
Contrôle de version incertain dans

l’édition collaborative ouverte de

documents arborescents

M. Lamine Ba
Institut Mines–Télécom; Télécom ParisTech; LTCI

Paris, France
mouhamadou.ba@telecom-paristech.fr

Talel Abdessalem
Institut Mines–Télécom; Télécom ParisTech; LTCI

Paris, France
talel.abdessalem@telecom-paristech.fr

Pierre Senellart
Télécom ParisTech & The University of Hong Kong

Paris, France & Hong Kong
pierre.senellart@telecom-paristech.fr

En vue de faciliter l’enrichissement, l’échange et le partage de contenu, les plates-formes col-
laboratives Web telles que Wikipedia ou Google Docs permettent des interactions à large échelle
entre un grand nombre de contributeurs. Cette collaboration ne requiert pas une connaissance
préalable du niveau d’expertise et de fiabilité des participants. La gestion de version est donc
essentielle pour garder une trace de l’évolution du contenupartagé et de la provenance des contri-
butions. Dans de tels environnements, l’incertitude est malheureusement omniprésente à cause
des sources non fiables, des contributions incomplètes et imprécises, des éditions malveillantes et
des actes de vandalisme possible, etc. Pour gérer cette incertitude, nous utilisons un modèle XML
probabiliste comme élément de base de notre système de contrôle de version. Chaque version d’un
document partagé est représenté par un arbre XML et le document tout en entier, incluant toutes
ses différentes versions, est modélisé en un document XML probabiliste. L’incertitude est évaluée
via le modèle probabiliste et la mesure de fiabilité associéeà chaque source, chaque contributeur,
ou chaque événement d’édition. Ceci résulte en une mesure d’incertitude sur chaque version et
chaque partie du document. Nous démontrons que les opérations classiques de gestion de ver-
sion peuvent être implémentées directement comme opérations sur le modèle XML probabiliste ;
son efficacité comparée aux systèmes de contrôle de version déterministes est démontrée sur des
données réelles.

Mots-clés
XML, travail collaboratif, données incertaines, gestion de version, documents arborescents

1

1 Introduction

Version Control in Open Environments In many collaborative editing systems, where
several users can provide content, content management is based on version control. A version
control system tracks the versions of the content as well as changes. Such a system enables
fixing error made in the revision process, querying past versions, and integration of content
from different contributors. As surveyed in [12,27], much effort related to version control has
been carried out both in research and in applications. The prime applications were collabora-
tive document authoring process, computer-aided design, and software development systems.
Currently, powerful version control tools, such as Subversion [19] and Git [16], efficiently
manage large source code repositories and shared filesystems.

However, existing approaches leave no room for uncertaintyhandling, for instance, un-
certain data resulting from conflicts. Conflicts are common in collaborative editing tasks, in
particular in an open environment. They arise whenever concurrent edits attempt to change
the same content. As a result, conflicts introduce some ambiguities in content change man-
agement. But sources of uncertainties in the version control process are not only due to con-
flicts. Indeed, there are inherently uncertain applications using version control, such as web-
scale collaborative platforms: Platforms such as Wikipedia [6] or Google Docs [2] enable
unbounded interactions between a large number of contributors, without prior knowledge of
their level of expertise and reliability. In these systems,version control is used for keeping
track of the evolution of the shared content and its provenance. In such environments, uncer-
tainty is ubiquitous due to the unreliability of the sources, the incompleteness and imprecision
of the contributions, the possibility of malicious editingand vandalism acts, etc. Therefore, a
version control technique able to properly manipulate uncertain data may be very helpful in
this kind of applications. We detail application scenariosnext.

Uncertainty in Wikipedia Versions Some web-scale collaborative systems such as Wikipe-
dia have no write-access restrictions over documents. As a result, multi-version documents
include data from different users. As shown in [39], Wikipedia has known an exponential
growth of contributors and editions per articles. The open and free features lead to contribu-
tions with variable reliability and consistency dependingboth on the contributors’ expertise
(e.g., novice or expert) and the scope of the debated subjects. At the same time, edit wars, ma-
licious contributions like spams, and vandalism acts can happen at any time during document
evolution. Therefore, the integrity and the quality of eacharticle may be strongly altered. Sug-
gested solutions to these critical issues are reviewing access policies for articles discussing hot
topics, or quality-driven solutions based on the reputations of authors, statistics on frequency
of content change, or the trust a given reader has on the information [10,21,30]. But restricting
editions on Wikipedia articles to a certain group of privileged contributors does not suppress
the necessity of representing and assessing uncertainties. Indeed, edits may be incomplete,
imprecise or uncertain, showing partial views, misinformations or subjective opinions. The
reputation of contributors or the confidence level on sources are useful information towards a
quantitative evaluation of the quality of versions and evenmore of each atomic contribution.
However, a prior efficient representation of uncertainty across document versions remains a
prerequisite.

2

User Preference at Visualization Time Filtering and visualizing content are also im-
portant features in collaborative environments. In Wikipedia, users are not only contributors,
but also consumers, interested in searching and reading information on multi-version articles.
Current systems constrain the users to visualize either thelatest revision of a given article, even
though it may not be the most relevant, or the version at a specific date. Users, especially in
universal knowledge management platforms like Wikipedia,may want to easily access more
relevant versions or those of authors whom they trust. Filtering unreliable content is one of the
benefits of our approach. It can be achieved easily by hiding the contributions of the offending
source, for instance when a vandalism act is detected, or at query time to fit user preferences
and trust in the contributors. Alternatively, to deal with misinformation, it seems useful to pro-
vide versions to users with information about their amount of uncertainty and the uncertainty
of each part of their content. Last but not least, users at visualization time should be able to
search for a document representing the outcome of combiningparts (e.g., some of them might
be incomplete, imprecise, and even uncertain taken apart) from different versions. We demon-
strate in [7] an application of these new modes of interaction to Wikipedia revisions: an article
is no longer considered as the last valid revision, but as a merge of all possible (uncertain)
revisions.

