an input instance.
– If n is an internal node of T , we define P ′

n(x) ← P ′′
n,n1

(x), . . . , P ′′
n,nm

(x), where
n1, . . . , nm are the children of n in T : this is a rule of form (*).

Now, given an instance I satisfying the SAC2RPQ, from a match of the SAC2RPQ
as a rooted tree of paths, it is easy to see by bottom-up induction on the tree that we
derive Pv with the desired semantics, using the correctness of the rewriting of each
edge. Conversely, a derivation tree for the rewriting can be used to obtain a rooted tree
of paths with the correct structure where each path satisfies the RPQ corresponding
to this edge.

The rest of the article presents the tools needed for our tractability results
(alternating two-way automata and cyclic provenance circuits) and their technical
proofs.

6 Translation to Automata

In this section, we study how we can translate CFG-Datalog queries on treelike
instances to tree automata, to be able to evaluate them efficiently. As we showed with
Propositions 7 and 16 (remembering that α-acyclic queries have bounded simplicial
width), we need more expressive automata than bNTAs. Hence, we use instead the
formalism of alternating two-way automata [25], i.e., automata that can navigate in
trees in any direction, and can express transitions using Boolean formulas on states.
Specifically, we introduce for our purposes a variant of these automata, which are
stratified (i.e., allow a form of stratified negation), and isotropic (i.e., no direction is
privileged, in particular order is ignored).

As in Section 3.2, we will define tree automata that run on Γ -trees for some alpha-
bet Γ : a Γ -tree 〈T , λ〉 is a finite rooted ordered tree with a labeling function λ from
the nodes of T to Γ . The neighborhood Nbh(n) of a node n ∈ T is the set which
contains n, all children of n, and the parent of n if it exists.

Stratified Isotropic Alternating Two-way Automata To define the transitions of our
alternating automata, we write B(X) the set of propositional formulas (not necessar-
ily monotone) over a set X of variables: we will assume without loss of generality
that negations are only applied to variables, which we can always enforce using De
Morgan’s laws. A literal is a propositional variable x ∈ X (positive literal) or the
negation of a propositional variable ¬x (negative literal).

A satisfying assignment of φ ∈ B(X) consists of two disjoint sets P,N ⊆ X (for
“positive” and “negative”) such that φ is a tautology when substituting the variables
of P with 1 and those of N with 0, i.e., when we have ν(φ) = 1 for every valuation
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ν of X such that ν(x) = 1 for all x ∈ P and ν(x) = 0 for all x ∈ N . Note that we
allow satisfying assignments with P �N � X, which will be useful for our technical
results. We now define our automata:

Definition 29 A stratified isotropic alternating two-way automata on Γ -trees (Γ -
SATWA) is a tuple A = (Q, qI, Δ, ζ ) with Q a finite set of states, qI the initial
state, Δ the transition function from Q×Γ to B(Q), and ζ a stratification function,
i.e., a surjective function from Q to {0, . . . , m} for some m ∈ N, such that for any
q, q ′ ∈ Q and f ∈ Γ , if Δ(q, f ) contains q ′ as a positive literal (resp., negative
literal), then ζ(q ′) ≤ ζ(q) (resp., ζ(q ′) < ζ(q)).

We define by induction on 0 ≤ i ≤ m an i-run of A on a Γ -tree 〈T , λ〉 as a finite
tree 〈Tr, λr〉, with labels of the form (q, w) or ¬(q, w) for w ∈ T and q ∈ Q with
ζ(q) ≤ i, by the following (nested) inductive definition on Tr :

1. For q ∈ Q such that ζ(q) < i, the singleton tree 〈Tr, λr〉 with one node labeled
by (q, w) (resp., by ¬(q, w)) is an i-run if there is a ζ(q)-run of A on 〈T , λ〉
whose root is labeled by (q, w) (resp., if there is no such run);

2. For q ∈ Q such that ζ(q) = i, if Δ(q, λ(w)) has a satisfying assignment (P, N),
if we have an i-run Tq− for each q− ∈ N with root labeled by ¬(q−, w), and a
ζ(q+)-run Tq+ for each q+ ∈ P with root labeled by (q+, wq+) for some wq+
in Nbh(w), then the tree 〈Tr, λr〉 whose root is labeled (q, w) and has as children
all the Tq− and Tq+ is an i-run.

A run of A starting in a state q ∈ Q at a node w ∈ T is a m-run whose root is labeled
(q, w). We say that A accepts 〈T , λ〉 (written 〈T , λ〉 |= A) if there exists a run of A

on 〈T , λ〉 starting in the initial state qI at the root of T .

Observe that the internal nodes of a run starting in some state q are labeled by
states q ′ in the same stratum as q. The leaves of the run may be labeled by states of
a strictly lower stratum or negations thereof, or by states of the same stratum whose
transition function is tautological, i.e., by some (q ′, w) such that Δ(q ′, λ(w)) has
∅, ∅ as a satisfying assignment. Intuitively, if we disallow negation in transitions,
our automata amount to the alternating two-way automata used by [22], with the
simplification that they do not need parity acceptance conditions (because we only
work with finite trees), and that they are isotropic: the run for each positive child
state of an internal node may start indifferently on any neighbor of w in the tree (its
parent, a child, or w itself), no matter the direction. (Note, however, that the run for
negated child states must start on w itself.)

We will soon explain how the translation of CFG-Datalog is performed, but we
first note that evaluation of Γ -SATWAs is in linear time. In fact, this result follows
from the definition of provenance cycluits for SATWAs in the next section, and the
claim that these cycluits can be evaluated in linear time.

Proposition 30 For any alphabet Γ , given a Γ -tree 〈T , λ〉 and a Γ -SATWA A, we
can determine whether 〈T , λ〉 |= A in time O(|T | · |A|).
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Proof This proof depends on notions and results that are given in the rest of the paper,
hence can be skipped at first reading of Section 6.

We use Theorem 44 to compute a provenance cycluit C of the SATWA (modified
to be a Γ -SATWA by simply ignoring the second component of the alphabet) in time
O(|T | · |A|). Then we conclude by evaluating the resulting provenance cycluit (for
an arbitrary valuation of that circuit) in time O(|C|) using Proposition 42.

Note that, intuitively, the fixpoint evaluation of the cycluit can be understood as
a least fixpoint computation to determine which pairs of states and tree nodes (of
which there are O(|T | · |A|)) are reachable.

We now give our main translation result: we can efficiently translate any CFG-
Datalog program of bounded body size into a stratified alternating two-way automa-
ton that tests it (in the same sense as for bNTAs). For pedagogical purposes, we
present the translation for a subclass of CFG-Datalog, namely, CFG-Datalog with
guarded negations (CFGGN-Datalog), in which invocations of negative intensional
predicates are guarded in rule bodies:

Definition 31 Let P be a stratified Datalog program. A negative intensional literal
¬A(x) in a rule body ψ of P is clique-guarded if, for any two variables xi �= xj of x,
it is the case that xi and xj co-occur in some positive atom of ψ . A CFGGN-Datalog
program is a CFG-Datalog program such that for any rule R(x) ← ψ(x, y), every
negative intensional literal in ψ is clique-guarded in ψ .

We will then prove in Section 8 the following translation result, and explain at the
end of Section 8 how it can be extended to full CFG-Datalog:

Theorem 32 Given a CFGGN-Datalog program P of body size kP and kI ∈ N, we
can build in FPT-linear time in |P | (parameterized by kP, kI) a SATWA AP testing P

on instances of treewidth ≤ kI.

Proof sketch For every relational symbol R, we introduce states of the form qν
R(x),

where ν is a partial valuation of x. The semantics is that we can start a run at state
qν
R(x) iff we can navigate the tree encoding to build a total valuation ν′ that extends ν

and such that R(ν′(x)) holds. Once we have built ν′, if R is an extensional relation,
we just check that R(ν′(x)) appears in the tree encoding. If R is intensional, we use
the clique-guardedness condition to argue that the elements of ν′(x) can be found
together in a bag. We then choose a rule r with head relation R, instantiate its head
variables according to ν′, and inductively check all literals of the body of r . The fact
that the automaton is isotropic relieves us from the syntactic burden of dealing with
directions in the tree, as one usually has to do with alternating two-way automata.

7 Provenance Cycluits

In the previous section, we have seen how CFG-Datalog programs could be translated
efficiently to tree automata that test them on treelike instances. To show that SATWAs
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can be evaluated in linear time (stated earlier as Proposition 30), we will introduce an
operational semantics for SATWAs based on the notion of cyclic circuits, or cycluits
for short.

We will also use these cycluits as a new powerful tool to compute (Boolean) prove-
nance information, i.e., a representation of how the query result depends on the input
data:

Definition 33 A (Boolean) valuation of a set S is a function ν : S → {0, 1}. A
Boolean function φ on variables S is a mapping that associates to each valuation ν of
S a Boolean value in {0, 1} called the evaluation of φ according to ν; for consistency
with further notation, we write it ν(φ). The provenance of a query Q on an instance
I is the Boolean function φ whose variables are the facts of I , which is defined as
follows: for any valuation ν of the facts of I , we have ν(φ) = 1 iff the subinstance
{F ∈ I | ν(F ) = 1} satisfies Q.

We can represent Boolean provenance as Boolean formulas [40, 42], or (more
recently) as Boolean circuits [6, 28]. In this section, we first introduce monotone
cycluits (monotone Boolean circuits with cycles), for which we define a semantics
(in terms of the Boolean function that they express); we also show that cycluits can
be evaluated in linear time, given a valuation. Second, we extend them to stratified
cycluits, allowing a form of stratified negation. We conclude the section by showing
how to construct the provenance of a SATWA as a cycluit, in FPT-bilinear time.
Together with Theorem 32, this claim implies our main provenance result:

Theorem 34 Given a CFG-Datalog program P of body size kP and a relational
instance I of treewidth kI, we can construct in FPT-bilinear time in |I | · |P | (param-
eterized by kP and kI) a representation of the provenance of P on I as a stratified
cycluit.

Of course, this result implies the analogous claims for query languages that are
captured by CFG-Datalog parameterized by the body size, as we studied in Section 5.
When combined with the fact that cycluits can be tractably evaluated, it yields our
main result, Theorem 15. The rest of this section formally introduces cycluits and
proves Theorem 34.

Cycluits We coin the term cycluits for Boolean circuits without the acyclicity require-
ment. This is the same kind of objects studied in [51]. To avoid the problem of
feedback loops, however, we first study monotone cycluits, and then cycluits with
stratified negation.

Definition 35 A monotone Boolean cycluit is a directed graph C = (G, W, g0, μ)

where G is the set of gates, W ⊆ G2 is the set of directed edges called wires (and
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written g → g′), g0 ∈ G is the output gate, and μ is the type function mapping each
gate g ∈ G to one of inp (input gate, with no incoming wire in W ), ∧ (AND gate) or
∨ (OR gate).

