Controle de version incertain dans
I’édition collaborative ouverte de
documents arborescents

M. Lamine Ba
Institut Mines—Télécom; Télécom ParisTech; LTCI
Paris, France
mouhamadou.ba@telecom-paristech.fr

Talel Abdessalem
Institut Mines—Télécom; Télécom ParisTech; LTCI
Paris, France
talel.abdessalem@telecom-paristech.fr

Pierre Senellart
Télécom ParisTech & The University of Hong Kong
Paris, France & Hong Kong
pierre.senellart@telecom—paristech.fr

En vue de faciliter I'enrichissement, I'échange et le pgetde contenu, les plates-formes col-
laboratives Web telles que Wikipedia ou Google Docs peengties interactions a large échelle
entre un grand nombre de contributeurs. Cette collabarat®requiert pas une connaissance
préalable du niveau d’expertise et de fiabilité des pawditip. La gestion de version est donc
essentielle pour garder une trace de I'évolution du conpamtagé et de la provenance des contri-
butions. Dans de tels environnements, l'incertitude edhewaeusement omniprésente a cause
des sources non fiables, des contributions incompletegeéaises, des éditions malveillantes et
des actes de vandalisme possible, etc. Pour gérer cettétunde, nous utilisons un modéle XML
probabiliste comme élément de base de notre systeme déleafgrversion. Chaque version d’'un
document partagé est représenté par un arbre XML et le dotume en entier, incluant toutes
ses différentes versions, est modélisé en un document Xiglhatniliste. L'incertitude est évaluée
via le modéle probabiliste et la mesure de fiabilité assaxié@aque source, chaque contributeur,
ou chaque événement d’'édition. Ceci résulte en une mesingeditude sur chaque version et
chaque partie du document. Nous démontrons que les op&atiassiques de gestion de ver-
sion peuvent étre implémentées directement comme opésatio le modéle XML probabiliste ;
son efficacité comparée aux systémes de contrble de versiemunistes est démontrée sur des
données réelles.

Mots-clés
XML, travail collaboratif, données incertaines, gesti@mrsion, documents arborescents

1 Introduction

Version Control in Open Environments In many collaborative editing systems, where
several users can provide content, content managemersad ba version control. A version
control system tracks the versions of the content as welhaages. Such a system enables
fixing error made in the revision process, querying pastiorss and integration of content
from different contributors. As surveyed in [12,27], mudfod related to version control has
been carried out both in research and in applications. Tinegpapplications were collabora-
tive document authoring process, computer-aided desighsaftware development systems.
Currently, powerful version control tools, such as Subeer$l9] and Git [16], efficiently
manage large source code repositories and shared files/stem

However, existing approaches leave no room for uncertdiatydling, for instance, un-
certain data resulting from conflicts. Conflicts are commmonallaborative editing tasks, in
particular in an open environment. They arise whenever woant edits attempt to change
the same content. As a result, conflicts introduce some ariti@g in content change man-
agement. But sources of uncertainties in the version cbptozess are not only due to con-
flicts. Indeed, there are inherently uncertain applicaiosing version control, such as web-
scale collaborative platforms: Platforms such as Wikipd@i or Google Docs [2] enable
unbounded interactions between a large number of contnibuivithout prior knowledge of
their level of expertise and reliability. In these systenexsion control is used for keeping
track of the evolution of the shared content and its proveeaimn such environments, uncer-
tainty is ubiquitous due to the unreliability of the sourdbe incompleteness and imprecision
of the contributions, the possibility of malicious editiagd vandalism acts, etc. Therefore, a
version control technique able to properly manipulate wage data may be very helpful in
this kind of applications. We detail application scenariegt.

Uncertainty in Wikipedia Versions Some web-scale collaborative systems such as Wikipe-
dia have no write-access restrictions over documents. As@aty multi-version documents
include data from different users. As shown in [39], Wiki@etlas known an exponential
growth of contributors and editions per articles. The opeth face features lead to contribu-
tions with variable reliability and consistency dependbaih on the contributors’ expertise
(e.g., novice or expert) and the scope of the debated ssbjgtthe same time, edit wars, ma-
licious contributions like spams, and vandalism acts capla at any time during document
evolution. Therefore, the integrity and the quality of eadiicle may be strongly altered. Sug-
gested solutions to these critical issues are reviewingsaqoolicies for articles discussing hot
topics, or quality-driven solutions based on the reputettiof authors, statistics on frequency
of content change, or the trust a given reader has on thematoon [10,21,30]. But restricting
editions on Wikipedia articles to a certain group of prigiel contributors does not suppress
the necessity of representing and assessing uncertaimtidsed, edits may be incomplete,
imprecise or uncertain, showing partial views, misinfotimas or subjective opinions. The
reputation of contributors or the confidence level on saaiaze useful information towards a
guantitative evaluation of the quality of versions and eware of each atomic contribution.
However, a prior efficient representation of uncertaintsgoas document versions remains a
prerequisite.

User Preference at Visualization Time Filtering and visualizing content are also im-
portant features in collaborative environments. In Wiklilge users are not only contributors,
but also consumers, interested in searching and readiognation on multi-version articles.

Current systems constrain the users to visualize eithéatést revision of a given article, even
though it may not be the most relevant, or the version at aifspedate. Users, especially in

universal knowledge management platforms like Wikipetiay want to easily access more
relevant versions or those of authors whom they trust. filgeunreliable content is one of the
benefits of our approach. It can be achieved easily by hidiagontributions of the offending

source, for instance when a vandalism act is detected, areaydime to fit user preferences
and trust in the contributors. Alternatively, to deal witisiformation, it seems useful to pro-
vide versions to users with information about their amodnirertainty and the uncertainty
of each part of their content. Last but not least, users a@liation time should be able to
search for a document representing the outcome of combyarig (e.g., some of them might
be incomplete, imprecise, and even uncertain taken apan) different versions. We demon-
strate in [7] an application of these new modes of interadidVikipedia revisions: an article

is no longer considered as the last valid revision, but as @enef all possible (uncertain)

revisions.