Approach Since version control is primordial in uncertain web-scalecollaborative systems,
representing and evaluating uncertainties throughout data version management becomes cru-
cial for enhancing collaboration and for overcoming problems such as conflict resolution and
information reliability management. In this paper, we propose an uncertain XML version con-
trol model tailored to multi-version tree-structured documents in open collaborative editing
contexts. Data, that is, office documents, HTML or XHTML documents, structured Wiki for-
mats, etc., manipulated within the given application scenarios are tree-like or can be easily
translated into this form; XML is a natural encoding for tree-structured data. Work related
to XML version control has focused on change detection [18, 22, 28, 33, 40]. Only some, for
instance [32,34,36], have proposed an extensive semi-structured data model aware of version
control; see Section 6 for details. Uncertainty managementin XML has received a great at-
tention in the probabilistic database community, especially for data integration purposes. A
set of elaborate uncertain (probabilistic) XML data models[9,23,31,38] with several distinct
semantics of probability distributions over data items, has been proposed. [9] and [23] follow
a general probabilistic XML representation system definingthe concept of probabilistic doc-
uments (abbr. p-documents) which generalizes previously proposed uncertain XML models.

In our model, we handle uncertain data through a probabilistic XML model as a basic com-
ponent of our version control framework. Each version of a shared document is represented by
an XML tree. At the abstract level, we consider a multi-version XML document with uncertain
data based on random events, XML edit scripts attached to them and a directed acyclic graph
of these events. For a concrete representation the whole document, with its different versions,
is modeled as a probabilistic XML document representing an XML tree whose edges are an-
notated by propositional formulas over random events. Eachpropositional formula models
both the semantics of uncertain editions (insertion and deletion) performed over a given part
of the document and its provenance in the version control process. Uncertainty is evaluated

3

using the probabilistic model and the reliability measure associated to each source, each con-
tributor, or each editing event, resulting in an uncertainty measure on each version and each
part of the document. The directed acyclic graph of random events maintains the history of
document evolution by keeping track of its different statesand their derivation relationships.
As last major contribution of this paper, we show that standard version control operations,
in particular update operation, can be implemented directly as operations on the probabilis-
tic XML model; efficiency with respect to deterministic version control systems like Git and
Subversion is demonstrated on real-world datasets.

Outline After some preliminaries in Section 2, we review the probabilistic XML model we
use in Section 3. We detail the proposed probabilistic XML version control model and some
strong properties thereof in Section 4. In Section 5, we demonstrate the efficiency of our
model with respect to deterministic version control systems through measures on real-world
datasets, and we describe some of the content filtering capabilities (Cf. Section 5.2) of our
approach. Finally, we review some related work in Section 6.Initial ideas leading to this
work were presented as a PhD workshop article in [13]; the description of the model, with
translations of version control operations into operations on the probabilistic XML model,
proofs of translation correctness, and experimental validation, are fully novel.

This work is accepted for publication at the ACM DocEng 2013 conference [14].

2 Preliminaries

In this section, we present some basic version control notions and the semi-structured XML
document model underlying our proposal. Amulti-version documentrefers to a set of versions
of the same document handled within a version control process. Each version of the document
represents a given state (instance) of the evolution of thisversioned document. A typical
version control model is built on the following common notions.

Document version A version is a conventional term that refers to a document copy in
document-oriented version control systems. The differentversions of a document are related
by derivation operations. A derivation consists of creating a new version by first copying a pre-
viously existing one before performing modifications. Someversions, representing variants,
are in a derivation relationship with the same origin. The variants (parallel versions) char-
acterize a non-linear editing history with several distinct branches of the same multi-version
document. In this history, a branch is a linear sequence of versions. Instead of storing the com-
plete content of each version, most version control approaches only maintainsdiffs between
states, together with meta-information on states. These states (or commits in Git world [16])
model different sets of changes that are explicitly validated at distinct stages of the version
control process. A state also comes with information about the context (e.g., author, date,
comment) in which these modifications are done. As a consequence, each version depends on
the complete history leading up to a given state. We will follow here the same approach for
modeling the different versions of a document within our framework.

4

Version Space Since the content of each version is not fully saved, there must be manner
to retrieve it when needed. The version space represents theediting history over a versioned
document (e.g., wiki version history as given in [35]). It maintains necessary information
related to the versions and their derivations. As mentionedabove, a derivation relationship
implies at least one input version (several incoming versions for merge operations) and an
output version. Based on this, we model similarly to [16] a version space of any multi-version
document as adirected acyclic graph.

Unordered XML Tree Documents Our motivating applications handle mostly tree-structu-
red data. As a result, we consider data as unordered XML trees. Note that the proposed model
can be extended to ordered trees (this may require restricting the set of valid versions to those
complying with a specific order, we leave the details for future work); we choose unordered
trees for convenience of exposition given that in many casesorder is unimportant. Let us as-
sume a finite setL of strings (i.e., labels or text data) and a finite setI of identifiers such
thatL ∩I = /0. In addition, letΦ andα be respectively a labeling function and an identi-
fying function. Formally, we define anXML documentas anunordered, labeledtreeT over
identifiers inI with α andΦ mapping each nodex ∈ T respectively to a unique identifier
α(x) ∈I and to a stringΦ(x) ∈L . The tree is unranked, i.e., the number of children of each
node inT is not assumed to be fixed. Given an XML treeT , we defineΦ(T) andα(T)
as respectively the set of its node strings and the set of its node identifiers. For simplicity, we
will assume all trees have the same root node (same label, same identifier).

[1] article

[2] title

[10] article-title

[3] para

[11] text1

[4] sect

[12] title

[19] sect-title

[13] para

[20] text2

Figure 1: Example XML treeT : Wikipedia article

Example 2.1. Figure 1 depicts an XML treeT representing a typical Wikipedia article. The
node identifiers are inside square brackets below node strings. The title of this article is given
in node10. The content of the document is structured in sections (“sect") with their titles and
paragraphs (“para") containing the text data.

XML Edit Script Based on unique identifiers, we consider two basic edit operations over
the specified XML document model: nodeinsertionsanddeletions. We denote an insertion
by insi, x whose semantics over any XML tree consists of inserting nodex (we supposex is
not already in the tree) as a child of a certain nodey satisfyingα(y) = i. If such a node is not
found in the tree, the operation does nothing. Note that an insertion can concern a subtree,
and in this case we simply refer withx to the root of this subtree. Similarly, we introduce a
deletion asdeli wherei is the identifier of the node to suppress. The delete operation removes
the targeted node, if it exists, together with its descendants, from the XML tree. We conclude

5

by defining an XML edit script,∆ =< u1,u2, . . . ,ui >, as a sequence of a certain number of
elementary edit operationsu j (eachu j , with 1≤ j ≤ i, being either an insertion or a deletion)
to carry out one after the other on an XML document for producing a new one. Given a tree
T , we denote the outcome of applying an edit script∆ overT by [T]∆. Even though in this
work we rely on persistent identifiers on tree nodes to define edit operations, the semantics
of these operations could be extended to updates expressed by queries, especially useful in
distributed collaborative editing environments where identifiers may not be straightforward to
share.