We now define the semantics of monotone cycluits. A (Boolean) valuation of C is
a function ν : Cinp → {0, 1} indicating the value of the input gates. As for standard
monotone circuits, a valuation yields an evaluation ν′ : C → {0, 1}, that we will
define shortly, indicating the value of each gate under the valuation ν: we abuse nota-
tion and write ν(C) ∈ {0, 1} for the evaluation result, i.e., ν′(g0) where g0 is the
output gate of C. The Boolean function captured by a cycluit C is thus the Boolean
function φ on Cinp defined by ν(φ) := ν(C) for each valuation ν of Cinp. We define
the evaluation ν′ from ν by a least fixed-point computation: we set all input gates
to their value by ν, and other gates to 0. We then iterate until the evaluation no
longer changes, by evaluating OR-gates to 1 whenever some input evaluates to 1, and
AND-gates to 1 whenever all their inputs evaluate to 1. Formally, the semantics of
monotone cycluits is defined by Algorithm 1.

The Knaster–Tarski theorem [57] gives an equivalent characterization:

Proposition 36 For any monotone cycluit C and Boolean valuation ν of C, the set
S := {g ∈ C | ν′(g) = 1} is the minimal set of gates (under inclusion) such that:

(i) S contains the true input gates, i.e., it contains {g ∈ Cinp | ν(g) = 1};
(ii) for any g such that μ(g) = ∨, if some input gate of g is in S, then g is in S;

(iii) for any g such that μ(g) = ∧, if all input gates of g are in S, then g is in S.

Proof The operator used in Algorithm 1 is clearly monotone, so by the Knaster–
Tarski theorem, the outcome of the computation is the intersection of all sets of gates
satisfying the conditions in Proposition 36.

Algorithm 1 is a naive fixpoint algorithm running in quadratic time, but we show
that the same output can be computed in linear time with Algorithm 2.
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Proposition 37 Given any monotone cycluit C and Boolean valuation νof C, we can
compute the evaluation ν′of C in linear time.

Proof We use Algorithm 2. We first prove the claim about the running time. The
preprocessing to compute M is in linear-time in C (we enumerate at most once every
wire), and the rest of the algorithm is clearly in linear time as it is a variant of a DFS
traversal of the graph, with the added refinement that we only visit nodes that evaluate
to 1 (i.e., OR-gates with some input that evaluates to 1, and AND-gates where all
inputs evaluate to 1).

We now prove correctness. We use the characterization of Proposition 36. We first
check that S satisfies the properties:

(i) S contains the true input gates by construction.
(ii) Whenever an OR-gate g′ has an input gate g in S, then, when we added g to

S, we have necessarily followed the wire g → g′ and added g′ to Q, and later
added it to S.

(iii) Whenever an AND-gate g′ has all its input gates g in S, there are two cases.
The first case is when g has no input gates at all, in which case S contains it by
construction. The second case is when g′ has input gates: in this case, observe
that M[g′] was initially equal to the fan-in of g′, and that we decrement it for
each input gate g of g′ that we add to S. Hence, considering the last input gate
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g of g′ that we add to S, it must be the case that M[g′] reaches zero when we
decrement it, and then we add g′ to Q, and later to S.

Second, we check that S is minimal. Assume by contradiction that it is not the
case, and consider the first gate g which is added to S while not being in the minimal
Boolean valuation S′. It cannot be the case that g was added when initializing S, as
we initialize S to contain true input gates and AND-gates with no inputs, which must
be true also in S′ by the characterization of Proposition 36. Hence, we added g to S

in a later step of the algorithm. However, we notice that we must have added g to S

because of the value of its input gates. By minimality of g, these input gates have the
same value in S and in S′. This yields a contradiction, because the gates that we add
to S are added following the characterization of Proposition 36. This concludes the
proof.

Stratified Cycluits We now move from monotone cycluits to general cycluits featur-
ing negation. However, allowing arbitrary negation would make it difficult to define
a proper semantics, because of possible cycles of negations. Hence, we focus on
stratified cycluits:

Definition 38 A Boolean cycluit C is defined like a monotone cycluit, but further
allows NOT-gates (μ(g) = ¬), which are required to have a single input. It is strati-
fied if there exists a surjective stratification function ζ mapping its gates {0, . . . , m}
for some m ∈ N such that ζ(g) = 0 iff g ∈ Cinp, and ζ(g) ≤ ζ(g′) for each wire
g → g′, the inequality being strict if μ(g′) = ¬.

Equivalently, we can show that C is stratified if and only if it contains no cycle of
gates involving a ¬-gate. Moreover if C is stratified we can compute a stratification
function in linear time, from a topological sort of its strongly connected components:

Definition 39 A strongly connected component (SCC) of a directed graph G =
(V , E) is a subset S ⊆ V that is maximal by inclusion and which ensures that for
any x, y ∈ S with x �= y, there is a directed path from x to y in G. Observe that the
SCCs of G are disjoint. A topological sort of the SCCs of (G, W) is a linear ordering
(S1, . . . , Sk) of all the SCCs of G such that for any 1 ≤ i < j ≤ k and x ∈ Si and
y ∈ Sj , there is no directed path from y to x in G.

Such a topological sort always exists and can be computed in linear time from G

[54]. We can then show:

Proposition 40 Any Boolean cycluit C is stratified iff it it contains no cycle of gates
involving a¬-gate. Moreover, a stratification function can be computed in linear time
from C.

Proof To see why a stratified Boolean cycluit C cannot contain a cycle of gates
involving a ¬-gate, assume by contradiction that it has such a cycle g1 → g2 →
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· · · → gn → g1. As C is stratified, there exists a stratification function ζ . From the
properties of a stratification function, we know that ζ(g1) ≤ ζ(g2) ≤ · · · ≤ ζ(g1),
so that we must have ζ(g1) = · · · = ζ(gn). However, letting gi be such that μ(gi) =
¬, we know that ζ(gi−1) < ζ(gi) (or, if i = 1, ζ(gn) < ζ(g1)), so we have a
contradiction.

We now prove the converse direction of the claim, i.e., that any Boolean cycluit
which does not contain a cycle of gates involving a ¬-gate must have a stratification
function, and show how to compute such a function in linear time. Compute in linear
time the strongly connected components (SCCs) of C, and a topological sort of the
SCCs. As the input gates of C do not themselves have inputs, each of them must have
their own SCC, and each such SCC must be a leaf, so we can modify the topological
sort by merging these SCCs corresponding to input gates, and putting them first in
the topological sort. We define the function ζ to map each gate of C to the index
number of its SCC in the topological sort, which ensures in particular that the input
gates of C are exactly the gates assigned to 0 by ζ . This can be performed in linear
time. Let us show that the result ζ is a stratification function:

– For any edge g → g′, we have ζ(g) ≤ ζ(g′). Indeed, either g and g′ are in the
same strongly connected component and we have ζ(g) = ζ(g′), or they are not
and in this case the edge g → g′ witnesses that the SCC of g precedes that of g′,
whence, by definition of a topological sort, it follows that ζ(g) < ζ(g′).

– For any edge g → g′ where μ(g′) = ¬, we have ζ(g) < ζ(g′). Indeed, by
adapting the reasoning of the previous bullet point, it suffices to show that g and
g′ cannot be in the same SCC. Indeed, assuming by contradiction that they are,
by definition of a SCC, there must be a path from g′ to g, and combining this with
the edge g → g′ yields a cycle involving a ¬-gate, contradicting our assumption
on C.

We can then use any stratification function to define the evaluation of C (which
will clearly be independent of the choice of stratification function):

Definition 41 Let C be a stratified cycluit with stratification function ζ : C →
{0, . . . , m}, and let ν be a Boolean valuation of C. We inductively define the i-th
stratum evaluation νi , for i in the range of ζ , by setting ν0 := ν, and letting νi extend
the νj (j < i) as follows:

1. For g such that ζ(g) = i with μ(g) = ¬, set νi(g) := ¬νζ(g′)(g′) for its one
input g′.

2. Evaluate all other g with ζ(g) = i as for monotone cycluits, considering the ¬-
gates of point 1. and all gates of stratum < i as input gates fixed to their value in
νi−1.

Letting g0 be the output gate of C, the Boolean function φ captured by C is then
defined as ν(φ) := νm(g0) for each valuation ν of Cinp.

Proposition 42 We can compute ν(C) in linear time in the stratified cycluit C and
in ν.



Theory of Computing Systems

Proof Compute in linear time a stratification function ζ of C using Proposition 40,
and compute the evaluation following Definition 41. This can be performed in linear
time. To see why this evaluation is independent from the choice of stratification,
observe that any stratification function must clearly assign the same value to all gates
in an SCC. Hence, choosing a stratification function amounts to choosing the stratum
that we assign to each SCC. Further, when an SCC S precedes another SCC S ′, the
stratum of S must be no higher than the stratum of S′. So in fact the only freedom
that we have is to choose a topological sort of the SCCs, and optionally to assign the
same stratum to consecutive SCCs in the topological sort: this amounts to “merging”
some SCCs, and is only possible when there are no ¬-gates between them. Now, in
the evaluation, it is clear that the order in which we evaluate the SCCs makes no
difference, nor does it matter if some SCCs are evaluated simultaneously. Hence, the
evaluation of a stratified cycluit is well-defined.

Building Provenance Cycluits Having defined cycluits as our provenance represen-
tation, we compute the provenance of a query on an instance as the provenance of
its SATWA on a tree encoding. To do so, we must give a general definition of the
provenance of SATWAs. Consider a Γ -tree T := 〈T , λ〉 for some alphabet Γ , as
in Section 6. We define a (Boolean) valuation ν of T as a mapping from the nodes
of T to {0, 1}. Writing Γ := Γ × {0, 1}, each valuation ν then defines a Γ -tree
ν(T ) := 〈T , (λ × ν)〉, obtained by annotating each node of T by its ν-image. As in
[6], we define the provenance of a Γ -SATWA A on T , which intuitively captures all
possible results of evaluating A on possible valuations of T :

Definition 43 The provenance of a Γ -SATWA A on a Γ -tree T is the Boolean
function φ defined on the nodes of T such that, for any valuation ν of T , ν(φ) = 1
iff A accepts ν(T ).

We then show that we can efficiently build provenance representations of SATWAs
on trees as stratified cycluits:

Theorem 44 For any fixed alphabet Γ , given a Γ -SATWA A and a Γ -tree T =
〈T , λ〉, we can build a stratified cycluit capturing the provenance of A on T in time
O(|A| · |T |).