Approach Since version control is primordial in uncertain web-saaiaborative systems,
representing and evaluating uncertainties throughout d&ision management becomes cru-
cial for enhancing collaboration and for overcoming praidesuch as conflict resolution and
information reliability management. In this paper, we gre@an uncertain XML version con-
trol model tailored to multi-version tree-structured do@nts in open collaborative editing
contexts. Data, that is, office documents, HTML or XHTML doeents, structured Wiki for-
mats, etc., manipulated within the given application sdesaare tree-like or can be easily
translated into this form; XML is a natural encoding for titeuctured data. Work related
to XML version control has focused on change detection [2828, 33, 40]. Only some, for
instance [32, 34, 36], have proposed an extensive senutgtad data model aware of version
control; see Section 6 for details. Uncertainty managenmeKML has received a great at-
tention in the probabilistic database community, esplgcfat data integration purposes. A
set of elaborate uncertain (probabilistic) XML data mod®@|23, 31, 38] with several distinct
semantics of probability distributions over data items haen proposed. [9] and [23] follow
a general probabilistic XML representation system defiriregconcept of probabilistic doc-
uments (abbr. p-documents) which generalizes previousiygsed uncertain XML models.
In our model, we handle uncertain data through a probabik@¥L model as a basic com-
ponent of our version control framework. Each version ofaretd document is represented by
an XML tree. At the abstract level, we consider a multi-vensKML document with uncertain
data based on random events, XML edit scripts attached o #mel a directed acyclic graph
of these events. For a concrete representation the wholerd, with its different versions,
is modeled as a probabilistic XML document representing Bl Xree whose edges are an-
notated by propositional formulas over random events. Eaopositional formula models
both the semantics of uncertain editions (insertion andtabel) performed over a given part
of the document and its provenance in the version contralge®. Uncertainty is evaluated

using the probabilistic model and the reliability measissogiated to each source, each con-
tributor, or each editing event, resulting in an unceriameasure on each version and each
part of the document. The directed acyclic graph of randoentsvmaintains the history of
document evolution by keeping track of its different staired their derivation relationships.
As last major contribution of this paper, we show that statdeersion control operations,
in particular update operation, can be implemented diexgloperations on the probabilis-
tic XML model; efficiency with respect to deterministic viens control systems like Git and
Subversion is demonstrated on real-world datasets.

Outline After some preliminaries in Section 2, we review the probstic XML model we
use in Section 3. We detail the proposed probabilistic XMtsian control model and some
strong properties thereof in Section 4. In Section 5, we deate the efficiency of our
model with respect to deterministic version control systéhmough measures on real-world
datasets, and we describe some of the content filtering diiesi(Cf. Section 5.2) of our
approach. Finally, we review some related work in Sectionrgtial ideas leading to this
work were presented as a PhD workshop article in [13]; thergggon of the model, with
translations of version control operations into operaion the probabilistic XML model,
proofs of translation correctness, and experimental &ibd, are fully novel.

This work is accepted for publication at the ACM DocEng 20&8ference [14].

2 Preliminaries

In this section, we present some basic version control nstamd the semi-structured XML
document model underlying our proposalnmulti-version documenmnefers to a set of versions
of the same document handled within a version control psodeach version of the document
represents a given state (instance) of the evolution ofwéisioned document. A typical
version control model is built on the following common notso

Document version A version is a conventional term that refers to a documeny ¢op
document-oriented version control systems. The diffevergions of a document are related
by derivation operations. A derivation consists of cregmew version by first copying a pre-
viously existing one before performing modifications. Soreesions, representing variants,
are in a derivation relationship with the same origin. Thaardas (parallel versions) char-
acterize a non-linear editing history with several digtim@anches of the same multi-version
document. In this history, a branch is a linear sequencersioes. Instead of storing the com-
plete content of each version, most version control appresonly maintainsgliffs between
states, together with meta-information on states. Thegess{or commits in Git world [16])
model different sets of changes that are explicitly vakdaat distinct stages of the version
control process. A state also comes with information abbetdontext (e.g., author, date,
comment) in which these modifications are done. As a consegeach version depends on
the complete history leading up to a given state. We willdwllhere the same approach for
modeling the different versions of a document within ounfeavork.

Version Space Since the content of each version is not fully saved, therstiipe manner
to retrieve it when needed. The version space represenggittieg history over a versioned
document (e.g., wiki version history as given in [35]). Itintains necessary information
related to the versions and their derivations. As menticataale, a derivation relationship
implies at least one input version (several incoming vesifor merge operations) and an
output version. Based on this, we model similarly to [16] esien space of any multi-version
document as directed acyclic graph

Unordered XML Tree Documents Our motivating applications handle mostly tree-structu-
red data. As a result, we consider data as unordered XML tige that the proposed model
can be extended to ordered trees (this may require restittie set of valid versions to those
complying with a specific order, we leave the details for fatwork); we choose unordered
trees for convenience of exposition given that in many casasr is unimportant. Let us as-
sume a finite set? of strings (i.e., labels or text data) and a finite géf identifiers such
that.Z N .7 = 0. In addition, letd anda be respectively a labeling function and an identi-
fying function. Formally, we define akML documenas anunordered labeledtree .7 over
identifiers in.Z with a and® mapping each nodec .7 respectively to a unique identifier
a(x) € .# and to a stringP(X) € .. The tree is unranked, i.e., the number of children of each
node in7 is not assumed to be fixed. Given an XML trég we defined(.7) anda(.7)

as respectively the set of its node strings and the set obds identifiers. For simplicity, we
will assume all trees have the same root node (same labed, iskemtifier).

[1] article
[2] title [3] para [4] sect
[10] article-title [11] texty [12] title [13] para

[19] sect-itle [20] text

Figure 1: Example XML tree”: Wikipedia article

Example 2.1. Figure 1 depicts an XML tre€’ representing a typical Wikipedia article. The
node identifiers are inside square brackets below nodeggrifihe title of this article is given
in nodel0. The content of the document is structured in sections {“s&ath their titles and
paragraphs (“para") containing the text data.

XML Edit Script Based on unique identifiers, we consider two basic edit djpaover
the specified XML document model: nodesertionsanddeletions We denote an insertion
by ins"> X whose semantics over any XML tree consists of inserting no@ee suppose is
not already in the tree) as a child of a certain ngdatisfyinga (y) = i. If such a node is not
found in the tree, the operation does nothing. Note that seriion can concern a subtree,
and in this case we simply refer withto the root of this subtree. Similarly, we introduce a
deletion aslel' wherei is the identifier of the node to suppress. The delete operatimoves
the targeted node, if it exists, together with its descetgjdrom the XML tree. We conclude

by defining an XML edit scriptA =< ug,Up,...,U; >, as a sequence of a certain number of
elementary edit operationg (eachuj, with 1 < j <1, being either an insertion or a deletion)
to carry out one after the other on an XML document for prodg@& new one. Given a tree
7, we denote the outcome of applying an edit scfigiver.7 by [.7]2. Even though in this
work we rely on persistent identifiers on tree nodes to defaieoperations, the semantics
of these operations could be extended to updates expregsgaebies, especially useful in
distributed collaborative editing environments wherenitfeers may not be straightforward to
share.