3 Probabilistic XML

We briefly introduce in this section the probabilistic XML representation system we use
as a basis of our uncertain version control system. For more details, see [9] for the general
framework and [23] for the specificPrXML

fie model we used. These representation systems
are originally intended for XML-based applications such asWeb data integration and extrac-
tion. For instance, when integrating various semi-structured Web catalogs containing personal
data, some problems such as overlapping or contradiction are frequent. Typically, one can find
for the same person name two distinct affiliations in different catalogs. A probabilistic XML
model is used to automatically integrate such data sources by enumerating all possibilities:
(a) the system considers each incoming source; (b) it maps its data items with the existing
items in the probabilistic repository to find correspondences and; (c) giving that, it represents
the matches as a set of possibilities. The resolution of conflicts is thus postponed to query
time, where each query will return a set of possibilities together with their probabilities. The
intuition is that resolving semantic issues before an effective integration is unfeasible in this
situation. On one hand, it is often a tedious and error-proneresolution process. On the other
hand, there might not be any certain knowledge about the reliability of the sources, and data
completeness.

p-Documents A probabilistic XML representation systemis a compact way of representing
probability distributions over possible XML documents; inthe case of interest here, the prob-
ability distribution is finite. Formally, a probabilistic XML distribution space, or px-space,S

over a collection of uncertain XML documents is a couple(D,p) whereD is a nonempty finite
set of documents andp : D → (0,1] is a probability function that maps each documentd in
D to a rational numberp(d) ∈ (0,1] such thatΣd∈Dp(d) = 1. A p-document, or probabilistic
XML document, usually denoted̂P, defines a compact encoding of a px-spaceS .

PrXML
fie: Syntax and Semantics We consider in this paper one specific class of p-

documents,PrXML
fie [23] (wherefie stands forformula of independent events); restricting

to this particular class allows us to give a simplified presentation, see [9, 23] for a more gen-
eral setting. Assume a set ofindependent random Boolean variables, or event variablesin
short,b1,b2, . . . ,bm and their respective probabilitiesPr(b1),Pr(b2) . . . ,Pr(bm) of existence.
A PrXML

fie p-document is an unordered, unranked, and labeled tree where every node (except

6

for the root)x may be annotated with an arbitrary propositional formulafie(x) over the event
variablesb1,b2, . . . ,bm. Different formulas can share common events, i.e., there may be some
correlation between formulas and the number of event variables in the formulas may vary from
one node to another.

A valuationν of the event variablesb1 . . .bm induces overP̂ one particular XML docu-
mentsν(P̂): the document where only nodes annotated with formulas valuated totrue by ν
are kept (nodes whose formulas are valuated tofalse by ν are deleted from the tree, along with
their descendants). Given a p-document̂P, thepossible worldsof P̂, denoted aspwd(P̂)

is the set of all such XML documents. Theprobability of a given possible worldd of P̂ is
defined as the sum of the probability of the valuations that yieldd. The set of possible worlds,
together with their probabilities, defines thesemanticsof P̂, the px-spaceJP̂K associated to
P̂.

(a) r

s

p1

b1∨b2

t1

p2

¬b2

t2

P̂

(b) r

s

p1

t1

p2

t2

r

s

p1

t1

r

s

p2

t2

d1 d2 d3

Figure 2: (a)PrXML
fie p-documentP̂; (b) Three possible worldsd1, d2 andd3

Example 3.1. Figure 2 sketches on the left-side a concretePrXML
fie p-documentP̂ and on

the right-side three possible worlds d1, d2 and d3. Formulas annotating nodes are shown just
above them: b1∨b2 and¬b2 are bound to nodes p1 and p2 respectively. The three possible
worlds d1, d2 and d3 are obtained by setting the following valuations of b1 and b2: (a) true and
false; (b) true andtrue (or false andtrue); (c) false andfalse. At each execution of the random
process, the distributional node chooses exactly the nodeswhose formulas are evaluated at
true given the valuation specified over event variables. Assuming a probability distribution
over events, for instance Pr(b1) = 0.4 and Pr(b2) = 0.5, we derive the probability of the
possible world d1 as Pr(d1) = Pr(b1)×(1−Pr(b2)) = 0.4×(1−0.5) = 0.2. We can compute
similarly the probabilities of all other possible worlds.

With respect to other probabilistic XML representation systems [9],PrXML
fie is very suc-

cinct (since arbitrary propositional formulas can be used,involving arbitrary correlations
among events), i.e., exponentially more succinct than the models of [31,38], and offers tractable
insertions and deletions [23], one key requirement for our uncertain version control model.
However, a non-negligible downside is that all non-trivial(tree-pattern) queries over this
model are#P-hard to evaluate [24]. This is not necessarily an issue, here, since we favor in
our application efficient updates and retrieval of given possible worlds, over arbitrary queries.

7

Data Provenance Uncertain XML management based on thePrXML
fie model also takes

advantage of the various possible semantics of event variables in terms of information descrip-
tion. Indeed, besides uncertainty management, the model also provide support for keeping in-
formation aboutdata provenance(or lineage) based on the event variables. Data provenance
is information of traceability such as change semantics, responsible party, timestamp, etc.,
related to uncertain data. To do so, we only need to use the semantics of event variables as
representing information about data provenance. As such, it is sometimes useful to use prob-
abilistic XML representation systems even in the absence ofreliable probability sources for
individual events, in the sense that one can manipulate themas incomplete data models (i.e.,
we only care about possible worlds, not about their probabilities).

4 Uncertain Multi-version XML

In this section we elaborate on our uncertain XML version control model for tree-structured
documents edited in a collaborative manner. We build our model on three main concepts:
version control events, a p-document, and a directed acyclic graph of events. We start by
formalizing a multi-version XML document through a formal definition of its graph of version
space and its set of versions. Then, we formally introduce the proposed model.

4.1 Multi-Version XML Documents

Consider the infinite setD of all XML documents with a given root label and identifier. Let
V be a set ofversion control events e1, . . . ,en. These events represent the different states of
a tree. We associate to events contextual information aboutrevisions (authorship, timestamp,
etc.). To each eventei is further associated anedit script∆i . Based on this, we formalize the
graph of version space and the set of versions of any versioned XML document as follows.