The construction generalizes Proposition 3.1 of [6] from bNTAs and circuits
to SATWAs and cycluits. The reason why we need cycluits rather than circuits is
because two-way automata may loop back on previously visited nodes. To prove The-
orem 44, we construct a cycluit CA

T as follows. For each node w of T , we create
an input node gin

w , a ¬-gate g¬in
w defined as NOT(gin

w), and an OR-gate g
q
w for each

state q ∈ Q. Now for each g
q
w, for b ∈ {0, 1}, we consider the propositional formula

Δ(q, (λ(w), b)), and we express it as a circuit that captures this formula: we let g
q,b
w

be the output gate of that circuit, we replace each variable q ′ occurring positively by

an OR-gate
∨

w′∈Nbh(w) g
q ′
w′ , and we replace each variable q ′ occurring negatively by
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the gate g
q ′
w . We then define g

q
w as OR(AND(gin

w, g
q,1
w ), AND(g¬in

w , g
q,0
w )). Finally,

we let the output gate of C be g
qI
r , where r is the root of T , and qI is the initial state

of A.
It is clear that this process runs in linear time in |A| · |T |. The proof of Theorem

44 then results from the following claim:

Lemma 45 The cycluit CA
T is a stratified cycluit capturing the provenance of A

on T .

Proof We first show that C := CA
T is a stratified cycluit. Let ζ be the stratification

function of the Γ -SATWA A and let {0, . . . , m} be its range. We use ζ to define ζ ′
as the following function from the gates of C to {0, . . . , m + 1}:
– For any input gate gin

w, we set ζ ′(gin
w) := 0 and ζ ′(g¬in

w ) := 1.

– For an OR gate g := ∨
w′∈Nbh(w) g

q ′
w′ , we set ζ ′(g) := ζ(q ′) + 1.

– For any gate g
q
w, we set ζ ′(gq

w) := ζ(q) + 1, and we set ζ ′ to the same value for
the intermediate AND-gates used in the definition of g

q
w, as well as for the gates

in the two circuits that capture the transitions Δ(q, (λ(w), b)) for b ∈ {0, 1},
except for the input gates of that circuit (i.e., gates of the form

∨
w′∈Neigh(w) g

q ′
w′ ,

which are covered by the previous point, or the gates of the form g
q ′
w , which are

covered by another application of that point).

Let us show that ζ ′ is indeed a stratification function for C. We first observe that it
is the case that the gates in stratum zero are precisely the input gates. We then check
the condition for the various possible wires:

– gin
w → g¬in

w : by construction, we have ζ(gin
w) < ζ ′(g¬in

w ).
– g → g′ where g′ is a gate of the form g

q
w and g is an intermediate AND-gate in

the definition of a gate of the form g
q
w: by construction we have ζ ′(g) = ζ ′(g′),

so in particular ζ ′(g) ≤ ζ ′(g′).
– g → g′ where g′ is an intermediate AND-gate in the definition of a gate of

the form g
q
w, and g is gin

w or g¬in
w : by construction we have ζ ′(g) ∈ {0, 1} and

ζ ′(g′) ≥ 1, so ζ ′(g) ≤ ζ ′(g′).
– g → g′ where g is a gate in a circuit capturing the propositional formula of some

transition of Δ(q, ·) without being an input gate or a NOT-gate of this circuit,
and g′ is also such a gate, or is an intermediate AND-gate in the definition of g

q
w:

then g′ cannot be a NOT-gate (remembering that the propositional formulas of
transitions only have negations on literals), and by construction we have ζ ′(g) =
ζ ′(g′).

– g → g′ where g is of the form
∨

w′∈Nbh(w) g
q

w′ , and g′ is a gate in a circuit

describing Δ(q ′, ·) or an intermediate gate in the definition of g
q ′
w . Then we have

ζ ′(g) = ζ(q) and ζ ′(g′) = ζ(q ′), and as q occurs as a positive literal in a
transition of q ′, by definition of ζ being a transition function, we have ζ(q) ≤
ζ(q ′). Now we have ζ ′(g) = ζ(q) and ζ ′(g′) = ζ ′(q ′) by definition of ζ ′, so we
deduce that ζ ′(g) ≤ ζ ′(g′).
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– g → g′ where g′ is of the form
∨

w′∈Nbh(w) g
q ′
w′ , and g is one of the g

q ′
w′ . Then

by definition of ζ ′ we have ζ ′(g) = ζ(q ′) and ζ ′(g′) = ζ(q ′), so in particular
ζ ′(g) ≤ ζ ′(g′).

– g → g′ where g is a NOT-gate in a circuit capturing a propositional formula
Δ(q ′, (λ(w), b)), and g is then necessarily a gate of the form g

q
w: then clearly

q ′ was negated in φ so we had ζ(q) < ζ(q ′), and as by construction we have
ζ ′(g) = ζ(q) and ζ ′(g′) = ζ(q ′), we deduce that ζ ′(g) < ζ ′(g′).

We now show that C indeed captures the provenance of A on 〈T , λ〉. Let ν : T →
{0, 1} be a Boolean valuation of the inputs of C, that we extend to an evaluation
ν′ : C → {0, 1} of C. We claim the following equivalence: for all q and w, there
exists a run ρ of A on ν(T ) starting at w in state q if and only if ν′(gq

w) = 1.
We prove this claim by induction on the stratum ζ(q) of q. Up to adding an empty

first stratum, we can make sure that the base case is vacuous. For the induction step,
we prove each implication separately.

Forward Direction First, suppose that there exists a run ρ = 〈Tr, λr 〉 starting at w

in state q, and let us show that ν′(gq
w) = 1. We show by induction on the run (from

bottom to top) that for each node y of the run labeled by a positive state (q ′, w′)
we have ν′(gq ′

w′) = 1, and for every node y of the run labeled by a negative state

¬(q ′, w′) we have ν′(gq ′
w′) = 0. The base case concerns the leaves, where there are

three possible subcases:

– We may have λr(y)=(q ′, w′) with ζ(q ′)= i, so that Δ(q ′, (λ(w′), ν(w′))) is tau-

tological. In this case, gq ′
w′ is defined as OR(AND(gin

w′ , g
q ′,1
w′ ), AND(g¬in

w′ , g
q ′,0
w′ )).

Hence, we know that ν(g
q ′,ν(w)

w′ ) = 1 because the circuit is also tautological, and
depending on whether ν(w) is 0 or 1 we know that ν(g¬in

w′ ) = 1 or ν(gin
w′) = 1,

so this proves the claim.
– We may have λr(y) = (q ′, w′) with ζ(q ′) = j for j < i. By definition of the

run ρ, this implies that there exists a run starting at w′ in state q ′. But then, by
the induction on the strata (using the forward direction of the equivalence), we

must have ν(g
q ′
w′) = 1.

– We may have λr(y) = ¬(q ′, w′) with ζ(q ′) = j for j < i. Then by definition
there exists no run starting at w′ in state q ′. Hence again by induction on the strata

(using the backward direction of the equivalence), we have that ν(g
q ′
w′) = 0.

For the induction case on the run, where y is an internal node, by definition of
a run there is a subset S = {qP1 , · · · , qPn} of positive literals and a subset N =
{¬qN1 , · · · , ¬qNm} of negative literals that satisfy φν(w′) := Δ(q ′, (λ(w′), ν(w′)))
such that:

– For all qPk
∈ P , there exists a child yk of y with λr(yk) = (qPk

, w′
k) where

w′
k ∈ Nbh(w′);

– For all ¬qNk
∈ N there is a child y′

k of y with λr(y
′
k) = ¬(qNk

, w′).
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Then, by induction on the run, we know that for all qPk
we have ν(g

qPk

w′
k
) = 1 and

for all ¬qNk
we have ν(g

qNk

w′ ) = 0. Let us show that we have ν(g
q ′
w′) = 1, which

would finish the induction case on the run. There are two cases: either ν(w′) = 1
or ν(w′) = 0. In the first case, remember that the first input of the OR-gate g

q ′
w′

is an AND-gate of gin
w′ and the output gate g

q ′,1
w′ of a circuit coding φ1 on inputs

including the g
qPk

w′
k

and g
qNk

w′ . We have ν(gin
w′) = 1 because ν(w′) = 1, and the second

gate (gq ′,1
w′ ) evaluates to 1 by construction of the circuit, as witnessed by the Boolean

valuation of the g
qPk

w′
k

and g
qNk

w′ . In the second case we follow the same reasoning but

with the second input of g
q ′
w′ instead, which is an AND-gate on g¬in

w′ and a circuit
coding φ0.

By induction on the run, the claim is proven, and applying it to the root of the run
concludes the proof of the first direction of the equivalence (for the induction step
of the induction on strata).

Backward Direction We now prove the converse implication for the induction step
of the induction on strata, i.e., letting i be the current stratum, for every node w and
state q with ζ(q) = i, if ν(g

q
w) = 1 then there exists a run ρ of A starting at w.

From the definition of the stratification function ζ ′ of the cycluit from ζ , we have
ζ ′(gq

w) = ζ(q) + 1, so as ν(g
q
w) = 1 we know that νi+1(g

q
w) = 1, where νi+1 is the

i + 1-th stratum evaluation of C (remember Definition 41). By induction hypothesis

on the strata, we know from the equivalence that, for any j ≤ i, for any gate g
q ′′
w′′

of C with ζ(g
q ′′
w′′) = j , we have νj (g

q ′′
w′′) = 1 iff there exists a run ρ of A on ν(T )

starting at w′′ in state q ′′.
Recall that the definition of νi+1 according to Definition 41 proceeds in three steps. Ini-

tially, we fix the value in νi+1 of gates of lower strata, so we can then conclude by
induction hypothesis on the strata. We then set the value of all NOT-gates in νi+1, but

these cannot be of the form g
q ′
w′ so there is nothing to show. Last, we evaluate all other

gates with Algorithm 1. We then show our claim by an induction on the iteration in
the application of Algorithm 1 for νi+1 where the gate g

q
w was set to 1. The base case,

where g
q
w was initially true, was covered in the beginning of this paragraph.

For the induction step on the application of Algorithm 1, when a gate g
q ′
w′ is set to

true by νi+1, as g
q ′
w′ is an OR-gate by construction, from the workings of Algorithm

1, there are two possibilities: either its input AND-gate that includes gin
w′ was true, or

its input AND-gate that includes g¬in
w′ was true. We prove the first case, the second

being analogous. From the fact that gin
w′ is true, we know that ν(w′) = 1. Consider the

other input gate to that AND gate, which is the output gate of a circuit C′ reflecting
φ := Δ(q ′, (λ(w′), ν(w′))), with the input gates adequately substituted. We consider
the value by νi+1 of the gates that are used as input gates of C′ in the construction of C

(i.e., OR-gates, in the case of variables that occur positively, or directly g
q ′′
w′ -gates, in

the case of variables that occur negatively). By construction of C′, the corresponding
Boolean valuation ν′ is a witness to the satisfaction of φ. By induction hypothesis on
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the strata (for the negated inputs to C′; and for the non-negated inputs to C′ which
are in a lower stratum) and on the step at which the gate was set to true by Algorithm
1 (for the inputs in the same stratum, which must be positive), the valuation of these
inputs reflects the existence of the corresponding runs. Hence, we can assemble these
(i.e., a leaf node in the first two cases, a run in the third case) to obtain a run starting
at w′ for state q ′ using the Boolean valuation ν′ of the variables of φ; this valuation
satisfies φ as we have argued.

