
Uncertain Version Control in
Open Collaborative Editing of Tree-Structured Documents

M. Lamine Ba
Institut Mines–Télécom;
Télécom ParisTech; LTCI

Paris, France
mouhamadou.ba@
telecom-paristech.fr

Talel Abdessalem
Institut Mines–Télécom;
Télécom ParisTech; LTCI

Paris, France
talel.abdessalem@
telecom-paristech.fr

Pierre Senellart
Télécom ParisTech &

The University of Hong Kong
Paris, France & Hong Kong

pierre.senellart@
telecom-paristech.fr

ABSTRACT

In order to ease content enrichment, exchange, and shar-
ing, web-scale collaborative platforms such as Wikipedia or
Google Docs enable unbounded interactions between a large
number of contributors, without prior knowledge of their
level of expertise and reliability. Version control is then
essential for keeping track of the evolution of the shared
content and its provenance. In such environments, uncer-
tainty is ubiquitous due to the unreliability of the sources,
the incompleteness and imprecision of the contributions, the
possibility of malicious editing and vandalism acts, etc. To
handle this uncertainty, we use a probabilistic XML model
as a basic component of our version control framework. Each
version of a shared document is represented by an XML tree
and the whole document, together with its different versions,
is modeled as a probabilistic XML document. Uncertainty
is evaluated using the probabilistic model and the reliabil-
ity measure associated to each source, each contributor, or
each editing event, resulting in an uncertainty measure on
each version and each part of the document. We show that
standard version control operations can be implemented di-
rectly as operations on the probabilistic XML model; effi-
ciency with respect to deterministic version control systems
is demonstrated on real-world datasets.

Categories and Subject Descriptors

H.2.1 [Database Management]: Logical Design—Data
models; I.7.1 [Document and Text Processing]: Doc-
ument and Text Editing—Version control

Keywords

XML, collaborative work, uncertain data, version control

1. INTRODUCTION

Version Control in Open Environments. In many collab-
orative editing systems, where several users can provide con-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DocEng’13, September 10–13, 2013, Florence, Italy.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-1770-2/13/09 ...$15.00.

http://dx.doi.org/10.1145/2494266.2494277.

tent, content management is based on version control. A
version control system tracks the versions of the content as
well as changes. Such a system enables fixing error made
in the revision process, querying past versions, and inte-
gration of content from different contributors. As surveyed
in [12, 26], much effort related to version control has been
carried out both in research and in applications. The prime
applications were collaborative document authoring process,
computer-aided design, and software development systems.
Currently, powerful version control tools, such as Subver-
sion [18] and Git [15], efficiently manage large source code
repositories and shared filesystems.

However, existing approaches leave no room for uncer-
tainty handling, for instance, uncertain data resulting from
conflicts. Conflicts are common in collaborative editing tasks,
in particular in an open environment. They arise when-
ever concurrent edits attempt to change the same content.
As a result, conflicts introduce some ambiguities in content
change management. But sources of uncertainties in the
version control process are not only due to conflicts. In-
deed, there are inherently uncertain applications using ver-
sion control, such as web-scale collaborative platforms: Plat-
forms such as Wikipedia [6] or Google Docs [2] enable un-
bounded interactions between a large number of contribu-
tors, without prior knowledge of their level of expertise and
reliability. In these systems, version control is used for keep-
ing track of the evolution of the shared content and its prove-
nance. In such environments, uncertainty is ubiquitous due
to the unreliability of the sources, the incompleteness and
imprecision of the contributions, the possibility of malicious
editing and vandalism acts, etc. Therefore, a version con-
trol technique able to properly manipulate uncertain data
may be very helpful in this kind of applications. We detail
application scenarios next.