Graph of version space Theversion spaceis a rooted directed acyclic graph (DAG)G =
(V ∪{e0},E) where: (i) the initial version control evente0 /∈ V , a special event representing
the first state of any versioned XML tree, is the root ofG ; (ii) E ⊆V 2, defining the edges ofG ,
consists of a set of ordered couples of version control events. Each edge implicitly describes
a directed derivation relationship between two versions. Abranchof G is a directed path that
implies a start nodeei and an end nodeej . The latter must be reachable from the former by
traversing a set of ordered edges inE . We refer to this branch byB j

i . A rooted branchis a
branch that starts at the root of the graph.

XML versions An XML version is the document inD corresponding to asetof version
control events, the set of events that made this version happen. In a deterministic version
control system, this set always corresponds to a rooted branch in the version space graph. In
our uncertain version control system, this set may be arbitrary. Let us consider the set 2V

comprising all sub-parts ofV . The set of versions of a multi-version XML document is given
by a mappingΩ : 2V → D : to each sets of events corresponds a given tree (these treesare

8

typically not all distinct). The functionΩ can be computed from edit scripts associated with
events as follows:

– Ω(/0) maps to the root-only XML tree ofD .
– For all i, for all F ⊆ 2V \{ei} Ω({ei}∪F) = [Ω(F)]∆i .

A multi-version XML document,Tmv, is now defined as a pair(G ,Ω) whereG is a DAG
of version control events, whereasΩ is a mapping function specifying the set of versions
of the document. In the following we propose a more efficient way to compute the version
corresponding to a set of events, using a p-document for storage.

4.2 Uncertain Multi-Version XML Documents

A multi-version document will beuncertainif the version control events, staged in a version
control process, come withuncertaintyas in open collaborative contexts. By version control
events with uncertainty, we mean random events leading to uncertain versions and content. As
a consequence, we will rely on aprobability distribution over2V , that will, together with the
Ω mapping, imply a probability distribution overD .

Uncertainty modeling We model uncertainty in events by further defining a version con-
trol eventei in V as a conjunction of semantically unrelated random Boolean variablesb1, . . . ,bm

with the following assumptions: (i) a Boolean variable models a given source of uncertainty
(e.g., the contributor) in the version control environment; (ii) all Boolean variables in eachei

are independent; (iii) a Boolean variableb j reused across events correlates different version
control events; (iv) one particular Booleanrevisionvariableb(i), representing more specifi-
cally the uncertainty in the contribution, is not shared across other version control events and
appears positively inei .

Probability Computation We assume given a probability distribution over the Boolean
random variablesb j ’s (this typically comes from a trust estimation in a contributor, or in a
contribution), which induces a probability distribution over propositional formulas over the
b j ’s in the usual manner [23]. We now obtain the probability of each (uncertain) versiond of
as follows: Pr(d) = Pr(

∨
F⊆V

Ω(F)=d
F) with the probability of each set of eventsF ⊆ V given

by:

Pr(F) = Pr


 ∧

ej∈F

ej ∧
∧

ek∈V \F

¬ek


 . (1)

Example 4.1. Figure 3 sketches an uncertain multi-version XML documentTmv with four
staged version control events. On the left-side, we have theversion spaceG . The right-side
shows an example of four possible (uncertain) versions and their associated event set. We
suppose thatTmv is initially a root-only document. The three first versions correspond to
versions covered by deterministic version control systems, whereas the last one is generated
by considering that the changes performed at an intermediate version control event, here e2,
as incorrect. One feature of our model is to provide the possibility for viewing and modifying

9

G)
e2 e3

e0 e1

e4

(a)

T1) r

s1

p1

t1

p2

t2

T2) r

s1

p1

t1

s2

T3) r

s1

p1

t1

s2

p3

t3

s3

p4

t4

T4) r

s1

p1

t1

p2

t2

s3

p4

t4
F1 = {e1} F2 = {e1, e2} F3 = {e1, e2, e3} F4 = {e1, e3}

(b)

Figure 3: (a) Graph of Version Space; (b) Four versions and their mapping truth-values

these kinds of uncertain versions representing virtual versions. Only edits performed at the
specified version control events are taken into account in the process of producing a version:
in T4, the node r and the subtrees rooted at s1, s3 respectively introduced at e0, e1 and e3 are
present, while the subtree p3 added at e3 does not appear because its parent node s2 cannot
be found. Finally, given probabilities of version control events, we are able to measure the
reliability of each uncertain versionTi , for each1≤ i ≤ 4, based on its corresponding event
setFi (and all other event sets that map to the same tree).

We straightforwardly observe, for instance with the simpleexample in Figure 3, that the
amount of possible (uncertain) versions of any uncertain multi-version document may grow
rapidly (indeed, exponentially in the number of events). Asa result, the enumeration and the
handling of all the possibilities with the functionΩ may become tedious at a certain point.
To address this issue, we propose an efficient method for encoding in a compact manner the
possible versions together with their truth values. Intuitively, a PrXML

fie p-document com-
pactly models the set of possible versions of an uncertain multi-version XML document. As
stressed in Section 3, a probabilistic tree based on propositional formulas provides interesting
features for our setting. First, it describes well a distribution of truth values over a set of un-
certain XML trees while providing a meaningful process to find back a given version and its
probability. Second, it provides an update-efficient representation system, which is crucial in
dynamic environments such as version-control–based applications.

4.3 Probabilistic XML Encoding

We introduce a general uncertain XML version control representation framework, denoted
by T̂mv, as a couple(G ,P̂) where (a)G is as before a DAG of events, representing the version
space; (b)P̂ is aPrXML

fie p-document with random Boolean variablesb1 . . .bm representing
efficiently all possible (uncertain) XML tree versions and their corresponding truth-values.

We now define the semantics of such an encoding as the uncertain multi-version document
(G ,Ω) whereG is the same andΩ is defined as follows. For allF ⊆ V , let B+ be the set
of all random variables occurring in one of the events ofF andB− be the set of all revision
variablesb(i)’s for ei not in F . Let ν be the valuation ofb1 . . .bm that sets variables ofB+ to
true, variables ofB− to false, and other variables to an arbitrary value. We setΩ(F) := ν(P̂).

10

The following shows that this semantics is compatible with the px-space semantics of p-
documents on the one hand, and the probability distributiondefined by uncertain multi-version
documents on the other hand.