This concludes the two inductions of the proof of the equivalence for the induction
step of the induction on strata, which concludes the proof of Theorem 44.

Note that the proof can be easily modified to make it work for standard alternating
two-way automata rather than our isotropic automata.

Proving Theorem34 We are now ready to conclude the proof of our main provenance
construction result, i.e., Theorem 34. We do so by explaining how our prove-
nance construction for Γ -SATWAs can be used to compute the provenance of a
CFG-Datalog query on a treelike instance. This is again similar to [6].

Recall the definition of tree encodings from Section 3, and the definition of the
alphabet Γ k

σ . To represent the dependency of automaton runs on the presence of indi-

vidual facts, we will be working with Γ k
σ -trees, where the Boolean annotation on

a node n indicates whether the fact coded by n (if any) is present or absent. The
semantics is that we map back the result to Γ k

σ as follows:

Definition 46 We define the mapping ε from Γ k
σ to Γ k

σ by:

– ε((d, s), 1) is just (d, s), indicating that the fact of s (if any) is kept;
– ε((d, s), 0) is (d, ∅), indicating that the fact of s (if any) is removed.

We abuse notation and also see ε as a mapping from Γ k
σ -trees to Γ k

σ -trees by
applying it to each node of the tree.

As our construction of provenance applies to automata on Γ k
σ , we show the

following easy lifting lemma (generalizing Lemma 3.3.4 of [3]):

Lemma 47 For any Γ k
σ -SATWA A, we can compute in linear time a Γ k

σ -SATWA A′
such that, for any Γ k

σ -tree E, we have that A′ accepts E iff A accepts ε(E).

Proof The proof is exactly analogous to that of Lemma 3.3.4 of [3].

We are now ready to conclude the proof of our main provenance result
(Theorem 34):

Proof of Theorem 34 Given the program P and instance I , use Theorem 32 to com-
pute in FPT-linear time in |P | a Γ k

σ -SATWA A that tests P on instances of treewidth
≤ kI, for kI the treewidth bound. Compute also in FPT-linear time a tree encod-
ing 〈E, λ〉 of the instance I (i.e., a Γ k

σ -tree), using Theorem 4. Lift the Γ k
σ -SATWA
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A in linear time using Lemma 47 to a Γ k
σ -SATWA A′, and use Theorem 44 on A′

and 〈E, λ〉 to compute in FPT-bilinear time a stratified cycluit C′ that captures the
provenance of A′ on 〈E, λ〉: the inputs of C′ correspond to the nodes of E. Let C be
obtained from C ′ in linear time by changing the inputs of C′ as follows: those which
correspond to nodes n of 〈E, λ〉 containing a fact (i.e., with label (d, s) for |s| = 1)
are renamed to be an input gate that stands for the fact of I coded in this node; the
nodes n of 〈E, λ〉 containing no fact are replaced by a 0-gate, i.e., an OR-gate with
no inputs. Clearly, C is still a stratified Boolean cycluit, and Cinp is exactly the set of
facts of I .

All that remains to show is that C captures the provenance of P on I in the sense
of Definition 33. To see why this is the case, consider an arbitrary Boolean valuation
ν mapping the facts of I to {0, 1}, and call ν(I ) := {F ∈ I | ν(F ) = 1}. We must
show that ν(I ) satisfies P iff ν(C) = 1. By construction of C, it is obvious that
ν(C) = 1 iff ν′(C′) = 1, where ν′ is the Boolean valuation of Cinp defined by ν′(n) =
ν(F ) when n codes some fact F in 〈E, λ〉, and ν′(n) = 0 otherwise. By definition
of the provenance of A′ on 〈E, λ〉, we have ν′(C′) = 1 iff A′ accepts ν′(〈E, λ〉),
that is, by definition of lifting, iff A accepts ε(ν′(〈E, λ〉)). Now all that remains to
observe is that ε(ν′(〈E, λ〉)) is precisely a tree encoding of the instance ν(I ): this is
by definition of ν′ from ν, and by definition of our tree encoding scheme. Hence, by
definition of A testing P , the tree ε(ν′(〈E, λ〉)) is accepted by A iff ν(I ) satisfies P .
This finishes the chain of equivalences, and concludes the proof of Theorem 34.

This concludes the presentation of our provenance results.

8 Proof of Translation

In this section, we prove our main technical theorem, Theorem 32, which we recall
here:

Theorem 32 Given a CFGGN-Datalog program P of body size kP and kI ∈ N, we
can build in FPT-linear time in |P | (parameterized by kP, kI) a SATWA AP testing P

on instances of treewidth ≤ kI.

We then explain at the end of the section how this can be extended to full CFG-
Datalog (i.e., with negative intensional predicates not being necessarily guarded in
rule bodies).

8.1 Guarded-Negation Case

First, we introduce some useful notations to deal with valuations of variables as
constants of the encoding alphabet. Recall that DkI is the domain of elements for
treewidth kI, used to define the alphabet Γ

kI
σ of tree encodings of width kI.

Definition 48 Given a tuple x of variables, a partial valuation of x is a function ν

from x to DkI � {?}. The set of undefined variables of ν is U(ν) = {xj | ν(xj ) = ?}:



Theory of Computing Systems

we say that the variables of U(ν) are not defined by ν, and the other variables are
defined by ν.

A total valuation of x is a partial valuation ν of x such that U(ν) = ∅. We say
that a valuation ν′ extends another valuation ν if the domain of ν′ is a superset of that
of ν, and if all variables defined by ν are defined by ν′ and are mapped to the same
value. For y ⊆ x, we say that ν is total on y if its restriction to y is a total valuation.

For any two partial valuations ν of x and ν′ of y, if we have ν(z) = ν′(z) for all z

in (x∩ y) \ (U(ν) ∪ U(ν′)), then we write ν ∪ ν′ for the valuation on x∪ y that maps
every z to ν(z) or ν′(z) if one is defined, and to “?” otherwise.

When ν is a partial valuation of x with x ⊆ x′ and we define a partial valuation ν′
of x′ with ν′ := ν, we mean that ν′ is defined like ν on x and is undefined on x′ \ x.

Definition 49 Let x and y be two tuples of variables of same arity (note that some
variables of x may be repeated, and likewise for y). Let ν : x → DkI be a total
valuation of x. We define Homy,x(ν) to be the (unique) homomorphism from the tuple y
to the tuple ν(x), if such a homomorphism exists; otherwise, Homy,x(ν) is null.

The rest of this section proves Theorem 32 in two steps. First, we build a SATWA
A′

P and we prove that A′
P tests P on instances of treewidth ≤ kI; however, the

construction of A′
P that we present is not FPT-linear. Second, we explain how to

modify the construction to construct an equivalent SATWA AP while respecting the
FPT-linear time bound.

Construction of A ′
P We formally construct the SATWA A′

P by describing its states
and transitions. First, for every extensional atom S(x) appearing in the body of a rule
of P and for every partial valuation ν of x, we introduce a state qν

S(x). For every node
n, we want A′

P to have a run starting at node n in state qν
S(x) iff we can start at node

n, navigate the tree encoding while building a total valuation ν′ that extends ν, and
reach a node n′ where S(ν′(x)) holds. However, remember that the same element
name in the tree encoding may refer to different elements in the instance. Hence, we
must ensure that the elements in the image of ν still decode to the same element in n′
as they did in n. To ensure this, we forbid A′

P from leaving the occurrence subtree of
the values in the image of ν, which we call the allowed subtree. We now define the
transitions needed to implement this.

Let (d, s) ∈ Γ
kI
σ be a symbol; we have the following transitions:

– If there is an xj ∈ x such that ν(xj ) �= ? (i.e., xj is defined by ν) and ν(xj ) /∈ d,
then Δ(qν

S(x), (d, s)) := ⊥. This is to prevent the automaton from leaving the
allowed subtree.

– Else if ν is not total, then Δ(qν
S(x), (d, s)) := qν

S(x) ∨ ∨

a∈d,xj ∈U(ν)

q
ν∪{xj �→a}
S(x) . That

is, either we continue navigating in the same state (but remember that the automa-
ton may move to any neighbor node), or we guess a value for some undefined
variable.

– Else if ν is total but s �= S(ν(x)), then Δ(qν
S(x), (d, s)) := qν

S(x): if the fact s of
the node is not a match, then we continue searching.
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– Else, the only remaining possibility is that ν is total and that s = S(ν(x)), in
which case we set Δ(qν

S(x), (d, s)) := �, i.e., we have found a node containing
the desired fact.

Let r be a rule of P and A be a subset of the literals in the body of r . We write
vars(A ) the set of variables that appear in some atom of A . For every rule r of P ,
for every subset A of the literals in the body of r , and for every partial valuation ν

of vars(A ) that defines all the variables that are also in the head of r , we introduce a
state q

ν,A
r . This state is intended to verify that the literals in A hold with the partial

valuation ν. We will describe the transitions for those states later.
For every intensional predicate R(x) appearing in a rule of P and partial valua-

tion ν of x, we have a state qν
R(x). This state is intended to verify R(x) with a total

extension of ν. Let (d, s) ∈ Γ
kI
σ be a symbol; we have the following transitions:

– If there is a j such that xj is defined by ν and ν(xj ) /∈ d, then Δ(qν
R(x), (d, s)) :=

⊥. This is again in order to prevent the automaton from leaving the allowed
subtree.

– Else if ν is not total, then Δ(qν
R(x), (d, s)) := qν

R(x) ∨ ∨

a∈d,xj ∈U(ν)

q
ν∪{xj �→a}
R(x) .

Again, either we continue navigating in the same state, or we guess a value for
some undefined variable.

– Else (in this case ν is total), Δ(qν
R(x), (d, s)) is defined as the disjunction of all

the q
ν′,A
r for each rule r such that the head of r is R(y), ν ′ := Homy,x(ν) is not

null and A is the set of all literals in the body of r . Notice that because ν is total
on x, ν′ is also total on y. This transition simply means that we need to chose an
appropriate rule to derive R(x). We point out here that these transitions are the
ones that make the construction quadratic instead of linear in |P |, but this will be
handled later.

It is now time to describe transitions for the states q
ν,A
r . Let (d, s) ∈ Γ

kI
σ , then:

– If there is a variable z in A such that z is defined by ν and ν(z) /∈ d, then
Δ(q

ν,A
r , (d, s)) := ⊥. Again, this is to prevent the automaton from leaving the

allowed subtree.
– Else, if A contains at least two literals, then Δ(q

ν,A
r , (d, s)) is defined as a

disjunction of q
ν,A
r and of [ a disjunction over all the non-empty sets A1, A2 that

partition A of [ a disjunction over all the total valuations ν′ of U(ν)∩vars(A1)∩
vars(A2) with values in d of

[
q

ν∪ν′,A1
r ∧ q

ν∪ν′,A2
r ]]

]
. This transition means that

we allow to partition in two the literals that need to be verified, and for each
class of the partition we launch one run that will have to verify the literals of that
class. In doing so, we have to take care that the two runs will build valuations
that are consistent. This is why we fix the value of the variables that they have in
common with a total valuation ν′.