3 Probabilistic XML

We briefly introduce in this section the probabilistic XMLpresentation system we use
as a basis of our uncertain version control system. For meiils, see [9] for the general
framework and [23] for the specifierXMLf® model we used. These representation systems
are originally intended for XML-based applications sucheb data integration and extrac-
tion. For instance, when integrating various semi-stngrtiWeb catalogs containing personal
data, some problems such as overlapping or contradict®fieguent. Typically, one can find
for the same person name two distinct affiliations in differeatalogs. A probabilistic XML
model is used to automatically integrate such data sourgesbmerating all possibilities:
(a) the system considers each incoming source; (b) it mapdaiia items with the existing
items in the probabilistic repository to find correspondEnand; (c) giving that, it represents
the matches as a set of possibilities. The resolution of iotsfls thus postponed to query
time, where each query will return a set of possibilitiesstibgr with their probabilities. The
intuition is that resolving semantic issues before an éffeantegration is unfeasible in this
situation. On one hand, it is often a tedious and error-preselution process. On the other
hand, there might not be any certain knowledge about thaliéty of the sources, and data
completeness.

p-Documents A probabilistic XML representation systésa compact way of representing
probability distributions over possible XML documentstlie case of interest here, the prob-
ability distribution is finite. Formally, a probabilisticML distribution space, or px-space”/
over a collection of uncertain XML documents is a coufdep) whereD is a nonempty finite
set of documents ang: D — (0,1] is a probability function that maps each documetin

D to a rational numbep(d) € (0, 1] such thatycpp(d) = 1. A p-documentor probabilistic

—

XML documentusually denoted”, defines a compact encoding of a px-spafe

PrXxMLfe: Syntax and Semantics We consider in this paper one specific class of p-
documentsPrxML"e [23] (wherefie stands forformula of independent evejitsestricting

to this particular class allows us to give a simplified présgon, see [9, 23] for a more gen-
eral setting. Assume a set mfdependent random Boolean variahles event variablesn
short,by, by, ..., by and their respective probabiliti€d (by), Pr(by) ..., Pr(bm) of existence.

A PrXMLFe p-document is an unordered, unranked, and labeled treewekiery node (except

for the root)x may be annotated with an arbitrary propositional fornfigé) over the event
variabledbs, by, ..., by. Different formulas can share common events, i.e., thergbeasome

correlation between formulas and the number of event vimsab the formulas may vary from
one node to another. .

A valuationv of the event variableb; ...bn, induces over? one particular XML docu-
mentsv(g/@\): the document where only nodes annotated with formulasat@dLtotrue by v
are kept (nodes whose formulas are valuatedite by v are deleted from the tree, along with
their descendants). Given a p-documéfh\I the possible worldf ﬁ denoted a:pwd(@
is the set of all such XML documents. Tipeobability of a given possible world of P is
defined as the sum of the probability of the valuations thelthd. The set of possible worlds,
tggether with their probabilities, defines themanticof 2, the px-spac@gz\]] associated to

iz
(@ r (b) r

r r
| | | |
S S S S
bVvb -
VB TP /\ L
P1 P2 p1 p2 P1 P2
| | | | I I
12} o 11 to tl t2
2 di d> d3

Figure 2: (@PrXMLe p-documentZ; (b) Three possible worlds;, d; andds

Example 3.1. Figure 2 sketches on the left-side a conciet¥MLf€ p-document? and on
the right-side three possible worlds,dl, and &. Formulas annotating nodes are shown just
above them: bv b, and —b, are bound to nodesjpand p respectively. The three possible
worlds d, d> and & are obtained by setting the following valuations ¢&nd by: (a) true and
false; (b) true andtrue (or false andtrue); (c) false andfalse. At each execution of the random
process, the distributional node chooses exactly the nadese formulas are evaluated at
true given the valuation specified over event variables. Assgimiprobability distribution
over events, for instance Hy;) = 0.4 and Pr(bp) = 0.5, we derive the probability of the
possible world g as Pr(d;) = Pr(b1) x (1—Pr(b2)) = 0.4 x (1-0.5) = 0.2. We can compute
similarly the probabilities of all other possible worlds.

With respect to other probabilistic XML representationtsyss [9],PrXML"e is very suc-
cinct (since arbitrary propositional formulas can be ugedolving arbitrary correlations
among events), i.e., exponentially more succinct than theets of [31,38], and offers tractable
insertions and deletions [23], one key requirement for cweutain version control model.
However, a non-negligible downside is that all non-triviake-pattern) queries over this
model are#P-hard to evaluate [24]. This is not necessarily an issueg,lsnce we favor in
our application efficient updates and retrieval of givengilge worlds, over arbitrary queries.

Data Provenance Uncertain XML management based on XML model also takes
advantage of the various possible semantics of event Vasiabterms of information descrip-
tion. Indeed, besides uncertainty management, the magtepabvide support for keeping in-
formation aboutlata provenancé¢or lineage) based on the event variables. Data provenance
is information of traceability such as change semanticspassible party, timestamp, etc.,
related to uncertain data. To do so, we only need to use tharders of event variables as
representing information about data provenance. As stichsometimes useful to use prob-
abilistic XML representation systems even in the absenael@ble probability sources for
individual events, in the sense that one can manipulate #geimcomplete data models (i.e.,
we only care about possible worlds, not about their proiisds).

4 Uncertain Multi-version XML

In this section we elaborate on our uncertain XML versiontcdmodel for tree-structured
documents edited in a collaborative manner. We build ourehod three main concepts:
version control events, a p-document, and a directed acgcéiph of events. We start by
formalizing a multi-version XML document through a formafohition of its graph of version
space and its set of versions. Then, we formally introduegtbposed model.

4.1 Multi-Version XML Documents

Consider the infinite se¥ of all XML documents with a given root label and identifier.tLe
¥ be a set olersion control events;e...,e,. These events represent the different states of
a tree. We associate to events contextual information aleweigions (authorship, timestamp,
etc.). To each ever is further associated agdit scriptd;. Based on this, we formalize the
graph of version space and the set of versions of any verdigh. document as follows.