Proposition 4.1. Let (G ,P̂) be an uncertain version control representation framework and
(G ,Ω) its semantics as just defined. We further assume that all formulas occurring inP̂

can be expressed as formulas over the events ofV (i.e., we do not make use of the bj ’s in-

dependently of version control events). Then the px-spaceJP̂K defines the same probability
distribution overD asΩ.

The proof is straightforward and relies on Equation (1).

4.4 Updating Uncertain Multi-Version XML

We implement the semantics of standard update operations ontop of our probabilistic XML
representation system. An update over an uncertain multi-version document corresponds to
the evaluation of some uncertain edits on a given (uncertain) version. With the help of a triple
(∆,e,e′), we refer to an update operation asupdOP∆, e, e′ where∆ is an edit script,e is an
existing version control event pointing to the edited version ande′ is an incoming version
control event evaluating the amount of uncertainty in this update. We formalizeupdOP∆, e, e′

overTmv as below.

updOP∆, e, e′(Tmv) := (G ∪ ({e′},{(e,e′)}), Ω′).

An update operation thus results in the insertion of a new node and a new edge inG , and an
extension ofΩ with Ω′ that we now define. For any subsetF ⊆ V ′ (V ′ is the set of nodes in
G after the update), we have:
− if e′ 6∈ F : Ω′(F) = Ω(F);
− otherwise:Ω′(F) = [Ω(F\{e′})]∆.
What precedes gives a semantics to updates on uncertain multi-version documents; how-

ever, the semantics is not practical as it requires considering every subsetF ⊆ V ′. For a
more usable solution, we perform updates directly on the p-document representation of the
multi-version document. Algorithm 1 describes how such an update operationupdOP∆,e,e′ is

performed on top of an uncertain representation(G ,P̂). First, the graph is updated as be-
fore. Then, for each operationu in ∆, the algorithm retrieves the targeted node in̂P using
findNodeById (typically this is a constant-time operation). According to the type of opera-
tion, there are two possibilities.

1. If u is an insertion of a nodex, the algorithm checks ifx does not already occur in̂P,
for instance by looking for a node with the same label (the functionmatchIsFound searches a
matching forx in the subtreeTy rooted aty). If such a matching exists,getFieOfNode returns
its current formulafieo(x) and the algorithm updates it tofien(x) := fieo(x)∨e′, specifying that
x appears when this update is valid. Otherwise,updContent andsetFieOfNode respectively
inserts the nodex in P̂ and sets its associated formula asfien(x) = e′.

11

Input : (G ,P̂), updOP∆,e,e′

Output : updatingTmv in T̂mv

G := G ∪ ({e′},{(e,e′)});
foreach (u in ∆) do

if u= insi, x then
y := findNodeById(P̂, i) ;
if matchIsFound(Ty, x) then

fieo(x) := getFieOfNode(x) ;
setFieOfNode(x, fieo(x)∨e′);

else
updContent(P̂, insi, x);
setFieOfNode(x, e′);

else
x := findNodeById(P̂, i) ;
fieo(x) := getFieOfNode(x) ;
setFieOfNode(x, fieo(x)∧¬e′);

return (G , P̂);
Algorithm 1 : Update algorithm

2. If u is a deletion of a nodex, the algorithm gets its current formulafieo(x) and sets it
to fien(x) := fieo(x)∧¬e′, specifying thatx must be removed from possible worlds where this
update is valid.

The rest of this section shows the correctness and efficiencyof our approach: First, we es-
tablish that Algorithm 1 respects the semantics of updates.Second, we show that the behavior
of deterministic version control systems can be simulated by considering only a specific kind
of event set. Third, we characterize the complexity of the algorithm.

Proposition 4.2. Algorithm 1, when ran on a probabilistic XML encodinĝTmv = (G ,P̂)
of a multi-version documentTmv = (G ,Ω), together with an update operationupdOP∆,e,e′,

computes a representationupdOP∆,e,e′(T̂mv) of the multi-version documentupdOP∆,e,e′(Tmv).

Proof. Let:

{
updOP∆,e,e′(T̂mv) =(G ′,P̂ ′)

updOP∆,e,e′(Tmv) =(G ′,Ω′)
(it is clear that the version space DAG is the same

in both cases). We need to show thatΩ′ corresponds to the semantics of̂P ′; that is, if we
note the semantics of(G ′,P̂ ′) as (G ′,Ω′′), we need to show thatΩ′ = Ω′′. By definition,
for F ⊆ V ′, Ω′(F) = Ω(F) if e′ 6∈ F , and Ω′(F) = [Ω(F\{e′})]∆ otherwise. Let us
distinguish these two cases.

In the first scenario implying subsetsF which do not containe′, we haveΩ′(F) = Ω(F).
SinceTmv is the semantics of̂Tmv, we know thatΩ(F) = ν(F) for a valuationν that sets
the special revision variableb′ corresponding toe′ to false. Now, let us look at the document
ν(P̂ ′). By construction the update algorithm does not delete any node from P̂ but just

12

inserts new nodes and modifies some formulas. Suppose that there exists a nodex ∈ ν(P̂)

such thatx 6∈ ν(P̂ ′). Sincex ∈ ν(P̂), x cannot be a new node in̂P ′. Thereby, its new
formula fien(x) after the update is eitherfieo(x)∨ e′ or fieo(x)∧¬e′. In both cases,fien(x)
satisfiesν, becausefieo(x) satisfiesν andν setsb′ (and thereforee′) to false. This leads to a
contradiction and we can conclude that for all nodex∈ ν(P̂), we havex∈ ν(P̂ ′). Similarly,
if a nodex is in F (P̂ ′), becauseν setse′ to false, x will also be inν(P̂). Combining the
two, Ω′′(F) = ν(P̂ ′) = ν(P̂) = Ω(F).