– Else, if A = {T (y)} where T is an extensional or an intensional relation, then
Δ(q

ν,A
r , (d, s)) := qν

T (y).
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– Else, if A = {¬R′(y)} where R′ is an intensional relation, and if |y| =
1, and if ν(y) is undefined (where we write y the one element of y), then
Δ(q

ν,A
r , (d, s)) := q

ν,A
r ∨ ∨

a∈d q
ν∪{y �→a},A
r .

– Else, if A = {¬R′(y)} where R′ is an intensional relation, then we will only
define the transitions in the case where ν is total on y, in which case we set
Δ(q

ν,A
r , (d, s)) := ¬qν

R′(y). It is sufficient to define the transitions in this case,

because q
ν,{¬R′(y)}
r can only be reached if ν is total on y. Indeed, if |y| = 1, then

ν must be total on y because we would have applied the previous bullet point

otherwise. If |y| > 1, the only way we could have reached the state q
ν,{¬R′(y)}
r

is by a sequence of transitions involving q
ν0,A0
r , . . . , q

νm,Am
r , where A0 are all

the literals in the body of r , Am is A and νm is ν. We can then see that, during
the partitioning process, ¬R′(y) must have been separated from all the (positive)
atoms that formed its guard (recall the definition of CFGGN-Datalog), hence all
its variables have been assigned a valuation.

Finally, the initial state of A′
P is q∅

Goal.
We describe the stratification function ζ ′ of A′

P . Let ζ be that of P . Observe that
we can assume without loss of generality that the first stratum of ζ (i.e., relations
R with ζ(R) = 1) contains exactly all the extensional relations. For any state q of
the form qν

T (x) or q
ν,A
r with r having as head relation T (T begin extensional or

intensional), then ζ ′(q) is defined to be ζ(T ) − 1. Notice that this definition ensures
that only the states corresponding to extensional relations are in the first stratum of
ζ ′. It is then clear from the transitions that ζ ′ is a valid stratification function for A′

P .
As previously mentioned, the construction of A′

P is not FPT-linear, but we will
explain at the end of the proof how to construct in FPT-linear time a SATWA AP

equivalent to A′
P .

A ′
P Tests P on Instances of Treewidth ≤ kI To show this claim, let 〈T , λE〉 be a

(σ, kI)-tree encoding. Let I be the instance obtained by decoding 〈T , λE〉; we know
that I has treewidth ≤ kI and that we can define from 〈T , λE〉 a tree decompo-
sition 〈T , dom〉 of I whose underlying tree is also T . For each node n ∈ T , let
decn : DkI → dom(n) be the function that decodes the elements in node n of the
encoding to the elements of I that are in the corresponding bag of the tree decompo-
sition, and let encn : dom(n) → DkI be the inverse function that encodes back the
elements, so that we have decn ◦ encn = encn ◦ decn = Id. We will denote elements
of DkI by a and elements in the domain of I by c.

We recall some properties of tree decompositions and tree encodings:

Property 50 Let n1, n2 be nodes of T and a ∈ DkI be an (encoded) element that
appears in the λE-image of n1 and n2. Then the element a appears in the λE-image
of every node in the path from n1 to n2 if and only if decn1(a) = decn2(a).

Property 51 Let n1, n2 be nodes of T and c be an element of I that appears in
dom(n1) ∩ dom(n2). Then for every node n′ on the path from n1 to n2, c is also in
dom(n′), and moreover encn′(c) = encn1(c).
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We start with the following lemma about extensional facts:

Lemma 52 For every extensional relation S, node n ∈ T , variables y, and partial
valuation ν of y, there exists a run ρ of A′

P starting at node n in state qν
S(y) if and

only if there exists a fact S(c) in I such that we have decn(ν(yj )) = cj for every yj

defined by ν. We call this a match c of S(y) in I that is compatible with ν at node n.

Proof We prove each direction in turn.

ForwardDirection Suppose there exists a run ρ of A′
P starting at node n in state qν

S(y).
First, notice that by design of the transitions starting in a state of that form, states
appearing in the labeling of the run can only be of the form qν′

S(y) for an extension ν′
of ν. We will show by induction on the run that for every node π of the run labeled
by (qν′

S(y), m), there exists c′ such that S(c′) ∈ I and c′ is compatible with ν′ at node
m. This will conclude the proof of the forward part of the lemma, by taking m = n.

The base case is when π is a leaf of ρ. The node π is then labeled by (qν′
S(y), m)

such that Δ(qν′
S(y), λE(m)) = �. Let (d, s) = λE(m). By construction of the

automaton we have that ν′ is total and s = S(ν′(y)). We take c′ to be decm(ν′(y)),
which satisfies the compatibility condition by definition and is such that S(c′) =
S(decm(ν′(y))) = decm(s) ∈ I .

When π is an internal node of ρ, we write again (qν′
S(y), m) its label. By definition

of the transitions of the automaton, we have

Δ(qν′
S(y), (d, s)) = qν′

S(y) ∨
∨

a∈d,yj ∈U(ν′)
q

ν′∪{yj �→a}
S(y)

Hence, the node π has at least one child π ′, the second component of the label of π ′
is some m′ ∈ Neigh(m), and we have two cases depending on the first component of
its label (i.e., the state):

– π ′ may be labeled by (qν′
S(y), m

′). Then by induction on the run there exists c′′
such that S(c′′) ∈ I and c′′ is compatible with ν′ at node m′. We take c′ to be
c′′, so that we only need to check the compatibility condition, i.e., that for every
yj defined by ν′, we have decm(ν′(yj )) = cj = decm′(ν′(yj )). This is true
by Property 50. Indeed, for every yj defined by ν′, we must have ν′(yj ) ∈ m′,
otherwise π ′ would have a label that cannot occur in a run (because this would
mean that we have escaped the allowed subtree).

– π ′ is labeled by (q
ν′∪{yj �→a}
S(y) , m′) for some a ∈ d and for some yj ∈ U(ν′). Then

by induction on the run there exists c′′ such that S(c′′) ∈ I and c′′ is compatible
with ν′ ∪ {yj �→ a} at node m′. We take c′ to be c′′, which again satisfies the
compatibility condition thanks to Property 50.

Backward Direction Now, suppose that there exists c such that S(c) ∈ I and c is
compatible with ν at node n. The fact S(c) is encoded somewhere in 〈T , λE〉, so there
exists a node m such that, letting (d, s) be λE(m), we have decm(s) = S(c). Let n =
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m1, m2, . . . , mp = m be the nodes on the path from n to m, and (di, si) be λE(mi) for
1 ≤ i ≤ p. By compatibility, for every yj defined by ν we have decn(ν(yj )) = cj .
But decn(ν(yj )) ∈ dom(n) and cj ∈ dom(m) so by Property 51, for every 1 ≤ i ≤ p

we have cj ∈ dom(mi) and encmi
(cj ) = encn(cj ) = encn(decn(ν(yj ))) = ν(yj ),

so that ν(yj ) ∈ di . We can then construct a run ρ starting at node n in state qν
S(y) as

follows. The root π1 is labeled by (qν
S(y), n), and for every 2 ≤ i ≤ p, πi is the unique

child of πi−1 and is labeled by (qν
S(y), mi). This part is valid because we just proved

that for every i, there is no j such that yj is defined by ν and ν(yj ) /∈ dj . Now from
πm, we continue the run by staying at node m and building up the valuation, until we
reach a total valuation νf such that νf(y) = encm(c). Then we have s = S(νf(y)) and
the transition is �, which completes the definition of the run.

The preceding lemma concerns the base case of extensional relations. We now
prove a similar equivalence lemma for all relations (extensional or intensional). This
lemma allows us to conclude the correctness proof, by applying it to the Goal()
predicate and to the root of the tree-encoding.

Lemma 53 For every relation R, node n ∈ T and partial valuation ν of x, there
exists a run ρ of A′

P starting at node n in state qν
R(x) if and only if there exists c such

that R(c) ∈ P(I) and c is compatible with ν at node n (i.e., we have decn(ν(xj )) =
cj for every xj defined by ν).

Proof We will prove this equivalence by induction on the stratum ζ(R) of the relation
R. The base case (ζ(R) = 0, so R is an extensional relation) was shown in Lemma 52.
For the inductive case, where R is an intensional relation, we prove each direction
separately.

Forward Direction First, suppose that there exists a run ρ of A′
P starting at node n

in state qν
R(x). We show by induction on the run (from bottom to top) that for every

node π of the run the following implications hold:

(i) If π is labeled with (qν′
R′(y), m), then there exists c such that R′(c) ∈ P(I) and

c is compatible with ν′ at node m.
(ii) If π is labeled with ¬(qν′

R′(y), m), then R′(decm(ν′(y))) /∈ P(I) (remembering
that in this case ν′ must be total, thanks to the fact that negations are guarded
in rule bodies).

(iii) If π is labeled with (q
ν′,A
r , m), then there exists a mapping μ : vars(A ) →

Dom(I ) that is compatible with ν′
|vars(A )

at node m and such that:

– For every positive literal S(z) in A , then S(μ(z)) ∈ P(I).
– For every negative literal ¬S(z) in A , then S(μ(z)) /∈ P(I).

The base case is when π is a leaf. Notice that in this case, and by construction of
A′

P , the node π cannot be labeled by states corresponding to rules of P : indeed, there
are no transitions for these states leading to a tautology, and all transitions to such a
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state are from a state in the same stratum, so π could not be a leaf. Thus, we have
three subcases:

– π may be labeled by (qν′
R′(y), m), where R′ is extensional. We must show (i), but

this follows from Lemma 52.
– π may be labeled by (qν′

R′(y), m), where R′ is intensional and verifies ζ(R′) < i.
Again we need to show (i). By definition of the run ρ, this implies that there exists a
run of A′

P starting at m in state qν′
R′(y). But then (i) follows from the induction

hypothesis on the strata (using the forward direction of the equivalence lemma).
– π may be labeled by ¬(qν′

R′(y), m), where R′ is intensional and verifies ζ(R′) < i.
Observe that by construction of the automaton, ν′ is total (because negations
are guarded in rule bodies). We need to show (ii). By definition of the run ρ

there exists no run of A′
P starting at m in state qν′

R′(y). Hence by induction on
the strata we have (using the backward direction of the equivalence lemma) that
R′(decm(ν′(y))) /∈ P(I), which is what we needed to show.

For the induction case, where π is an internal node, we let (d, s) be λE(m) in what
follows, and we distinguish five subcases:

• π may be labeled by (qν′
R′(y), m) with R′ intensional. We need to prove (i). We

distinguish two subsubcases:

– ν′ is not total. In that case, given the definition of Δ(qν′
R′(y), (d, s)) and

of the run, there exists a child π ′ of π labeled by (qν′′
R′(y), m

′), where
m′ ∈ Nbh(m) and ν′′ is either ν′ or is ν′ ∪ {xj �→ a} for some xj

undefined by ν′ and a ∈ d. Hence by induction on the run there exists
c′ such that R′(c′) ∈ P(I) and c′ is compatible with ν′′ at node m′. We
then take c to be c′, and one can check that the compatibility condition
holds.