Graph of version space Theversion spacés a rooted directed acyclic graph (DAG)=
(7 U{ep}, &) where: (i) the initial version control eves§ ¢ 7/, a special event representing
the first state of any versioned XML tree, is the roo®of(i)) & C 72, defining the edges &,
consists of a set of ordered couples of version control evdfdch edge implicitly describes
a directed derivation relationship between two versionbranchof ¢ is a directed path that
implies a start node; and an end nodej. The latter must be reachable from the former by

traversing a set of ordered edges4in We refer to this branch bBij. A rooted branchs a
branch that starts at the root of the graph.

XML versions An XML version is the document i¥ corresponding to aetof version
control events, the set of events that made this versiondmpm a deterministic version
control system, this set always corresponds to a rootecthriauthe version space graph. In
our uncertain version control system, this set may be amyitrLet us consider the set'2
comprising all sub-parts of". The set of versions of a multi-version XML document is given
by a mappingQ : 27 — 2: to each sets of events corresponds a given tree (theseanees

typically not all distinct). The functio2 can be computed from edit scripts associated with
events as follows:

— Q(0) maps to the root-only XML tree o¥.

— Foralli, forall .7 Cc 27 \{&} Q({g} U.Z) = [Q(.Z)]A.
A multi-version XML document, 7y, is now defined as a pait/,Q) where¥ is a DAG
of version control events, where&sis a mapping function specifying the set of versions
of the document. In the following we propose a more efficieaywo compute the version
corresponding to a set of events, using a p-document faagtor

4.2 Uncertain Multi-Version XML Documents

A multi-version document will bencertainif the version control events, staged in a version
control process, come witlncertaintyas in open collaborative contexts. By version control
events with uncertainty, we mean random events leadingdertain versions and content. As
a consequence, we will rely onpgobability distribution over2”’, that will, together with the
Q mapping, imply a probability distribution over.

Uncertainty modeling We model uncertainty in events by further defining a versiom-c
trol eventg in 7" as a conjunction of semantically unrelated random Booleaiableds, .. ., by,
with the following assumptions: (i) a Boolean variable misdegiven source of uncertainty
(e.g., the contributor) in the version control environméint all Boolean variables in each

are independent; (iii) a Boolean varialilgreused across events correlates different version
control events; (iv) one particular Booleaevisionvariableb("), representing more specifi-
cally the uncertainty in the contribution, is not sharedasrother version control events and
appears positively is;.

Probability Computation We assume given a probability distribution over the Boolean
random variable®;’s (this typically comes from a trust estimation in a conitir, or in a
contribution), which induces a probability distributiomes propositional formulas over the
bj’s in the usual manner [23]. We now obtain the probability afle (uncertain) versiod of

as follows: P(d) = Pr(\/ zcy %) with the probability of each set of evens C 7 given
Q(F)=d
by:

PF)=Pr{ A\ en A -a. (1)
gcF ecV\F

Example 4.1. Figure 3 sketches an uncertain multi-version XML docum&g{ with four
staged version control events. On the left-side, we havedlgon spac&/. The right-side
shows an example of four possible (uncertain) versions batt associated event set. We
suppose thatZyy is initially a root-only document. The three first versior@mrespond to
versions covered by deterministic version control systevhereas the last one is generated
by considering that the changes performed at an intermediatsion control event, here,e
as incorrect. One feature of our model is to provide the gmobi for viewing and modifying

) J1) r T) r T3) r Ta) r

BT | / \ RN / N\
/ s st S s1 S S3 St S3
o—> e / \ I I I I / \ I
\ P1 p2 p1 p1 p3 P4 p1 p2 P4

I I I I I I I I I

o ty t, ty ty t3 tg ST ta

F1={e1} Fo={e1, &} /3—{61, €, 3} Fs={e1, e3}

@ (b)

Figure 3: (a) Graph of Version Space; (b) Four versions aanl thapping truth-values

these kinds of uncertain versions representing virtuasiers. Only edits performed at the
specified version control events are taken into accountemiiecess of producing a version:
in 7, the node r and the subtrees rooted gts respectively introduced apee; and g are
present, while the subtreg pdded at @ does not appear because its parent nogeannot
be found. Finally, given probabilities of version contreleaits, we are able to measure the
reliability of each uncertain versioty;, for eachl <i < 4, based on its corresponding event
set.%; (and all other event sets that map to the same tree).

We straightforwardly observe, for instance with the simgtample in Figure 3, that the
amount of possible (uncertain) versions of any uncertaittirmersion document may grow
rapidly (indeed, exponentially in the number of events).aAgsult, the enumeration and the
handling of all the possibilities with the functid2 may become tedious at a certain point.
To address this issue, we propose an efficient method fordemgin a compact manner the
possible versions together with their truth values. Iitaly, a PrXML € p-document com-
pactly models the set of possible versions of an uncertailti+version XML document. As
stressed in Section 3, a probabilistic tree based on pridgoai formulas provides interesting
features for our setting. First, it describes well a distridn of truth values over a set of un-
certain XML trees while providing a meaningful process talfback a given version and its
probability. Second, it provides an update-efficient repregation system, which is crucial in
dynamic environments such as version-control-basedcgtiolns.

4.3 Probabilistic XML Encoding

We introduce a general uncertain XML version control repngation framework, denoted
by ﬂmv, asa couplé% ,@) where (a)¥ is as before a DAG of events, representing the version
space; (b)@ is aPrXMLf€ p-document with random Boolean variables. . by, representing
efficiently all possible (uncertain) XML tree versions aheit corresponding truth-values.

We now define the semantics of such an encoding as the umcertgti-version document
(¢,Q) where¥ is the same anf is defined as follows. For al%#7 C ¥, let BT be the set
of all random variables occurring in one of the eventsandB~ be the set of all revision
variablesb()’s for g notin.%. Letv be the valuation oby ...by that sets variables & to
true, variables oB™ tofalse, and other variables to an arbitrary value. Wee#) := v(2).

10

The following shows that this semantics is compatible with px-space semantics of p-
documents on the one hand, and the probability distribwtedimed by uncertain multi-version
documents on the other hand.