The second scenario concerns subsetsF ′ in whiche′ appears. We obtain a versionΩ′(F ′)
by updatingΩ(F ′\{e′}) with ∆. Let us setF = F ′\{e′}. There exists a valuationν such
that ν(P̂) = Ω (and thus,Ω′(F ′) = [ν(P̂)]∆) with ν setting all variables of events inF
to true, and making sure that all other events are set tofalse. Let ν ′ be the extension ofν
where all variables ofe′ are set totrue. It suffices to prove that[ν(P̂)]∆ = ν ′(P̂ ′). First,
it is clear that the nodes inν(P̂) which are not modified by∆ are also inν ′(P̂ ′). Indeed,
their associated formulas do not change in̂P ′, and hence the fact these satisfyν are sufficient
for selecting them inP̂ ′ with the valuationν ′. Suppose now an operationu in ∆ involving
a nodex: u either addsx as a child of a certain nodey or deletesx. In the former case, ify
exists inν(P̂), then its formula satisfiesν andx is added in the document when it does not
already exist. With Algorithm 1,u is interpreted inP̂ ′ by the existence ofx undery with
an attached formula being eitherfien(x) = e′ (newly added) orfien(x) = fieo(x)∨e′ (reverted
node). As a consequence,ν ′(P̂ ′) selectsx as in both possible expressions offien(x). Let
us analyze the case whereu is a deletion ofx. If x is not present inν(P̂), i.e., u changes
nothing in this document. Through Algorithm 1,u results in a new associated formula set to
fien(x) = fieo(x)∧¬e for the nodex in P̂ ′. Obviously, we can see thatx will not be inν ′(P̂ ′)
because the satisfiability offien(x) requires the falseness ofe′ whose condition does not hold in
F . Now, if x is found inν(P̂), u deletes the node, as well as its children, from the document.
As a result, the outcome does not containx, which is conform to the fact thatx 6∈ ν ′(P̂ ′). We
have proved that for all nodex in [ν(P̂)]∆, x is also inν ′(P̂ ′). By similar arguments, we can
show that the converse is verified, i.e., for all nodex in ν ′(P̂ ′), x belongs to[ν(P̂)]∆.

The semantics of update is therefore the same, whether stated on uncertain multi-version
documents, or implemented as in Algorithm 1. We now show thatthis semantics is compatible
with the classical update operation of version control systems.

Proposition 4.3. The formal definition of updating in uncertain multi-version documents im-
plements the semantics of the standard update operation in deterministic version control sys-
tems when sets of events are restricted to rooted branches.

Proof. (Sketch) The update in our model changes the version spaceG similarly to a deter-
ministic version control setting. As for its evaluation over the set of versions, we only need to
show that the operation also produces a new version by updating the version mappingBi

0 (with
e the ith version control event inG) with ∆ as in a deterministic formalism. For building the
resulting version set, the operation as given above is defined such that for all subsetF ⊆ V

13

with e∈ F , we carry out∆ on Ω(F) for producing a new versionΩ′(F ∪{e′}). Amongst
all the subsets satisfying this condition, obviously thereis at least one which maps toBi

0.

We conclude by showing our algorithm is fully scalable:

Proposition 4.4. Algorithm 1 performs the update process over the representation of any
uncertain multi-version XML document with a constant time complexity with respect to the
size of the input document. The size of the output probabilistic tree grows linearly in the size
of the update script.

Proof. The first part of the algorithm consists in updatingG . This is clearly a constant-time
operation, which results in a single new node and a single newedge inG for every edit script.
As for the second part of the algorithm, i.e., the evaluationof the update script over the prob-
abilistic tree, let|P̂| and|∆| be respectively the size of the input probabilistic document P̂

and the length of∆. By implementingP̂ as an amortized hash table, we execute a lookup
of nodes inP̂ based onfindNodeById or matchIsFound in constant time. (matchIsFound

requires storing hashes of all subtrees of the tree, but thisdata structure can be maintained ef-
ficiently – we omit the details here.) The upper bound of Algorithm 1 occurs when∆ consists
only of insertions. Since the functionsgetFieOfNode, updContent andsetFieOfNode also
have constant execution costs, we can state that the overallrunning time of Algorithm 1 is
only a function of the number of operations in∆. As a result, we can conclude that the update
algorithm performs inO(1) with respect to the number of nodes in̂P andG .

At each execution, Algorithm 1 will increase the input probabilistic tree by a size bounded
by a constant for each update operation, together with the size of all inserts. To sum up, the
size increase is linear in the size of the original edit script.

5 Evaluation of the model

This section describes the experimental evaluation of the proposed model, based on real-
world applications. We first present a comparative study of our model with two popular ver-
sion control systems Git and Subversion, in order to prove its efficiency. Then we describe the
advances in terms of content filtering offered by our model.

All times shown are CPU time, obtained by running in-memory tests, avoiding disk I/O
costs by putting all accessed file systems in a RAM disk. Measures have been carried out
using the same settings for all three systems.

5.1 Performance analysis

We measured the time needed for the execution of two main operations: the commit and
checkout of a version. The tests where conducted on Git, Subversion, and the implementation
of our model (PrXML). The goal is to show the feasibility of our model rather than to prove
that it is more efficient than the mentioned version control systems. We stress that, though for
comparison purposes our system was tested in a deterministic setting, its main interest relies in
the fact that it is able to represent uncertain multi-version documents, as we illustrate further
in Section 5.2.

14

0 50 100 150 200 250 300

101

102

103

104

Commit (Linux kernel)

C
o

m
m

it
tim

e
(m

s)
Subversion

Git
PrXML

0 200 400 600

101

102

103

104

Commit (Cassandra project)

C
o

m
m

it
tim

e
(m

s)

Subversion
Git

PrXML

Figure 4: Measures of commit time over real-world datasets (logarithmic y-axis)

101 102 103

102

103

104

Number of edit operations

C
o

m
m

it
tim

e
(m

s)

Subversion
Git

PrXML

Figure 5: Commit time vs number of edit operations (for edit scripts of length≥ 5)

Datasets and Implementation. As datasets, we used the history of the master branches
of theLinux kernel development[4] and theApache Cassandra project[1] for the tests. These
data represent two large file systems and constitute two goodexamples of tree-structured data
shared in an open and collaborative environment. The Linux kernel development natively uses
Git. We obtained a local copy of its history by cloning the master development branch. We
maintained up-to-date our local copy by pulling every day the latest changes from the original
source. We followed a similar process with the Cassandra dataset (a Subversion repository).

In total, each local branch has more than ten thousand commits (or revisions). Each commit
materializes a set of changes, to the content of files or to their hierarchy (the file system tree).
In our experiments, we focused on the commits applied to the file system tree and ignored
content change. We determined the commits and the derivation relationships from Git and
Subversion logs. We represented the file system in an XML document and we transposed
the atomic changes to the file system into edit operations on the XML tree. To each inser-
tion, respectively deletion, of a file or a directory in the file system corresponds an insertion,
respectively a deletion, of a node in the XML tree.