– ν′ is total. In that case, given the definition of Δ(qν′
R′(y), (d, s)) and of

the run, there exists a child π ′ of π labeled by (q
ν′′,A
r , m′), where m′ ∈

Nbh(m), where r is a rule with head R′(z), where ν′′ = Homz,y(ν
′)

is a partial valuation which is not null, and where A is the set of
literals of r . Then, by induction on the run, there exists a mapping
μ : vars(A ) → Dom(I ) that verifies (iii). Thus by definition of the
semantics of P we have that R′(μ(z)) ∈ P(I), and we take c to be
μ(z). What is left to check is that the compatibility condition holds. We
need to prove that decm(ν′(y)) = c, i.e., that decm(ν′(y)) = μ(z). We
know, by definition of μ, that decm′(ν′′(z)) = μ(z). So our goal is to
prove decm(ν′(y)) = decm′(ν′′(z)), i.e., by definition of ν′′ we want
decm(ν′(y)) = decm′(Homz,y(ν

′)(z)). By definition of Homz,y(ν
′), we

know that ν′(y) = Homz,y(ν
′)(z), and this implies the desired equality

by applying Property 50 to m and m′.

• π may be labeled by (q
ν′,A
r , m), where A = {¬R′′(y)}, where |y| = 1, and

where, writing y the one element of y, y is undefined by ν′. We need to prove
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(iii). By construction we have Δ(q
ν′,A
r , (d, s)) = q

ν′,A
r ∨ ∨

a∈d q
ν′∪{y �→a},A
r .

So by definition of a run there is m′ ∈ Neigh(m) and a child π ′ of π such that π ′

is labeled by (q
ν′,A
r , m′) or by (q

ν′∪{y �→a},A
r , m′) for some a ∈ d. In both cases

it is easily seen that we can define an appropriate μ from the mapping μ′ that we
obtain by induction on the run (more details are given in the next bullet point).

• π may be labeled by (q
ν′,A
r , m) with A = {R′′(y)}. We need to prove (iii). By

construction we have Δ(q
ν′,A
r , (d, s)) = qν′

R′′(y), so that by definition of the run

there is m′ ∈ Neigh(m) and a child π ′ of π such that π ′ is labeled by (qν′
R′′(y), m

′).
Thus by induction on the run there exists c such that R′′(c) ∈ P(I) and c com-
patible with ν′ at node m′. By Property 50, c is also compatible with ν′ at node
m. We define μ by μ(y) := c, which effectively defines it because in this case
vars(A ) = y, and this choice satisfies the required properties.

• π may be labeled by (q
ν′,A
r , m), with A = {¬R′′(y)} and ν′ total on y. We

again need to prove (iii). By construction we have Δ(q
ν′,A
r , (d, s)) = ¬qν′

R′′(y)
and then by definition of the automaton there exists a child π ′ of π labeled by
¬(qν′

R′′(y), m) with ζ(R′′) < i and there exists no run starting at node m in state

qν′
R′′(y). So by using (ii) of the induction on the strata we have R′′(decm(ν′(y))) /∈

P(I). We define μ by μ(y) = decm(ν′(y)), which effectively defines it because
vars(A ) = y, and the compatibility conditions are satisfied.

• π may be labeled by (q
ν′,A
r , m), with |A | ≥ 2. We need to prove (iii). Given the

definition of Δ(q
ν′,A
r , (d, s)) and by definition of the run, one of the following

holds:

– There exists m′ ∈ Nbh(m) and a child π ′ of π such that π ′ is labeled
by (q

ν′,A
r , m′). By induction there exists μ′ : vars(A ) → Dom(I )

satisfying (iii) for node m′. We can take μ to be μ′, which satisfies the
required properties.

– There exist (m1, m2) ∈ Nbh(m) × Nbh(m) and π1, π2 children of π

and non-empty sets A1, A2 that partition A and a total valuation ν′′
of vars(A1) ∩ vars(A2) with values in d such that π1 is labeled by

(q
ν′∪ν′′,A1
r , m1) and π2 is labeled by (q

ν′∪ν′′,A2
r , m2). By induction there

exists μ1 : vars(A1) → Dom(I ) and similarly μ2 that satisfy (iii).
Thanks to the compatibility conditions for μ1 and μ2 and to Property
50 applied to m1 and m2 via m, we can define μ : vars(A ) → Dom(I )

with μ := μ1 ∪ μ2. One can check that μ satisfies the required
properties.

Hence, the forward direction of our equivalence lemma is proven.

Backward Direction We now prove the backward direction of the induction on strata
of our main equivalence lemma (Lemma 53). From the induction hypothesis on strata,
we know that, for every relation R with ζ(R) ≤ i−1, for every node n ∈ T and partial
valuation ν of x, there exists a run ρ of A′

P starting at node n in state qν
R(x) if and only

if there exists c such that R(c) ∈ P(I) and c is compatible with ν at node n. Let R be
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a relation with ζ(R) = i, let n ∈ T be a node and let ν be a partial valuation of x such
that there exists c such that R(c) ∈ P(I) and c is compatible with ν at node n. We
need to show that there exists a run ρ of A′

P starting at node n in state qν
R(x). We will

prove this by induction on the smallest j ∈ N such that R(c) ∈ Ξ
j
P (Pi−1(I )), where

Ξ
j
P is the j -th application of the immediate consequence operator for the program

P , and Pi−1 is the restriction of P with only the rules up to strata i − 1. The base
case, when j = 0, is in fact vacuous since R(c) ∈ Ξ0

P (Pi−1(I )) = Pi−1(I ) implies
that ζ(R) ≤ i −1, whereas we assumed ζ(R) = i. For the inductive case (j ≥ 1), we
have R(c) ∈ Ξ

j
P (Pi−1(I )) so by definition of the semantics of P , there is a rule r of

the form R(z) ← L1(y1) . . . Lt (yt ) of P and a mapping μ : y1 ∪· · ·∪yt → Dom(I )

such that μ(z) = c and, for every literal Ll in the body of r:

– If Ll(yl) = Rl(yl) is a positive literal, then Rl(μ(yl)) ∈ Ξ
j−1
P (Pi−1(I ))

– If Ll(yl) = ¬Rl(yl) is a negative literal, then Rl(μ(yl )) /∈ Pi−1(I )

Now, the definition of clique-guardedness ensures that each pair of elements of
c co-occurs in some fact of I , i.e., c induces a clique in I . This ensures that there
is a bag of the tree decomposition that contains all elements of c (see Lemma 2
of [21], Lemma 1 of [33]), i.e., there exists a node n′ such that c ⊆ dom(n′). Let
n = n1, n2, . . . , np = n′ be the nodes on the path from n to n′, and (di, si) be λE(ni)

for 1 ≤ i ≤ p. By compatibility, for every xj defined by ν we have decn(ν(xj )) = cj .
But decn(ν(xj )) ∈ dom(n) and cj ∈ dom(m) so by Property 51, for every 1 ≤ i ≤ p

we have cj ∈ dom(mi) and encmi
(cj ) = encn(cj ) = encn(decn(ν(xj ))) = ν(xj ), so

that ν(xj ) ∈ di . We can then start to construct the run ρ starting at node n in state
qν
R(x) as follows. The root π1 is labeled by (qν

R(x), n), and for every 2 ≤ i ≤ p, πi is
the unique child of πi−1 and is labeled by (qν

R(x), mi). This part is valid because we
just proved that for every i, there is no j such that yj is defined by ν and ν(yj ) /∈
dj . Now from πn′ , we continue the run by staying at node n′ and building up the
valuation, until we reach a total valuation ν′ such that ν′(x) = encn′(c). Hence we
now only need to build a run ρ′ starting at node n′ in state qν′

R(x).

To achieve our goal of building a run starting at node n′ in state qν′
R(x), it suffices to

construct a run starting at node n′ in state q
ν′′,{L1,...,Lt }
r , with ν′′ = Homz,x(ν

′). The
first step is to take care of the literals of the rule and to prove that:

(i) If Ll(yl) = Rl(yl ) is a positive literal, then there exists a node ml and a total
valuation νl of yl with decml

(νl(yl )) = μ(yl) such that there exists a run ρl

starting at node ml in state q
νl

Rl(yl )
.

(ii) If Ll(yl) = ¬Rl(yl) is a negative literal, then there exists a node ml and a total
valuation νl of yl with decml

(νl(yl )) = μ(yl) such that there exists a run ρl

starting at node ml in state ¬q
νl

Rl(yl )
.

We first prove (i). We have Rl(μ(yl )) ∈ Ξ
j−1
P (Pi−1(I )), and because P is clique-

frontier-guarded, there exists a node m such that μ(yl) ⊆ m. We take ml to be m

and νl to be such that νl(yl) = encml
(μ(yl)). We then directly obtain (i) by induction

hypothesis (on j ). We then prove (ii). Because the negative literals are guarded in
rule bodies, there exists a node m such that μ(yl) ⊆ m. We take ml to be m and νl to
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be such that νl(yl ) = encml
(μ(yl )). We straightforwardly get (ii) using the induction

on the strata of our equivalence lemma.
The second step is to use the runs ρl that we just constructed and to construct

from them a run starting at node n′ in state q
ν′′,{L1,...,Lt }
r . We describe in a high-level

manner how we build the run. Starting at node n, we partition the literals to verify
(i.e., the atoms of the body of the rule that we are applying), in the following way:

– We create one class in the partition for each literal Rl (which can be intentional
or extensional) such that ml is n′, which we verify directly at the current node.
Specifically, we handle these literals one by one, by splitting the remaining liter-
als in two using the transition formula corresponding to the rule and by staying
at node n′ and building the valuations according to decn(μ).

– For the remaining literals, considering all neighbors of n′ in the tree encoding, we
split the literals into one class per neighbor n′′, where each literal Ll is mapped
to the neighbor that allows us to reach its node ml . We ignore the empty classes.
If there is only one class, i.e., we must go in the same direction to verify all
facts, we simply go to the right neighbor n′′, remaining in the same state. If there
are multiple classes, we partition the facts and verify each class on the correct
neighbor.

One must then argue that, when we do so, we can indeed choose the image
by ν′′ of all elements that were shared between literals in two different classes
and were not yet defined in ν′′. The reason why this is possible is because we are
working on a tree encoding: if two facts of the body share a variable x, and the
two facts will be witnessed in two different directions, then the variable x must be
mapped to the same element in the two direction (namely, μ(x)), which implies
that it must occur in the node where we split. Hence, we can indeed choose the
image of x at the moment when we split.