—~

Proposition 4.1. Let (¢, 2?) be an uncertain version control representation framewarl a

(¢,Q) its semantics as just defined. We further assume that allui@sroccurring inZ?
can be expressed as formulas over the event§ @te., we do not make use of thgin-

dependently of version control events). Then the px-sﬁl@]sdefines the same probability
distribution overZ asQ.

The proof is straightforward and relies on Equation (1).

4.4 Updating Uncertain Multi-Version XML

We implement the semantics of standard update operatiotegarf our probabilistic XML
representation system. An update over an uncertain mefsiion document corresponds to
the evaluation of some uncertain edits on a given (uncgntairsion. With the help of a triple
(A,e,€), we refer to an update operation @&sd0P, o ¢ WhereA is an edit scripte is an
existing version control event pointing to the edited vamsand€ is an incoming version
control event evaluating the amount of uncertainty in tiidate. We formalizepd0P, ¢ ¢
over my as below.

upd0Py ¢ o(Imy) = (YU ({€},{(e€)}), Q).

An update operation thus results in the insertion of a neveraodl a new edge i, and an
extension o2 with Q' that we now define. For any subs&tC ¥’ (7" is the set of nodes in
¢ after the update), we have:

— ife¢g.7: Q(F)=Q(F);

— otherwise:Q'(.7) = [Q(.F\{€})]2.

What precedes gives a semantics to updates on uncertainvargion documents; how-
ever, the semantics is not practical as it requires consigl@very subset? C ¥’. For a
more usable solution, we perform updates directly on theqiohent representation of the
multi-version document. Algorithm 1 describes how such pdate operatiompd0Py ¢ ¢ IS

performed on top of an uncertain representaﬁ@m,@). First, the graph is updated as be-
fore. Then, for each operatianin A, the algorithm retrieves the targeted nodeéﬁ\lusing
findNodeById (typically this is a constant-time operation). Accordimgthe type of opera-
tion, there are two possibilities.

1. If uis an insertion of a node, the algorithm checks it does not already occur i,
for instance by looking for a node with the same label (thefiemmatchIsFound searches a
matching forx in the subtree, rooted aty). If such a matching existgetFieOfNode returns
its current formuldie,(x) and the algorithm updates it fie,, (x) := fie,(x) V €, specifying that
x appears when this update is valid. OtherwigeiContent andsetFieOfNode respectively
inserts the nodein 2 and sets its associated formulafies(x) = €.

11

—

Input: (¢, 2), updOPp ¢ ¢
Output: updating.-Zmy in ?;W
¢ =9 U({e}{(e&)});
foreach (uin A) do
if u= ins" X then
y:= findNodeById(Z, i) ;
if matchIsFound(.%, X) then
fiey(X) := getFieOfNode (X) ;
‘ setFieOfNode (X, fie,(x) V €);
else
‘ updContent (éi, ins" ¥);
setFieOfNode (X, €);

else

X := findNodeById(Z, i) ;
fiey(X) := getFieOfNode (X) ;
setFie0fNode (X, fig,(X) A —€);

return (¢, %;
Algorithm 1: Update algorithm

2. If uis a deletion of a nodg, the algorithm gets its current formuf,(x) and sets it
to fie,(x) := fiey(x) A =€, specifying thak must be removed from possible worlds where this
update is valid.

The rest of this section shows the correctness and efficiehoyr approach: First, we es-
tablish that Algorithm 1 respects the semantics of upd&esond, we show that the behavior
of deterministic version control systems can be simulateddmsidering only a specific kind
of event set. Third, we characterize the complexity of tigpathm.

Proposition 4.2. Algorithm 1, when ran on a probabilistic XML encodi@\n\,: (%,@T)
of a multi-version documentm,, = (¢,Q), together with an update operatiarpd0P, ¢ ¢,

computes a representatimldePAﬁ’e,(,?r\m,) of the multi-version documenpdOP, ¢ & (Imv)-

upd0P, ¢ (Tini) =(4', 7)
updOPp ¢ (Jmy) =(¥', Q')
in both cases). We need to show tl§dtcorresponds to the semantics &f; that is, if we
note the semantics c(f?’,@) as(¢',Q"), we need to show tha®’ = Q”. By definition,
for # Cv', Q(F)=Q(F)if € ¢ 7, andQ'(F) = [Q(F\{€¢})]* otherwise. Let us
distinguish these two cases.

In the first scenario implying subsef which do not contair/, we haveQ'(7) = Q(F).

Since Iy is the semantics of,,, we know thatQ(.#) = v(.%) for a valuationv that sets
the special revision variablg corresponding t& to false. Now, let us look at the document

v(@). By construction the update algorithm does not delete argerfoom Z but just

Proof. Let:{ (it is clear that the version space DAG is the same

12

inserts new nodes and modifies some formulas. Suppose #ratekists a node € v(,@)

such thatx ¢ v(22 ’). Sincex € v(@) x cannot be a new node i#?’. Thereby, its new
formulafie,(x) after the update is eithdie,(x) \V € or fie,(x) A —€. In both casesfie,(x)
satisfiesv, becausdie,(x) satisfiesv andv setsb’ (and therefor@’) to false. This leads to a
contradiction and we can conclude that for all na@v(@) we havex € V(gz). Similarly,
if a nodexis in . (@), becausey sets€ to false, x will also be in v(,@) Combining the
two, Q"(F) = v(P') = v(P) = Q(F).

The second scenario concerns subsétsn which € appears. We obtain a versi@i(.#’)
by updatingQ(F\{€}) with A. Let us set# = .#'\{€}. There exists a valuation such

thatv(,@) Q (and thus,Q'(F#') = [v(£)]A) with v setting all variables of events iF
to true, and making sure that all other events are seblke. Let v’ be the extension o

where all variables o€ are set tarue. It suffices to prove thatv (&)]A =V (,@’). First,

it is clear that the nodes m(@) which are not modified by are also inv (3/5’). Indeed,
their associated formulas do not changeﬁh and hence the fact these satigfare sufficient
for selecting them i’ with the valuationv’. Suppose now an operatienin A involving

a nodex: u either adds< as a child of a certain nodeor delete. In the former case, ¥
exists inv(@, then its formula satisfieg andx is added in the document when it does not
already exist. With Algorithm 1y is interpreted in?’ by the existence ok undery with

an attached formula being eithiée,(x) = € (newly added) ofie, (x) = fie,(x) V € (reverted
node). As a consequence’,(@) selectsx as in both possible expressionsfi#,(x). Let

us analyze the case wheuds a deletion ofx. If x is not present in/(g/@\), l.e., u changes
nothing in this document. Through Algorithm d results in a new associated formula set to
fie,(x) = fie,(x) A —efor the nodexin Z'. Obviously, we can see thawill not be in v’(@)
because the satisfiability 6&,(x) requires the falseness@fwhose condition does not hold in
Z. Now, if xis found inv(gfz\) udeletes the node, as well as its children, from the document.
As a result, the outcome does not contaimhich is conform to the fact thatg v/ (22) We
have proved that for all nodein [v(Z)]A, xis also inv (9). By similar arguments, we can
show that the converse is verified, i.e., for all node v’(g/i’), X belongs tqv(@]A. O

The semantics of update is therefore the same, whethed siatancertain multi-version
documents, orimplemented as in Algorithm 1. We now showttiiatsemantics is compatible
with the classical update operation of version controleyst.