Uncertainty in Wikipedia Versions. Some web-scale col-
laborative systems such as Wikipedia have no write-access
restrictions over documents. As a result, multi-version doc-
uments include data from different users. As shown in [38],
Wikipedia has known an exponential growth of contributors
and editions per articles. The open and free features lead
to contributions with variable reliability and consistency de-
pending both on the contributors’ expertise (e.g., novice or
expert) and the scope of the debated subjects. At the same
time, edit wars, malicious contributions like spams, and van-
dalism acts can happen at any time during document evolu-
tion. Therefore, the integrity and the quality of each article
may be strongly altered. Suggested solutions to these critical

issues are reviewing access policies for articles discussing hot
topics, or quality-driven solutions based on the reputations
of authors, statistics on frequency of content change, or the
trust a given reader has on the information [10,20,29]. But
restricting editions on Wikipedia articles to a certain group
of privileged contributors does not suppress the necessity
of representing and assessing uncertainties. Indeed, edits
may be incomplete, imprecise or uncertain, showing partial
views, misinformations or subjective opinions. The reputa-
tion of contributors or the confidence level on sources are
useful information towards a quantitative evaluation of the
quality of versions and even more of each atomic contribu-
tion. However, a prior efficient representation of uncertainty
across document versions remains a prerequisite.

User Preference at Visualization Time. Filtering and vi-
sualizing content are also important features in collaborative
environments. In Wikipedia, users are not only contribu-
tors, but also consumers, interested in searching and read-
ing information on multi-version articles. Current systems
constrain the users to visualize either the latest revision of
a given article, even though it may not be the most rele-
vant, or the version at a specific date. Users, especially in
universal knowledge management platforms like Wikipedia,
may want to easily access more relevant versions or those
of authors whom they trust. Filtering unreliable content is
one of the benefits of our approach. It can be achieved eas-
ily by hiding the contributions of the offending source, for
instance when a vandalism act is detected, or at query time
to fit user preferences and trust in the contributors. Alter-
natively, to deal with misinformation, it seems useful to pro-
vide versions to users with information about their amount
of uncertainty and the uncertainty of each part of their con-
tent. Last but not least, users at visualization time should
be able to search for a document representing the outcome
of combining parts (e.g., some of them might be incomplete,
imprecise, and even uncertain taken apart) from different
versions. We demonstrate in [7] an application of these new
modes of interaction to Wikipedia revisions: an article is no
longer considered as the last valid revision, but as a merge
of all possible (uncertain) revisions.

Approach. Since version control is primordial in uncertain
web-scale collaborative systems, representing and evaluat-
ing uncertainties throughout data version management be-
comes crucial for enhancing collaboration and for overcom-
ing problems such as conflict resolution and information reli-
ability management. In this paper, we propose an uncertain
XML version control model tailored to multi-version tree-
structured documents in open collaborative editing contexts.
Data, that is, office documents, HTML or XHTML docu-
ments, structured Wiki formats, etc., manipulated within
the given application scenarios are tree-like or can be easily
translated into this form; XML is a natural encoding for tree-
structured data. Work related to XML version control has
focused on change detection [17, 21, 27, 32, 39]. Only some,
for instance [31, 33, 35], have proposed an extensive semi-
structured data model aware of version control; see Section 6
for details. Uncertainty management in XML has received
a great attention in the probabilistic database community,
especially for data integration purposes. A set of elaborate
uncertain (probabilistic) XML data models [9,22,30,37] with
several distinct semantics of probability distributions over
data items, has been proposed. [9] and [22] follow a general
probabilistic XML representation system defining the con-

cept of probabilistic documents (abbr. p-documents) which
generalizes previously proposed uncertain XML models.

In our model, we handle uncertain data through a proba-
bilistic XML model as a basic component of our version con-
trol framework. Each version of a shared document is rep-
resented by an XML tree. At the abstract level, we consider
a multi-version XML document with uncertain data based
on random events, XML edit scripts attached to them and a
directed acyclic graph of these events. For a concrete repre-
sentation the whole document, with its different versions, is
modeled as a probabilistic XML document representing an
XML tree whose edges are annotated by propositional for-
mulas over random events. Each propositional formula mod-
els both the semantics of uncertain editions (insertion and
deletion) performed over a given part of the document and
its provenance in the version control process. Uncertainty
is evaluated using the probabilistic model and the reliability
measure associated to each source, each contributor, or each
editing event, resulting in an uncertainty measure on each
version and each part of the document. The directed acyclic
graph of random events maintains the history of document
evolution by keeping track of its different states and their
derivation relationships. As last major contribution of this
paper, we show that standard version control operations, in
particular update operation, can be implemented directly as
operations on the probabilistic XML model; efficiency with
respect to deterministic version control systems like Git and
Subversion is demonstrated on real-world datasets.