FPT-linear Time Construction Finally, we justify that we can construct in FPT-linear
time the automaton AP which recognizes the same language as A′

P . The size of Γ
kI
σ

only depends on kI and on the extensional signature, which are fixed. As the num-
ber of states is linear in |P |, the number of transitions is linear in |P |. Most of the
transitions are of constant size, and in fact one can check that the only problematic
transitions are those for states of the form qν

R(x) with R intensional, specifically the
second bullet point. Indeed, we have defined a transition from qν

R(x), for each valu-

ation ν of a rule body, to the q
ν′,A
r for linearly many rules, so in general there are

quadratically many transitions.
However, it is easy to fix this problem: instead of having one state qν

R(x) for every
occurrence of an intensional predicate R(x) in a rule body of P and total valuation
ν of this rule body, we can instead have a constant number of states qR(a) for a ∈
D

arity(R)

kI
. In other words, when we have decided to verify a single intensional atom

in the body of a rule, instead of remembering the entire valuation of the rule body
(as we remember ν in qν

R(x)), we can simply forget all other variable values, and just
remember the tuple which is the image of x by ν, as in qR(a). Remember that the
number of such states is only a function of kp and kI, because bounding kp implies
that we bound the arity of P , and thus the arity of intensional predicates.
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We now redefine the transitions for those states:

– If there is a j such that aj /∈ d, then Δ(qR(a), (d, s)) = ⊥.

– Else, Δ(qR(a), (d, s)) is a disjunction of all the q
ν′,A
r for each rule r such that

the head of r is R(y), ν′(y) = a and A is the set of all literals in the body of r .

The key point is that a given q
ν′,A
r will only appear in rules for states of the form

qR(a) where R is the predicate of the head of r , and there is a constant number of
such states.

We also redefine the transitions that used these states:

– Else, if A = {R′(y)} with R′ intensional, then Δ(q
ν,A
r , (d, s)) = qR′(ν(y)).

– Else, if A = {¬R′(y)} with R′ intensional, then Δ(q
ν,A
r , (d, s)) = ¬qR′(ν(y)).

AP recognizes the same language as A′
P . Indeed, consider a run of A′

P , and replace
every state qν

R(x) with R intensional by the state qR(ν(x)): we obtain a run of AP .
Conversely, being given a run of AP , observe that every state qR(a) comes from a

state q
ν,{R(y)}
r with ν(y) = a. We can then replace qR(a) by the state qν

R(x) to obtain a
run of A′

P .

8.2 Managing Unguarded Negations

We now explain how the translation can be extended to the full CFG-Datalog frag-
ment. We recall that the difference with CFGGN-Datalog is that negative literals
in rule bodies no longer need to be clique-guarded. Remember that clique-frontier-
guardedness was used in the translation of CFGGN-Datalog to ensure the following
property: when the automaton is verifying a rule application r := R(z) ←
L1(y1) . . . Lt (yt ) at some node n, i.e., when it is in a state q

ν,A
r at node n for

some subset A of literals of the body of r and partial valuation ν of the vari-
ables in vars(A ), then, for each literal Ll(yl) for 1 ≤ l ≤ t , the images of yl

all appear together in a bag. More formally, writing vars(r) for the variables of the
body of r , let μ : vars(r) → dom(I ) be a mapping with μ(z) = decn(ν(z)) that
witnesses that R(μ(z)) ∈ P(i): that is, if Ll(yl) is a positive literal Sl(yl ) then
we have Sl(μ(yl)) ∈ P(i) and if L(yl) is a negative literal ¬Sl(yl) then we have
Sl(μ(yl )) /∈ P(I). In this case, we know that each μ(yl ) must be contained in a bag
of the tree decomposition.

This property is still true in CFG-Datalog when L(yl) is a positive literal Sl(yl).
Indeed, if S is an extensional relation then the fact S(μ(yl)) is encoded somewhere
in the tree encoding, hence μ(yl ) is contained in a bag of the tree decomposition.
If S is an intensional predicate then, because P is clique-frontier-guarded, μ(yl) is
also contained in a bag. However, when L(yl) is a negative literal ¬Sl(yl), it is now
possible that μ(yl ) is not contained in any bag of the tree decomposition. This can
be equivalently rephrased as follows: there are yi, yj ∈ yl with yi �= yj such that
the occurrence subtrees of μ(yi) and that of μ(yj ) are disjoint. If this happens, the
automaton that we construct in the previous proof no longer works: it cannot assign
the correct values to yi and yj , because once a value is assigned to yi , the automaton
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cannot leave the occurrence subtree of μ(yi) until a value is also assigned to yj ,
which is not possible if the occurrence subtrees are disjoint.

To circumvent this problem, we will first rewrite the CFG Datalog program P

into another program (still of body size bounded) which intuitively distinguishes
between two kinds of negations: the negative atoms that will hold as in the case of
clique-guarded negations in CFGGN-Datalog, and the ones that will hold because
two variables have disjoint occurrence subtrees. First, we create a vacuous unary fact
Adom, we modify the input instance and tree encoding in linear time to add the fact
Adom for every element a in the active domain, and we modify P in linear time:
for each rule r , for each variable x in the body of r , we add the fact Adom(x). This
ensures that each variable of rule bodies occurs in at least one positive fact.

Second, we rewrite P to a different program P ′. Let r be a rule of P , and let N be
the set of negative atoms in the body of r . Let NG ∪N¬G be a partition of N (where
the classes in the partition may be empty), intuitively distinguishing the guarded and
unguarded negations. For every atom of N¬G, we nondeterministically choose a pair
(yi, yj ) of distinct variables of this atom, and consider the undirected graph G formed
by the edges {yi, yj } (we may choose the same edge for two different atoms). The
graph G intuitively describes the variables that must be mapped to elements having
disjoint occurrence subtrees in the tree encoding: if there is an edge between two
variables in G , then they must be mapped to two elements whose subtrees of occur-
rences do not intersect. For each rule r of P , for each choice of NG ∪ N¬G and G ,
we create a rule rNG,N¬G,G defined as follows: it has the same head as r , and its
body contains the positive atoms of the body of r (including the Adom-facts) and the
negative atoms of NG. We call G the unguardedness graph of rNG,N¬G,G . Note that
the semantics of P ′ will defined relative to the instance and also relative to the tree
encoding of the instance that we consider: specifically, a rule can fire if there is a val-
uation that satisfies it in the sense of CFGGN-Datalog (i.e., for all atoms, including
negative atoms, all variables must be mapped to elements that occur together in some
node), and which further respects the unguardedness graph, i.e., for any two variables
x �= y with an edge in the graph, the elements to which they are mapped must have
disjoint occurrence subtrees in the tree encoding. Note that we can compute P ′ from
P in FPT-linear time parameterized by the body size, because the number of rules
created in P ′ for each rule of P can be bounded by the body size; further, the bound
on the body size of P ′ only depends on that of P , specifically it only increases by the
addition of the atoms Adom(x).

The translation of P ′ can now be done as in the case of CFGGN-Datalog that we
presented before; the only thing to explain is how the automaton can ensure that the
semantics of the unguardedness graph is satisfied. To this end, we will first make
two general changes to the way that our automaton is defined, and then present the
specific tweaks to handle the unguardedness graph. The two general changes can
already be applied to the original automaton construction that we presented, without
changing its semantics.

The first change is that, instead of isotropic automata, we will use automata that
take the directions of the tree into account, as in [22] for example (with stratified
negation as we do for SATWAs). Specifically, we change the definition of the tran-
sition function. Remember that a SATWA has a transition function Δ : Q × Γ →



Theory of Computing Systems

B(Q) that maps each pair of a state and a label to a propositional formula on states
of Q. To handle directions, Δ will instead map to a propositional formula on pairs
of states of Q and of directions in the tree, in {•, ↑,←, →}. The intuition is that
the corresponding state is only evaluated on the tree node in the specified direction
(rather than on any arbitrary neighbor). We will use these directions to ensure that,
while the automaton considers a rule application and navigates to find the atoms used
in the rule body, then it never visits the same node twice. Specifically, consider two
variables yi and yj that are connected by an edge in the unguardedness graph, and
imagine that we first assign a value a to yi in some node n. To assign a value to
yj , we must leave the occurrence subtree of the current a in the tree encoding, and
must choose a value outside of this occurrence subtree. Thus, the automaton must
“remember” when it has left the subtree of occurrences of a, so that it can choose a
value for yj . However, an isotropic automaton cannot “remember” that it has left the
subtree of occurrences of a, because it can always come back on a previously visited
node, by going back in the direction from which it came. However, using SATWAs
with directions, and changing the automata states to store the last direction that was
followed, we can ensure that the automaton cannot come back to a previously vis-
ited node (while locating the facts that correspond to the body of a rule application).
This ensures that, once the automaton has left the subtree of occurrences of an ele-
ment, then it cannot come back in this subtree again while it is considering the same
rule application. Hence, the first general change is that we use SATWAs with direc-
tions, and we use the directions to ensure that the automaton does not go back to a
previously visited node while considering the same rule application. In fact, this first
general change does not modify the semantics of the automaton: indeed, in the case
of isotropic automata, we did not really need the ability to go back to a previously
visited node when verifying a rule application.

The second general change that we perform on the automaton is that, when guess-
ing a value for an undefined variable, then we only allow the guess to happen as early
as possible. In other words, suppose the automaton is at a node n in the tree encod-
ing while it was previously at node n′. Then it can assign a value a ∈ n to some
variable y only if a was not in n′, i.e., a has just been introduced in n. Obviously
an automaton can remember which elements have been introduced in this sense, and
which elements have not. This change can be performed on our existing construction
without changing the semantics of the automaton, by only considering runs where the
automaton assigns values to variables at the moment when it enters the occurrence
subtree of this element.

Having done these general changes, we will simply reuse the previous automaton
construction (not taking the unguardedness graph G into account) on the program P ′,
and make two tweaks to ensure that the unguardedness graph is respected. The first
tweak is that, in states of the form q

ν,A
r , the automaton will also remember, for each

undefined variable x (i.e., x is in the domain of ν but ν(x) is still undefined), a set
β(x) of blocking elements for x, which are elements of the tree encoding. While β(x)

is non-empty, then the automaton is not allowed to guess a value for x, intuitively
because we know that it is still in the occurrence subtree of some previously mapped
variable y ∈ β(x) which is adjacent to x in G . Here is how these sets of blocking
elements are computed and updated:
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– When the automaton starts to consider the application of a rule r , then β(x) := ∅
for each variable x of the body of r .

– When the automaton guesses a value a for a variable x, then for every undefined
variable y, if x and y are adjacent in G , then we set β(y) := β(y) ∪ {a}, intu-
itively adding a to the set of blocking elements for y. This intuitively means that
the automaton is not allowed to guess a value for y until it has exited the subtree
of occurrences of a. Note that, if the automaton wishes to guess values for multi-
ple variables while visiting one node (in particular when partitioning the literals
of A ), then the blocking sets are updated between each guess: this implies in
particular that, if there is an edge in G between two variables x and y, then the
automaton can never guess the value for x and for y at the same node.