Proposition 4.3. The formal definition of updating in uncertain multi-versidocuments im-
plements the semantics of the standard update operatioatarmiinistic version control sys-
tems when sets of events are restricted to rooted branches.

Proof. (Sketch) The update in our model changes the version sgasienilarly to a deter-
ministic version control setting. As for its evaluation otiee set of versions, we only need to
show that the operation also produces a new version by uygddwe version mappin@‘0 (with
etheith version control event i) with A as in a deterministic formalism. For building the
resulting version set, the operation as given above is dkBoeh that for all subse¥ C *

13

with e € .7, we carry outA on Q(.%) for producing a new versioQ'(.# U {€}). Amongst
all the subsets satisfying this condition, obviously therat least one which mapsBj. O

We conclude by showing our algorithm is fully scalable:

Proposition 4.4. Algorithm 1 performs the update process over the representaf any
uncertain multi-version XML document with a constant tioenplexity with respect to the
size of the input document. The size of the output prob#ibitree grows linearly in the size
of the update script.

Proof. The first part of the algorithm consists in updati¥ig This is clearly a constant-time
operation, which results in a single new node and a singleeuge i for every edit script.
As for the second d part of the algorithm, i.e., the evaluatibthe update script over the prob-
abilistic tree, Ielj3”| and|A| be respectively the size of the input probabilistic documeh
and the length oA. By mplementmg@ as an amortized hash table, we execute a lookup
of nodes in% based ort indNodeById or matchIsFound in constant time.nfatchIsFound
requires storing hashes of all subtrees of the tree, butitiss structure can be maintained ef-
ficiently — we omit the details here.) The upper bound of Aigion 1 occurs wher consists
only of insertions. Since the functiogetFie0fNode, updContent andsetFie0fNode also
have constant execution costs, we can state that the owanaling time of Algorithm 1 is
only a function of the number of operationsAn As a result, we can conclude that the update
algorithm performs irf©(1) with respect to the number of nodesdA and¥.

At each execution, Algorithm 1 will increase the input prbihiatic tree by a size bounded
by a constant for each update operation, together with #eediall inserts. To sum up, the
size increase is linear in the size of the original edit gcrip O

5 Evaluation of the model

This section describes the experimental evaluation of tbpgsed model, based on real-
world applications. We first present a comparative studyusfroodel with two popular ver-
sion control systems Git and Subversion, in order to pravefiiciency. Then we describe the
advances in terms of content filtering offered by our model.

All times shown are CPU time, obtained by running in-memastg, avoiding disk 1/0
costs by putting all accessed file systems in a RAM disk. Megshbave been carried out
using the same settings for all three systems.

5.1 Performance analysis

We measured the time needed for the execution of two mairatpes: the commit and
checkout of a version. The tests where conducted on Git,&simn, and the implementation
of our model (PrXML). The goal is to show the feasibility ofranodel rather than to prove
that it is more efficient than the mentioned version contystams. We stress that, though for
comparison purposes our system was tested in a deterrogesting, its main interest relies in
the fact that it is able to represent uncertain multi-versilocuments, as we illustrate further
in Section 5.2.

14

H SubversionE 10% Subversion|
1wt — Gt || i — Git
ié), ; — PrXML] é 10%7 — PrXML
s 1 o
g g
€ Ll | E il
£ 100 | E o |
Q L 5 @] F I
&) I o i |
101; E 1015 E|
0 50 100 150 200 250 300 0 200 400 600
Commit (Linux kernel) Commit (Cassandra project)

Figure 4: Measures of commit time over real-world datadetgfithmic y-axis)

T T T T TTTTT £1
i oSubversion|
3 Git
% 10°} PIXML .
E]
p B
g [) O
E 163 §® o @ oo E
E Eg% &) o [o
o 04
O [
102 B E
10 107 10°
Number of edit operations

Figure 5: Commit time vs number of edit operations (for editgs of length> 5)

Datasets and Implementation. As datasets, we used the history of the master branches
of theLinux kernel developmeit] and theApache Cassandra projeft] for the tests. These
data represent two large file systems and constitute two geachples of tree-structured data
shared in an open and collaborative environment. The Liruréd development natively uses
Git. We obtained a local copy of its history by cloning the teaslevelopment branch. We
maintained up-to-date our local copy by pulling every dayltiest changes from the original
source. We followed a similar process with the Cassandasdafa Subversion repository).

In total, each local branch has more than ten thousand can(onitevisions). Each commit
materializes a set of changes, to the content of files or ioierarchy (the file system tree).
In our experiments, we focused on the commits applied to thesyistem tree and ignored
content change. We determined the commits and the denivegiationships from Git and
Subversion logs. We represented the file system in an XML mect and we transposed
the atomic changes to the file system into edit operationsierXML tree. To each inser-
tion, respectively deletion, of a file or a directory in the flystem corresponds an insertion,
respectively a deletion, of a node in the XML tree.

15

400 Subversiory, 200! Subversior]|
@ — Git @ — Git
< — PrxXML £ — PrXML
o 300) | o 3000 8
£ E
5 =
3 200} 1§ 200
[} O
(] Q
e <
© 100} 1 9 100
0 50 100 150 200 250 30 0 200 400 600
Revision (Linux kernel) Revision (Cassandra project)

Figure 6: Measures of checkout time over real-world dasa@eear axes)

We implemented our version control model (PrXML) in Java. Uéed the Java APIs
SVNKIit [5] and JGit [3] to set up the standard operations obarsion and Git. The pur-
pose was to perform all the evaluations in the same conditi@ubversion uses a set of log
files to track the changes applied to the file system at theréifit commits. Each log file con-
tains a set of paths and the change operations associataditgath. As for Git, it handles
several versions of a file system as a set of related Git trggetstrepresented by the hashes
of their content. A Git tree object represents a snapshdteofile system at a given commit.