Outline. After some preliminaries in Section 2, we review
the probabilistic XML model we use in Section 3. We detail
the proposed probabilistic XML version control model and
some strong properties thereof in Section 4. In Section 5,
we demonstrate the efficiency of our model with respect to
deterministic version control systems through measures on
real-world datasets, and we describe some of the content
filtering capabilities (Cf. Section 5.2) of our approach. Fi-
nally, we review some related work in Section 6. Initial ideas
leading to this work were presented as a PhD workshop ar-
ticle in [13]; the description of the model, with translations
of version control operations into operations on the proba-
bilistic XML model, proofs of translation correctness, and
experimental validation, are fully novel.

2. PRELIMINARIES
In this section, we present some basic version control no-

tions and the semi-structured XML document model under-
lying our proposal. A multi-version document refers to a set
of versions of the same document handled within a version
control process. Each version of the document represents
a given state (instance) of the evolution of this versioned
document. A typical version control model is built on the
following common notions.

Document version. A version is a conventional term that
refers to a document copy in document-oriented version con-
trol systems. The different versions of a document are re-
lated by derivation operations. A derivation consists of cre-
ating a new version by first copying a previously existing one
before performing modifications. Some versions, represent-
ing variants, are in a derivation relationship with the same
origin. The variants (parallel versions) characterize a non-
linear editing history with several distinct branches of the
same multi-version document. In this history, a branch is a

linear sequence of versions. Instead of storing the complete
content of each version, most version control approaches
only maintains diffs between states, together with meta-
information on states. These states (or commits in Git
world [15]) model different sets of changes that are explicitly
validated at distinct stages of the version control process. A
state also comes with information about the context (e.g.,
author, date, comment) in which these modifications are
done. As a consequence, each version depends on the com-
plete history leading up to a given state. We will follow here
the same approach for modeling the different versions of a
document within our framework.

Version Space. Since the content of each version is not
fully saved, there must be manner to retrieve it when needed.
The version space represents the editing history over a ver-
sioned document (e.g., wiki version history as given in [34]).
It maintains necessary information related to the versions
and their derivations. As mentioned above, a derivation re-
lationship implies at least one input version (several incom-
ing versions for merge operations) and an output version.
Based on this, we model similarly to [15] a version space of
any multi-version document as a directed acyclic graph.

Unordered XML Tree Documents. Our motivating ap-
plications handle mostly tree-structured data. As a result,
we consider data as unordered XML trees. Note that the
proposed model can be extended to ordered trees (this may
require restricting the set of valid versions to those com-
plying with a specific order, we leave the details for future
work); we choose unordered trees for convenience of exposi-
tion given that in many cases order is unimportant. Let us
assume a finite set L of strings (i.e., labels or text data) and
a finite set I of identifiers such that L ∩ I = ∅. In addi-
tion, let Φ and α be respectively a labeling function and an
identifying function. Formally, we define an XML document
as an unordered, labeled tree T over identifiers in I with α
and Φ mapping each node x ∈ T respectively to a unique
identifier α(x) ∈ I and to a string Φ(x) ∈ L. The tree is
unranked, i.e., the number of children of each node in T is
not assumed to be fixed. Given an XML tree T , we define
Φ(T) and α(T) as respectively the set of its node strings
and the set of its node identifiers. For simplicity, we will
assume all trees have the same root node (same label, same
identifier).

[1] article

[2] title

[10] article-title

[3] para

[11] text1

[4] sect

[12] title

[19] sect-title

[13] para

[20] text2

Figure 1: Example XML tree T : Wikipedia article

Example 2.1 Figure 1 depicts an XML tree T representing
a typical Wikipedia article. The node identifiers are inside
square brackets below node strings. The title of this article is
given in node 10. The content of the document is structured
in sections (“sect”) with their titles and paragraphs (“para”)
containing the text data.