– When the automaton navigates to a new node n′ of the tree encoding, then for
every variable x in the domain of ν which does not have an image yet, we set
β(x) := β(x) ∩ n′. Intuitively, when an element a was blocking for x but dis-
appears from the current node, then a is no longer blocking. Note that β(x) may
then become empty, meaning that the automaton is now free to guess a value
for x.

The blocking sets ensure that, when the automaton guesses a value for x, then this
value is guaranteed not to occur in the occurrence subtree of variables that are adja-
cent to x in G and have been guessed before. This also relies on the second general
change above: we can only guess values for variables as early as possible, i.e., we
can only use elements in guesses when we have just entered their occurrence subtree,
so when β(x) becomes empty then the possible guesses for x do not include any ele-
ment whose occurrence subtree intersects that of ν(y) for any variable y adjacent to
x in G .

The second tweak is that, when we partition the set of literals to be verified, then
we use the directionality of the automaton to ensure that the remaining literals are
split across the various directions (having at most one run for every direction). For
instance, considering the rule body {Adom(x), Adom(y)} and the unguardedness
graph G having an edge between x and y, the automaton may decide at one node to
partition A = {Adom(x), Adom(y)} into {Adom(x)} and {Adom(y)}, and these two
subsets of facts will be verified by two independent runs: these two runs are required
to go in different directions of the tree. This will ensure that, even though the edge
{x, y} of G will not be considered explicitly by either of these runs (because the
domain of their valuations will be {x} and {y} respectively), it will still be the case
that x and y will be mapped to elements whose occurrence subtrees do not intersect:
this is again using the fact that we map elements as early as possible.

We now summarize how the modified construction works:

(i) Assume that the automaton A is at some node n in state qν′′
R(x), with ν′′ being

total in x.
(ii) At node n, the automaton chooses a rule r ′ : R(z) ← L1(y1) . . . Lt (yt ) of P ′

and goes to state q
ν,A
r ′ where ν := Homz,x(ν

′′) and A is the set of literals
in the body of r ′. That is, it simply chooses a rule to derive R(ν′′(x)). This
amounts to choosing a rule of the original program P , and choosing which
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negative atoms will be guarded (i.e., mapped to variables that occur together
in some node of the tree encoding), and choosing the unguardedness graph G
in a way to ensure that each unguarded negated atom has a pair of variables
that forms an edge of G. The blocking set β(x) of each variable x in the rule
body is initialized to the empty set, and whenever the automaton will move to
a different node n′ then each element a that is no longer present in n′ will be
removed from β(x) for each variable x, formally, β(x) := β(x) ∩ n′.

(iii) From now on, assume the automaton A always remembers (stores in its state)
which elements N have just been introduced in the current node of the tree
encoding. That is, N is initialized with the elements in n, and when A goes
from some node n′ to node n′′, N becomes n′′ \ n′. When guessing values
for variables, the automaton will only use values in N , so as to respect the
condition that we guess the value of variables as early as possible. This is how
we implement our second general change.

(iv) While staying at node n, the automaton chooses some undefined variables x

(i.e., variables in the domain of ν that do not have a value yet), and guesses
some values in N for them, one after another. For each such variable x, we
first verify that β(x) = ∅ (otherwise we fail), we set ν(x) := a where a is the
guessed value, and then, for every edge {x, y} in G such that y is an undefined
variable (i.e., it is in the domain of ν but does not have an image by ν yet), we
set β(y) := β(y) ∪ {a}, ensuring that no value will be guessed for y until the
automaton has left the subtree of occurrences for a. We call ν′ the resulting
new valuation.

(v) While staying at node n, the automaton guesses a partition of A as
Pdirections = (A •, A ↑, A ←, A →) to decide in which direction each one of
the remaining facts is sent. Of course, if there is a direction for which n has
no neighbor (e.g., ← and → if n is a leaf, or ↑ if n is the root), then A d in
the corresponding direction d must be empty.

(vi) If A • is the only class that is not empty, meaning that all remaining facts will
be witnessed at the current node, then go to step x.

(vii) While staying at node n, the automaton checks that each variable x that
appears in two different classes of Pdirections has been assigned a value, i.e.,
ν(x) is defined; otherwise, the automaton fails. This is to ensure that the parti-
tioning is consistent (i.e., that a variable x will not be assigned different values
in different runs). The automaton also checks that ν(x) is defined for each
variable occurring in A •, that is, we assume without loss of generality that
atoms that will be verified at the current node have all their variables already
mapped. This ensures that the undefined variables are partitioned between
directions in {↑,←, →}.

(viii) The automaton then launches a run q
ν′,A d

r ′ for each direction d ∈ {•, ↑,

←, →} at the corresponding node (n for •, the parent of n for ↑, the left of
right child of n for ← or →).

(ix) For each of these runs, we update the value of N and of the blocking sets, and
we go back to step iv, except that now A remembers the direction from which
it comes, and does not go back to the previously visited node. For example if



Theory of Computing Systems

the automaton goes from some node n to the parent n′ of n such that n is the
left child of n′, then in the partition that will be guessed at step v we will have
A ← = ∅. Further, in each of these runs, of course, the automaton remembers
the values of the blocking sets β(x) for each undefined variable x.

(x) Check that all the variables have been assigned. Launch positive states for
each positive intensional literal and negative states for each negative literal,
i.e., start from step i: in this case, when the automaton verifies a different
rule application, then of course it forgets the values of the blocking sets, and
forgets the previous direction (i.e., it can again visit the entire tree from the
node where it starts). For each positive extensional literal, simply check that
the atom is indeed encoded in the current node of the tree encoding.

All these modifications can be implemented in FPT-linear time provided that the
arity of P is bounded, which is the case because the body size of P is bounded. More-
over, as we pointed out after the proof of Theorem 44, the construction of provenance
cycluits can easily be modified to work for stratified alternating two way automata
with directions, so that all our results about CFG-Datalog (evaluation and provenance
cycluit computation in FPT linear time) still hold on this modified automaton.

This finishes the proof of translation.

9 Conclusion

We introduced CFG-Datalog, a stratified Datalog fragment whose evaluation has
FPT-bilinear complexity when parameterized by instance treewidth and program
body size. The complexity result is obtained via translation to alternating two-way
automata, and via the computation of a provenance representation in the form of
stratified cycluits, a generalisation of provenance circuits that we hope to be of
independent interest.

A careful inspection of the proofs shows that our results can be used to derive
PTIME combined complexity results on arbitrary instances, e.g., XP membership
when parametrizing only by program size; this recaptures in particular the tractabil-
ity of some query languages on arbitrary instances, such as α-acyclic queries or
SAC2RPQs. We also intend to extend our cycluit framework to support more expres-
sive provenance semirings than Boolean provenance (e.g., formal power series
[40]).

We leave open the question of practical implementation of the methods we devel-
oped, but we have good hopes that this approach can give efficient results in practice,
in part from our experience with a preliminary provenance prototype [50]. Optimiza-
tion is possible, for instance by not representing the full automata but building them
on the fly when needed in query evaluation. Another promising direction supported
by our experience, to deal with real-world datasets that are not treelike, is to use
partial tree decompositions [46].
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Appendix: A Proof of Theorem 9

Theorem 9 There is an arity-two signature σ for which there is no algorithm A
with exponential running time and polynomial output size for the following task:
given a conjunctive query Q of treewidth ≤ 2, produce an alternating two-way tree
automaton AQ on Γ 5

σ -trees that tests Q on σ -instances of treewidth ≤ 5.

To prove this theorem, we need some notions and lemmas from [12], an extended
version of [13]. Since [12] is currently unpublished, relevant results are reproduced
as Appendix F of [5], in particular Lemma 68, Theorem 69, and their proofs.

Proof of Theorem 9 Let σ be S Bin
Ch1,Ch2,Child,Child? as in Theorem 69 of [5]. We pose

c = 3, kI = 2 × 3 − 1 = 5. Assume by way of contradiction that there exists
an algorithm A satisfying the prescribed properties. We will describe an algorithm
to solve any instance of the containment problem of Theorem 69 of [5] in singly
exponential time. As Theorem 69 of [5] states that it is 2EXPTIME-hard, this yields
a contradiction by the time hierarchy theorem.

Let P and Q be an instance of the containment problem of Theorem 69 of [5],
where P is a monadic Datalog program of var-size ≤ 3, and Q is a CQ of treewidth
≤ 2. We will show how to solve the containment problem, that is, decide whether
there exists some instance I satisfying P ∧ ¬Q.

Using Lemma 68 of [5], compute in singly exponential time the Γ
kI
σ -bNTA AP .

Using the putative algorithm A on Q, compute in singly exponential time an alter-
nating two-way automaton AQ of polynomial size. As AP describes a family I of
canonical instances for P , there is an instance satisfying P ∧ ¬Q iff there is an
instance in I satisfying P ∧ ¬Q. Now, as I is described as the decodings of the
language of AP , all instances in I have treewidth ≤ kI. Furthermore, the instances
in I satisfy P by definition of I . Hence, there is an instance satisfying P ∧ ¬Q iff
there is an encoding E in the language of AP whose decoding satisfies ¬Q. Now, as
AQ tests Q on instances of treewidth kI, this is the case iff there is an encoding E in
the language of AP which is not accepted by AQ. Hence, our problem is equivalent
to the problem of deciding whether there is a tree accepted by AP but not by AQ.

We now use Theorem A.1 of [26] to compute in EXPTIME in AQ a bNTA A′
Q rec-

ognizing the complement of the language of AQ. Remember that AQ was computed
in EXPTIME and is of polynomial size, so the entire process so far is EXPTIME.
Now we know that we can solve the containment problem by testing whether AP

and A′
Q have non-trivial intersection, which can be done in PTIME by computing the

product automaton and testing emptiness [25]. This solves the containment problem
in EXPTIME. As we explained initially, we have reached a contradiction, because it
is 2EXPTIME-hard.
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11. Barceló, P., Romero, M., Vardi, M.Y.: Does query evaluation tractability help query containment?. In:

PODS (2014)
12. Benedikt, M., Bourhis, P., Gottlob, G., Senellart, P.: Monadic datalog and limited access containment.

Unpublished (2016)
13. Benedikt, M., Bourhis, P., Senellart, P.: Monadic datalog containment. In: ICALP (2012)
14. Benedikt, M., Bourhis, P., Vanden Boom, M.: A step up in expressiveness of decidable fixpoint logics.

In: LICS (2016)
15. Benedikt, M., ten Cate, B., Vanden Boom, M.: Effective interpolation and preservation in guarded

logics. In: LICS (2014)
16. Benedikt, M., Gottlob, G.: The impact of virtual views on containment. PVLDB 3(1-2) (2010)
17. Berry, A., Pogorelcnik, R., Simonet, G.: An introduction to clique minimal separator decomposition.

Algorithms 3(2) (2010)
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