

Crowd Mining

Yael Amsterdamer, Yael Grossman, Tova Milo, and Pierre Senellart

Crowd data sourcing - Background

- Outsourcing data collection to the crowd of Web users
 - When people can provide the data
 - When people are the only source of data
 - When people can efficiently clean and/or organize the data

Crowdsourcing in an open world

- Human knowledge forms an open world
- Assume we know nothing, e.g., on folk medicine
- We would like to find what is interesting and important about folk medicine practices around the world.

What questions should be asked?

Back to classic settings

- Significant data patterns are identified using data mining techniques.
- Consider: association rules
 - E.g., "heartburn" → "lemon", "baking soda"
- Queries are dynamically constructed in the course of the learning process
- Is it possible to mine the crowd?

Asking the crowd

Let us model the history of every user as a personal database

Treated a sore throat with garlic and oregano leaves...

Treated a sore throat and low fever with garlic and ginger ...

Treated a heartburn with water, baking soda and lemon...

Treated nausea with ginger, the patient experienced sleepiness...

. . .

- Every case = a *transaction* consisting of *items*
- Not recorded anywhere a hidden DB
- It is hard for people to recall many details about many transactions!

But,

they can often provide summaries, in the form of personal rules

- To treat a sore throat I often use garlic
- Interpretation: "sore throat" → "garlic"

Two types of questions

- Free recollection (mostly simple, prominent patterns)
 - → Open questions

Tell me how you treat a particular illness

"I typically treat <u>nausea</u> with <u>ginger infusion</u>"

- Targeted questions (may be more complex)
 - → Closed questions

When a patient has both headaches and fever, how often do you use a <u>willow tree bark</u> infusion?

We use the two types interleavingly.

Personal Rules

- If people know which rules apply to them, why mine them?
 - Personal rules may or may not indicate general trends
 - Concrete questions help digging deeper into users' memory

Crowd Mining - Contributions (at a very high level)

- Formal model for crowd mining.
- A Framework of the generic components required for mining the crowd
- **Significance and error estimations.** Given the knowledge collected from the crowd, which rules are likely to be significant and what is the probability that we are wrong. [and, how will this change if we ask more questions...]
- Crowd-mining algorithm. Iteratively choosing the best crowd question and estimating significance and error.
- Implementation & benchmark.

The model: User support and confidence

- A set of users *U*
- Each user $u \in U$ has a (hidden) transaction database D_{u}
- Each rule X → Y is associated with:

user
$$\operatorname{supp}_{u}(X \to Y) \coloneqq \frac{|\{t \in D_{u} | X \cup Y \subseteq t\}|}{|D_{u}|}$$
 user
$$\operatorname{conf_{u}}(X \to Y) \coloneqq \frac{|\{t \in D_{u} | X \cup Y \subseteq t\}|}{|\{t \in D_{u} | X \subseteq t\}|}$$

Model for closed and open questions

- Closed questions: X →? Y
 - Answer: (approximate) user support and confidence
- Open questions: ? →??
 - Answer: an arbitrary rule with its user support and confidence

"I typically have a headache once a week. In 90% of the times, coffee helps.

$$supp_u(headache \rightarrow coffee) = \frac{1}{7} \cdot \frac{9}{10}$$
 $conf_u(headache \rightarrow coffee) = \frac{9}{10}$

Significant rules

- Overall support and confidence defined as the mean user support and confidence
- Significant rules are those whose overall support and confidence are both above specified thresholds Θ_s , Θ_c .
- Goal: estimating rule significance while asking the smallest possible number of questions to the crowd

Framework components

- One generic framework for crowd-mining
- One particular choice of implementation of all black boxes

Estimating the mean distribution

- Treating the current answers as a random sample of a hidden distribution g_r , we can approximate the distribution of the hidden mean f_r
- µ the sample average
- Σ the sample covariance
- K the number of collected samples

$$f_r \sim N\left(\mu, \frac{\Sigma}{K}\right)$$

• In a similar manner we estimate the hidden distribution g_r

Rule Significance and error probability

• Define M_r as the probability mass above both thresholds for rule r

$$M_r = \int_{\Theta_s}^1 \int_{\Theta_c}^1 f_r(s, c) dc ds$$

- r is significant iff M_r is greater than 0.5
- The error probability is

$$P_{\rm err}(r) = \min\{M_r, 1 - M_r\}$$

The next error probability

- The current distribution g_r for some rule can also be used for estimating what the next answer would be
- We integrate the resulting error probability over the possible next answers, to get the expected next error $E[P'_{err}(r)]$
- Optimization problem: The best rule to ask about leads to the best output quality
- For quality := overall error, this is the rule that induces the largest error reduction $\underset{r \in R}{\operatorname{err}}(r) - \operatorname{E}[P'_{err}(r)]$

Completing the picture

- Which rules should be considered as candidates for the next question?
 - Small rules, rules similar to significant rules are most likely to be significant
 - Similarly to classic data mining
- Should we ask an open or closed question?
 - Keeping a fixed ratio of open questions balances the tradeoff between precision and recall
 - Similarly to sequential sampling

Experiments

- 3 new benchmark datasets
 - Synthetic
 - Retail (market basket analysis)
 - Wikipedia editing records
- A system prototype, CrowdMiner, and 2 baseline alternatives
 - Random
 - Greedy (that asks about the rules with fewest answers)

Experimental Results

Experimental Results

- Better precision Greedy loses precision as new rules are explored
- Much better recall due to adding new rules as candidates.

Experimental Results

An open questions ratio of 0.2-0.6 yields the best quality

Summary

- The goal: learning about new domains from the crowd
- By identifying significant data patterns
- Data mining techniques cannot be used as-is
- Our solution includes
 - A model for the crowd behavior
 - A crowd mining framework and concrete component implementations
 - Benchmark datasets and a prototype system CrowdMiner used for experimentation

Related work

- **Declarative crowdsourcing frameworks** [e.g., Doan et. Al PVLDB'11, Franklin et. Al SIGMOD'11, Marcus et. Al CIDR'11, Parameswaran et. Al CIDR'11]
 - We consider identifying patterns in unknown domains
- **Association rule learning** [e.g., Agrawal et. Al VLDB'94, Toivonen VLDB'96, Zaki et. Al RIDE'97]
 - Transactions are not available in our context, sampling rules does not perform as well as interleaving closed and open questions
- Active Learning [e.g., Dekel et. Al COLT'09, Sheng et. Al SIGKDD'08, Yan et. Al ICML'11]
 - In our context every user has a partial picture, no "right" or ``wrong"
- Sequential Sampling [Vermorel et. Al ECML'05]
 - Combining the exploration of new knowledge with the exploitation of collected knowledge

Ongoing and Future work

- Leveraging on rule dependencies
 - From an answer on one rule we can learn about many others
 - Semantic dependencies between rules
- Leveraging on user info
- Other types of data patterns
 - Sequences, action charts, complex relationships between items
- Mining given a query
 - Data mining query languages
- ... and many more

Thank You!

Questions?