XML Edit Script. Based on unique identifiers, we consider
two basic edit operations over the specified XML document

model: node insertions and deletions. We denote an inser-
tion by insi, x whose semantics over any XML tree consists
of inserting node x (we suppose x is not already in the tree)
as a child of a certain node y satisfying α(y) = i. If such a
node is not found in the tree, the operation does nothing.
Note that an insertion can concern a subtree, and in this case
we simply refer with x to the root of this subtree. Similarly,
we introduce a deletion as deli where i is the identifier of
the node to suppress. The delete operation removes the tar-
geted node, if it exists, together with its descendants, from
the XML tree. We conclude by defining an XML edit script,
∆ =< u1, u2, . . . , ui >, as a sequence of a certain number
of elementary edit operations uj (each uj , with 1 ≤ j ≤ i,
being either an insertion or a deletion) to carry out one after
the other on an XML document for producing a new one.
Given a tree T , we denote the outcome of applying an edit
script ∆ over T by [T]∆. Even though in this work we rely
on persistent identifiers on tree nodes to define edit opera-
tions, the semantics of these operations could be extended to
updates expressed by queries, especially useful in distributed
collaborative editing environments where identifiers may not
be straightforward to share.

3. PROBABILISTIC XML
We briefly introduce in this section the probabilistic XML

representation system we use as a basis of our uncertain
version control system. For more details, see [9] for the
general framework and [22] for the specific PrXML

fie model
we used. These representation systems are originally in-
tended for XML-based applications such as Web data inte-
gration and extraction. For instance, when integrating vari-
ous semi-structured Web catalogs containing personal data,
some problems such as overlapping or contradiction are fre-
quent. Typically, one can find for the same person name
two distinct affiliations in different catalogs. A probabilis-
tic XML model is used to automatically integrate such data
sources by enumerating all possibilities: (a) the system con-
siders each incoming source; (b) it maps its data items with
the existing items in the probabilistic repository to find cor-
respondences and; (c) giving that, it represents the matches
as a set of possibilities. The resolution of conflicts is thus
postponed to query time, where each query will return a
set of possibilities together with their probabilities. The in-
tuition is that resolving semantic issues before an effective
integration is unfeasible in this situation. On one hand, it is
often a tedious and error-prone resolution process. On the
other hand, there might not be any certain knowledge about
the reliability of the sources, and data completeness.

p-Documents. A probabilistic XML representation system
is a compact way of representing probability distributions
over possible XML documents; in the case of interest here,
the probability distribution is finite. Formally, a probabilis-
tic XML distribution space, or px-space, S over a collection
of uncertain XML documents is a couple (D , p) where D is
a nonempty finite set of documents and p : D → (0, 1] is a
probability function that maps each document d in D to a
rational number p(d) ∈ (0, 1] such that Σd∈Dp(d) = 1. A p-
document, or probabilistic XML document, usually denoted

P̂, defines a compact encoding of a px-space S .

PrXML
fie: Syntax and Semantics. We consider in this pa-

per one specific class of p-documents, PrXML
fie [22] (where

fie stands for formula of independent events); restricting

to this particular class allows us to give a simplified pre-
sentation, see [9, 22] for a more general setting. Assume a
set of independent random Boolean variables, or event vari-
ables in short, b1, b2, . . . , bm and their respective probabili-
ties Pr(b1),Pr(b2) . . . ,Pr(bm) of existence. A PrXML

fie p-
document is an unordered, unranked, and labeled tree where
every node (except for the root) x may be annotated with
an arbitrary propositional formula fie(x) over the event vari-
ables b1, b2, . . . , bm. Different formulas can share common
events, i.e., there may be some correlation between formulas
and the number of event variables in the formulas may vary
from one node to another.

A valuation ν of the event variables b1 . . . bm induces over
P̂ one particular XML documents ν(P̂): the document
where only nodes annotated with formulas valuated to true

by ν are kept (nodes whose formulas are valuated to false by
ν are deleted from the tree, along with their descendants).