Cost analysis. Figures 4 and 6 compare the cost of deenmitand thecheckoubperations
in Subversion, Git, and PrXML. The commit time indicates time needed by the system
to create a version (commit), whereas the checkout timespands to the time necessary to
compute and retrieve the sought version. The obtainedtsesiubw clearly that PrXML has
good performance with respect to Git and Subversion systdine experiments were done
using the datasets obtained from the Linux Kernel and Cdsaamojects, as indicated above.
For both datasets, we observe in Figure 4 that our model hgsnaral a low commit cost
(note that the y-axes are logarithmic on Figure 4).

An in-depth analysis of the results show that the commitcdepend in our model on the
number of edit operations associated to the commits (sagd-t§), as implied by Proposi-
tion 4.4. However, PrXML remains efficient compared to theeotsystems, except for some
few commits characterized by a large number of edits (at l&@s hundred edit operations).
This can be explained by the fact that our model performsditeoperations over XML trees,
whereas Git stores the hashes of the files indexed by thdalyetames, and Subversion logs
the changes together with the targeted paths in flat files.n&ertion of a subtree (a hierar-
chy of files and directories) in the file system can be treasea simple operation in Git and
Subversion, whereas it requires a series of node inseiitiang model.

Our model is able to generate linear versions (correspgnidirevent sets that are rooted
branches) as well as arbitrary ones. However, traditioedion control systems are only able
to produce linear versions. As a consequence, in this papdbgused our experiments on
retrieving linear versions for comparison purposes. Fedgushows the measures obtained for

16

the checkout of successive versions in PrXML, Git and Sudwar The x-axis represents
version numbers. Retrieving a version numheaequires the reconstruction of all previous
versions (1 ton—1). The results obtained show that our model is significambre effi-
cient than Subversion for both datasets (Linux Kernel angs@adra projects). Compared
to Git, PrXML has a lower checkout cost for initial versiomngile it becomes less efficient
in retrieving recent versions for the Cassandra datasete that, traditional version control
models mostly use reversible diffs [34] in order to speedhgpprocess of reconstructing the
recent versions in a linear history.

5.2 Filtering capabilities

Efficient evaluation of the uncertainty and automatic fitigrof unreliable contents are two
key issues for large scale collaborative editing systenvaluation of uncertainty is needed
because a shared document can result from contributionff@fet persons, who may have
different levels of reliability. This reliability can be #®ated in various ways, such as an in-
dicator of the overall reputation of an author (possiblyoauatically derived from the content
of contributions, cf. [10]) or the subjective trust a givesader has in the contributor. For
popular collaborative platforms, like Wikipedia, an autttia management of conflicts is also
necessary because the number of contributors is often aegg.l This is especially true for
documents related to hot topics, where the number of cam#lictl vandalism acts can evolve
rapidly and compromise document integrity.

In our model, filtering unreliable contents can be done gasilsetting tofalse the Boolean
variables modeling the corresponding sources. This carohe dutomatically, for instance
when a vandalism act is detected, or at query time to fit usfemnces and opinion about
the contributors. A shared document can also be regardéukasdrge of all possible worlds
modeled by the generated revisions. We demonstrate in [@pplication of these new filter-
ing and interaction capabilities to Wikipedia revisions:aaticle is no longer considered as the
last valid revision, but as a merge of all possible (uncejtavisions. The overall uncertainty
on a given part of the article is derived from the uncertaaftthe revisions having affected it.
Moreover, the user can view the state of a document at a ggxesion, removing the effect of
a given revision or a given contributor, or focusing only ba &ffect of some chosen revisions
or some reliable contributors.

We also tested the possibility for the users to handle movarazed operations over critical
versions of articles such as vandalized versions. We chusenbst vandalized Wikipedia
articles (as given byVikipedia:Most_vandalized_pagesnd we used our model to study
the impact of considering as reliable some versions affielsjevandalism. We succeeded in
reconstructing the chosen articles as if the vandalism leadrmbeen removed; obtaining this
special version of the article is very efficient, since it sists in applying a given valuation to
the probabilistic document, which is a checkout operatibnse timing is comparable to what
is shown in Figure 6. Note that in the current version of Wadfa, the content of vandalized
versions is systematically removed from the presentedorecs an article, even if some users
may want to visualize them for various reasons. Our experismbave shown that we can
detect the vandalism as well as Wikipedia robots do, andnaatically manage it in PrXML,
keeping all uncertain versions available for checkout.

17

6 Related work

Our previous work. We presentin [7,13] initial studies towards the design ofiacertain
XML version control system: [7] is a demonstration systeruing on Wikipedia revisions
and showing the benefits of integrating an uncertain XML ie@rgontrol approach in web-
scale collaborative platforms; [13] is a PhD workshop papén early ideas behind modeling
XML uncertain version control.

Version Control Systems. While alot of work was carried out on version control in oltjec
oriented systems (e.g., [8, 11, 15, 20]), recent researdhta@ois are focusing on document-
oriented models. Many products, seergaseral-purpose systeprare used for version con-
trol over different kind of documentsSubversion, ClearCase, Git, BitkeepandBazaar
are some examples of them. In general, the considered ajy@®ao not take into account
the semantics of the changes represented by the successsvens. The concern is the re-
construction of the committed versions, rather then theetstdnding of the evolution of the
modeled world. In Subversion [19] and similar systems, ie@rsontrol is based on edit dis-
tance algorithms designed for flat text, whereas the Gitligjh6] of tools uses cryptographic
approaches. For XML and structured documents, both teabsigre inadequate because the
semantics of the changes is crucial in this case. A lot of wa@& done on change detection on
XML documents, and differer{ML diff tools have been developed [18, 28, 33]. An in-depth
analysis of the proposed approaches can be found in [17]id&eshat, XML version con-
trol models such as [34] and [36] store all versions in theesXiWlL document, and extend
the XML schema of the latter with some elements used for thetitication of each version.
However, the drawback of these approaches is the redunadicg content shared between
different versions and the cost of the updates operations.