15

0 50 100 150 200 250 300

100

200

300

400

Revision (Linux kernel)

C
h

ec
ko

u
tt

im
e

(m
s)

Subversion
Git

PrXML

0 200 400 600

100

200

300

400

Revision (Cassandra project)

C
h

ec
ko

u
tt

im
e

(m
s)

Subversion
Git

PrXML

Figure 6: Measures of checkout time over real-world datasets (linear axes)

We implemented our version control model (PrXML) in Java. Weused the Java APIs
SVNKit [5] and JGit [3] to set up the standard operations of Subversion and Git. The pur-
pose was to perform all the evaluations in the same conditions. Subversion uses a set of log
files to track the changes applied to the file system at the different commits. Each log file con-
tains a set of paths and the change operations associated to each path. As for Git, it handles
several versions of a file system as a set of related Git tree objects represented by the hashes
of their content. A Git tree object represents a snapshot of the file system at a given commit.

Cost analysis. Figures 4 and 6 compare the cost of thecommitand thecheckoutoperations
in Subversion, Git, and PrXML. The commit time indicates thetime needed by the system
to create a version (commit), whereas the checkout time corresponds to the time necessary to
compute and retrieve the sought version. The obtained results show clearly that PrXML has
good performance with respect to Git and Subversion systems. The experiments were done
using the datasets obtained from the Linux Kernel and Cassandra projects, as indicated above.
For both datasets, we observe in Figure 4 that our model has ingeneral a low commit cost
(note that the y-axes are logarithmic on Figure 4).

An in-depth analysis of the results show that the commit costs depend in our model on the
number of edit operations associated to the commits (see Figure 5), as implied by Proposi-
tion 4.4. However, PrXML remains efficient compared to the other systems, except for some
few commits characterized by a large number of edits (at least one hundred edit operations).
This can be explained by the fact that our model performs the edit operations over XML trees,
whereas Git stores the hashes of the files indexed by the directory names, and Subversion logs
the changes together with the targeted paths in flat files. An insertion of a subtree (a hierar-
chy of files and directories) in the file system can be treated as a simple operation in Git and
Subversion, whereas it requires a series of node insertionsin our model.

Our model is able to generate linear versions (corresponding to event sets that are rooted
branches) as well as arbitrary ones. However, traditional version control systems are only able
to produce linear versions. As a consequence, in this paper we focused our experiments on
retrieving linear versions for comparison purposes. Figure 6 shows the measures obtained for

16

the checkout of successive versions in PrXML, Git and Subversion. The x-axis represents
version numbers. Retrieving a version numbern requires the reconstruction of all previous
versions (1 ton− 1). The results obtained show that our model is significantlymore effi-
cient than Subversion for both datasets (Linux Kernel and Cassandra projects). Compared
to Git, PrXML has a lower checkout cost for initial versions,while it becomes less efficient
in retrieving recent versions for the Cassandra dataset. Note that, traditional version control
models mostly use reversible diffs [34] in order to speed up the process of reconstructing the
recent versions in a linear history.

5.2 Filtering capabilities

Efficient evaluation of the uncertainty and automatic filtering of unreliable contents are two
key issues for large scale collaborative editing systems. Evaluation of uncertainty is needed
because a shared document can result from contributions of different persons, who may have
different levels of reliability. This reliability can be estimated in various ways, such as an in-
dicator of the overall reputation of an author (possibly automatically derived from the content
of contributions, cf. [10]) or the subjective trust a given reader has in the contributor. For
popular collaborative platforms, like Wikipedia, an automatic management of conflicts is also
necessary because the number of contributors is often very large. This is especially true for
documents related to hot topics, where the number of conflicts and vandalism acts can evolve
rapidly and compromise document integrity.

In our model, filtering unreliable contents can be done easily by setting tofalse the Boolean
variables modeling the corresponding sources. This can be done automatically, for instance
when a vandalism act is detected, or at query time to fit user preferences and opinion about
the contributors. A shared document can also be regarded as the merge of all possible worlds
modeled by the generated revisions. We demonstrate in [7] anapplication of these new filter-
ing and interaction capabilities to Wikipedia revisions: an article is no longer considered as the
last valid revision, but as a merge of all possible (uncertain) revisions. The overall uncertainty
on a given part of the article is derived from the uncertaintyof the revisions having affected it.
Moreover, the user can view the state of a document at a given revision, removing the effect of
a given revision or a given contributor, or focusing only on the effect of some chosen revisions
or some reliable contributors.

We also tested the possibility for the users to handle more advanced operations over critical
versions of articles such as vandalized versions. We chose the most vandalized Wikipedia
articles (as given byWikipedia:Most_vandalized_pages), and we used our model to study
the impact of considering as reliable some versions affected by vandalism. We succeeded in
reconstructing the chosen articles as if the vandalism had never been removed; obtaining this
special version of the article is very efficient, since it consists in applying a given valuation to
the probabilistic document, which is a checkout operation whose timing is comparable to what
is shown in Figure 6. Note that in the current version of Wikipedia, the content of vandalized
versions is systematically removed from the presented version of an article, even if some users
may want to visualize them for various reasons. Our experiments have shown that we can
detect the vandalism as well as Wikipedia robots do, and automatically manage it in PrXML,
keeping all uncertain versions available for checkout.

17

6 Related work

Our previous work. We present in [7,13] initial studies towards the design of anuncertain
XML version control system: [7] is a demonstration system focusing on Wikipedia revisions
and showing the benefits of integrating an uncertain XML version control approach in web-
scale collaborative platforms; [13] is a PhD workshop paperwith early ideas behind modeling
XML uncertain version control.

Version Control Systems. While a lot of work was carried out on version control in object-
oriented systems (e.g., [8, 11, 15, 20]), recent research and tools are focusing on document-
oriented models. Many products, seen asgeneral-purpose systems, are used for version con-
trol over different kind of documents.Subversion, ClearCase, Git, BitKeeper, andBazaar
are some examples of them. In general, the considered approaches do not take into account
the semantics of the changes represented by the successive versions. The concern is the re-
construction of the committed versions, rather then the understanding of the evolution of the
modeled world. In Subversion [19] and similar systems, version control is based on edit dis-
tance algorithms designed for flat text, whereas the Git family [16] of tools uses cryptographic
approaches. For XML and structured documents, both techniques are inadequate because the
semantics of the changes is crucial in this case. A lot of workwas done on change detection on
XML documents, and differentXML diff tools have been developed [18, 28, 33]. An in-depth
analysis of the proposed approaches can be found in [17]. Besides that, XML version con-
trol models such as [34] and [36] store all versions in the same XML document, and extend
the XML schema of the latter with some elements used for the identification of each version.
However, the drawback of these approaches is the redundancyof the content shared between
different versions and the cost of the updates operations.