Probabilistic XML. Uncertainty handling in XML was originally associated te tprob-
lem of automatic Web data extraction and integration. Is duntext, uncertainty may have
different origins: the extraction process, the unreligpf the data sources, the incomplete-
ness of the data, etc. Several efforts have been made andpsobabilistic approaches have
been proposed (see [29] for a survey), especially the wovanfKeulen et al. [37,38]. Then
a representation system that generalizes all the existodgts was proposed in [9] and [23];
we refer to [26] for a survey of the probabilistic XML litetat.

7 Conclusion

We presented in this paper an uncertain XML version controtleh tailored to multi-
version tree-structured documents, in open collabora&ieng contexts. This is one of the
first actual work focusing on concrete applications of thisteng literature on probabilistic
XML [9, 23-26, 31, 38]. The comparison of our model to the maspular version control
systems, done on real-world data, shows its efficiency. Mae our model offers new filter-
ing and interaction capabilities which are crucial in opetlaborative environments, where
the data sources, the contributors and the shared contemnitaarently uncertain. The main

18

direction for future developments is the support of more gl@xversion control operations,
notablymerging Similarly to insertions and deletions, it is possible t@lement merging by
directly modifying the p-document, leading to an efficierdmagement of uncertain versions.
At last, the model could be extended to also support othetskat edit operations likenoves
of intermediate nodes in XML.

8 Acknowledgements

This work was partially supported by the Tle-de-France aegl DROD project, and the
French government under the STIC-Asia program, CCIPX ptojé/e would like to thank
the anonymous reviewers for their valuable suggestionspndving this paper.

References

[1] Cassandra Projechttp://cassandra.apache.org/.
[2] Google Drive.https://drive.google.com/.
[3] Java Git.http://wuw.eclipse.org/jgit/.
[4] Linux Kernel. https://www.kernel.org/.
[5] [Sub]Versioning for Javahttp://svnkit.com/.
[6] Wikipedia Platform.http://www.wikipedia.org/.
[7] T. Abdessalem, M. L. Ba, and P. Senellart. A probabiixtML merging tool. INEDBT,
2011. Demonstration.
[8] T. Abdessalem and G. Jomier. VQL: A query language fortimestsion databases. In
DBPL, 1997.
[9] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellartn @e expressiveness of proba-
bilistic XML models. VLDB Journa) 18(5), 2009.
[10] B. T. Adler and L. de Alfaro. A content-driven reputatigystem for the Wikipedia. In
WWW 2007.
[11] A. Al-Khudair, W. A. Gray, and J. C. Miles. Dynamic eveion and consistency of
collaborative configurations in object-oriented databaseProc. TOOLS$2001.
[12] K. Altmanninger, M. Seidl, and M. Wimmer. A survey on nedersioning approaches.
IJWIS 5, 2009.
[13] M. L. Ba, T. Abdessalem, and P. Senellart. Towards ai@ersontrol model with uncer-
tain data. InPIKM, 2011.
[14] M. L. Ba, T. Abdessalem, and P. Senellart. Uncertairsiegr control in open collabora-
tive editing of tree-structured documents.Rroc. DocEng2013.
[15] W. Cellary and G. Jomier. Consistency of versions inecbpriented databases. In
VLDB, 1990.
[16] S. Chacon. Git Bookhttp://book.git-scm.com/.
[17] G. Cobéna and T. Abdessalem. A comparative study of XMange detection al-
gorithms. InServices and Business Computing Solutions with XML: Appdins for
Quality Management and Best Procesd€d Global, 2009.

19

[18] G. Cobéna, S. Abiteboul, and A. Marian. Detecting Clemnigjyn XML Documents. In
ICDE, 2002.

[19] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilatersion Control with Subver-
sion O’Reilly Media, 2008.

[20] R. Conradi and B. Westfechtel. Towards a uniform versiwodel for software configu-
ration management. I18ystem Configuration Managemeh®97.

[21] G. de la Calzada and A. Dekhtyar. On measuring the quafitVikipedia articles. In
WICOW 2010.

[22] L. Khan, L. Wang, and Y. Rao. Change detection of XML dmeunts using signatures.
In Real World RDF and Semantic Web Applicatio2@02.

[23] E. Kharlamov, W. Nutt, and P. Senellart. Updating Pialistic XML. In Updates in
XML, 2010.

[24] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query evation over probabilistic XML.
VLDB Journal 18(5), 2009.

[25] B. Kimelfeld and Y. Sagiv. Modeling and querying proldatic XML data. SIGMOD
Rec, 37(4), 2009.

[26] B. Kimelfeld and P. Senellart. Probabilistic XML: Modeand complexity. In Z. Ma and
L. Yan, editors,Advances in Probabilistic Databases for Uncertain Infotiroa Man-
agementSpringer-Verlag, 2013.

[27] A. Koc and A. U. Tansel. A survey of version control syste InICEME, 2011.

[28] T. Lindholm, J. Kangasharju, and S. Tarkoma. Fast angpk XML tree differencing
by sequence alignment. ocEng 2006.

[29] M. Magnani and D. Montesi. A survey on uncertainty magragnt in data integration.
J. Data and Information Quality2, 2010.

[30] S. Maniu, B. Cautis, and T. Abdessalem. Building a stgnetwork from interactions in
Wikipedia. InDBSocial 2011.

[31] A. Nierman and H. V. Jagadish. ProTDB: probabilistitaden XML. In VLDB, 2002.

[32] S. R6nnau and U. Borghoff. Versioning XML-based offi@dmentsMultimedia Tools
and Applications43, 2009.

[33] S. Rdonnau and U. Borghoff. XCC: change control of XML doeents.CSRD 2010.

[34] L.I. Rusu, W. Rahayu, and D. Taniar. Maintaining ver&@f dynamic XML documents.
In WISE 2005.

[35] M. Sabel. Structuring wiki revision history. WikiSym 2007.

[36] C. Thao and E. V. Munson. Version-aware XML documentsDocEng 2011.

[37] M. van Keulen and A. de Keijzer. Qualitative effects ofdwledge rules and user feed-
back in probabilistic data integratioW’LDB Journal 18, 2009.

[38] M. Van Keulen, A. de Keijzer, and W. Alink. A ProbabilistXML Approach to Data
Integration. INICDE, 2005.

[39] J. Voss. Measuring Wikipedia. I$S| 2005.

[40] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: An EffecterChange Detection Algorithm
for XML Documents. INICDE, 2003.

20