Probabilistic XML. Uncertainty handling in XML was originally associated to the prob-
lem of automatic Web data extraction and integration. In this context, uncertainty may have
different origins: the extraction process, the unreliability of the data sources, the incomplete-
ness of the data, etc. Several efforts have been made and someprobabilistic approaches have
been proposed (see [29] for a survey), especially the work ofvan Keulen et al. [37, 38]. Then
a representation system that generalizes all the existing models was proposed in [9] and [23];
we refer to [26] for a survey of the probabilistic XML literature.

7 Conclusion

We presented in this paper an uncertain XML version control model tailored to multi-
version tree-structured documents, in open collaborativeediting contexts. This is one of the
first actual work focusing on concrete applications of the existing literature on probabilistic
XML [9, 23–26, 31, 38]. The comparison of our model to the mostpopular version control
systems, done on real-world data, shows its efficiency. Moreover, our model offers new filter-
ing and interaction capabilities which are crucial in open collaborative environments, where
the data sources, the contributors and the shared content are inherently uncertain. The main

18

direction for future developments is the support of more complex version control operations,
notablymerging. Similarly to insertions and deletions, it is possible to implement merging by
directly modifying the p-document, leading to an efficient management of uncertain versions.
At last, the model could be extended to also support other kinds of edit operations likemoves
of intermediate nodes in XML.

8 Acknowledgements

This work was partially supported by the Île-de-France regional DROD project, and the
French government under the STIC-Asia program, CCIPX project. We would like to thank
the anonymous reviewers for their valuable suggestions on improving this paper.

References

[1] Cassandra Project.http://cassandra.apache.org/.
[2] Google Drive.https://drive.google.com/.
[3] Java Git.http://www.eclipse.org/jgit/.
[4] Linux Kernel. https://www.kernel.org/.
[5] [Sub]Versioning for Java.http://svnkit.com/.
[6] Wikipedia Platform.http://www.wikipedia.org/.
[7] T. Abdessalem, M. L. Ba, and P. Senellart. A probabilistic XML merging tool. InEDBT,

2011. Demonstration.
[8] T. Abdessalem and G. Jomier. VQL: A query language for multiversion databases. In

DBPL, 1997.
[9] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart. On the expressiveness of proba-

bilistic XML models. VLDB Journal, 18(5), 2009.
[10] B. T. Adler and L. de Alfaro. A content-driven reputation system for the Wikipedia. In

WWW, 2007.
[11] A. Al-Khudair, W. A. Gray, and J. C. Miles. Dynamic evolution and consistency of

collaborative configurations in object-oriented databases. InProc. TOOLS, 2001.
[12] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on model versioning approaches.

IJWIS, 5, 2009.
[13] M. L. Ba, T. Abdessalem, and P. Senellart. Towards a version control model with uncer-

tain data. InPIKM, 2011.
[14] M. L. Ba, T. Abdessalem, and P. Senellart. Uncertain version control in open collabora-

tive editing of tree-structured documents. InProc. DocEng, 2013.
[15] W. Cellary and G. Jomier. Consistency of versions in object-oriented databases. In

VLDB, 1990.
[16] S. Chacon. Git Book.http://book.git-scm.com/.
[17] G. Cobéna and T. Abdessalem. A comparative study of XML change detection al-

gorithms. InServices and Business Computing Solutions with XML: Applications for
Quality Management and Best Processes. IGI Global, 2009.

19

[18] G. Cobéna, S. Abiteboul, and A. Marian. Detecting Changes in XML Documents. In
ICDE, 2002.

[19] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version Control with Subver-
sion. O’Reilly Media, 2008.

[20] R. Conradi and B. Westfechtel. Towards a uniform version model for software configu-
ration management. InSystem Configuration Management, 1997.

[21] G. de la Calzada and A. Dekhtyar. On measuring the quality of Wikipedia articles. In
WICOW, 2010.

[22] L. Khan, L. Wang, and Y. Rao. Change detection of XML documents using signatures.
In Real World RDF and Semantic Web Applications, 2002.

[23] E. Kharlamov, W. Nutt, and P. Senellart. Updating Probabilistic XML. In Updates in
XML, 2010.

[24] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query evaluation over probabilistic XML.
VLDB Journal, 18(5), 2009.

[25] B. Kimelfeld and Y. Sagiv. Modeling and querying probabilistic XML data. SIGMOD
Rec., 37(4), 2009.

[26] B. Kimelfeld and P. Senellart. Probabilistic XML: Models and complexity. In Z. Ma and
L. Yan, editors,Advances in Probabilistic Databases for Uncertain Information Man-
agement. Springer-Verlag, 2013.

[27] A. Koc and A. U. Tansel. A survey of version control systems. InICEME, 2011.
[28] T. Lindholm, J. Kangasharju, and S. Tarkoma. Fast and simple XML tree differencing

by sequence alignment. InDocEng, 2006.
[29] M. Magnani and D. Montesi. A survey on uncertainty management in data integration.

J. Data and Information Quality, 2, 2010.
[30] S. Maniu, B. Cautis, and T. Abdessalem. Building a signed network from interactions in

Wikipedia. InDBSocial, 2011.
[31] A. Nierman and H. V. Jagadish. ProTDB: probabilistic data in XML. In VLDB, 2002.
[32] S. Rönnau and U. Borghoff. Versioning XML-based office documents.Multimedia Tools

and Applications, 43, 2009.
[33] S. Rönnau and U. Borghoff. XCC: change control of XML documents.CSRD, 2010.
[34] L. I. Rusu, W. Rahayu, and D. Taniar. Maintaining versions of dynamic XML documents.

In WISE, 2005.
[35] M. Sabel. Structuring wiki revision history. InWikiSym, 2007.
[36] C. Thao and E. V. Munson. Version-aware XML documents. In DocEng, 2011.
[37] M. van Keulen and A. de Keijzer. Qualitative effects of knowledge rules and user feed-

back in probabilistic data integration.VLDB Journal, 18, 2009.
[38] M. Van Keulen, A. de Keijzer, and W. Alink. A Probabilistic XML Approach to Data

Integration. InICDE, 2005.
[39] J. Voss. Measuring Wikipedia. InISSI, 2005.
[40] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: An Effective Change Detection Algorithm

for XML Documents. InICDE, 2003.

20