Given a p-document P̂, the possible worlds of P̂, denoted

as pwd(P̂) is the set of all such XML documents. The prob-

ability of a given possible world d of P̂ is defined as the sum
of the probability of the valuations that yield d. The set of
possible worlds, together with their probabilities, defines the

semantics of P̂, the px-space JP̂K associated to P̂.

(a) r

s

p1

b1 ∨ b2

t1

p2

¬b2

t2

P̂

(b) r

s

p1

t1

p2

t2

r

s

p1

t1

r

s

p2

t2

d1 d2 d3

Figure 2: (a) PrXML
fie p-document P̂; (b) Three pos-

sible worlds d1, d2 and d3

Example 3.1 Figure 2 sketches on the left-side a concrete

PrXML
fie p-document P̂ and on the right-side three possi-

ble worlds d1, d2 and d3. Formulas annotating nodes are
shown just above them: b1 ∨ b2 and ¬b1 are bound to nodes
p1 and p2 respectively. The three possible worlds d1, d2 and
d3 are obtained by setting the following valuations of b1 and
b2: (a) true and false; (b) true and true (or false and true);
(c) false and false. At each execution of the random process,
the distributional node chooses exactly the nodes whose for-
mulas are evaluated at true given the valuation specified over
event variables. Assuming a probability distribution over
events, for instance Pr(b1) = 0.4 and Pr(b2) = 0.5, we
derive the probability of the possible world d1 as Pr(d1) =
Pr(b1)×(1−Pr(b2)) = 0.4×(1−0.5) = 0.2. We can compute
similarly the probabilities of all other possible worlds.

With respect to other probabilistic XML representation
systems [9], PrXML

fie is very succinct (since arbitrary propo-
sitional formulas can be used, involving arbitrary correla-
tions among events), i.e., exponentially more succinct than
the models of [30, 37], and offers tractable insertions and
deletions [22], one key requirement for our uncertain ver-
sion control model. However, a non-negligible downside is
that all non-trivial (tree-pattern) queries over this model are

#P-hard to evaluate [23]. This is not necessarily an issue,
here, since we favor in our application efficient updates and
retrieval of given possible worlds, over arbitrary queries.

Data Provenance. Uncertain XML management based on
the PrXML

fie model also takes advantage of the various pos-
sible semantics of event variables in terms of information
description. Indeed, besides uncertainty management, the
model also provide support for keeping information about
data provenance (or lineage) based on the event variables.
Data provenance is information of traceability such as change
semantics, responsible party, timestamp, etc., related to un-
certain data. To do so, we only need to use the semantics
of event variables as representing information about data
provenance. As such, it is sometimes useful to use proba-
bilistic XML representation systems even in the absence of
reliable probability sources for individual events, in the sense
that one can manipulate them as incomplete data models
(i.e., we only care about possible worlds, not about their
probabilities).

4. UNCERTAIN MULTI-VERSION XML
In this section we elaborate on our uncertain XML ver-

sion control model for tree-structured documents edited in
a collaborative manner. We build our model on three main
concepts: version control events, a p-document, and a di-
rected acyclic graph of events. We start by formalizing a
multi-version XML document through a formal definition of
its graph of version space and its set of versions. Then, we
formally introduce the proposed model.

4.1 Multi-Version XML Documents
Consider the infinite set D of all XML documents with a

given root label and identifier. Let V be a set of version con-
trol events e1, . . . , en. These events represent the different
states of a tree. We associate to events contextual informa-
tion about revisions (authorship, timestamp, etc.). To each
event ei is further associated an edit script ∆i. Based on
this, we formalize the graph of version space and the set of
versions of any versioned XML document as follows.

Graph of version space. The version space is a rooted
directed acyclic graph (DAG) G = (V ∪ {e0}, E) where:
(i) the initial version control event e0 /∈ V , a special event
representing the first state of any versioned XML tree, is
the root of G ; (ii) E ⊆ V

2, defining the edges of G , consists
of a set of ordered couples of version control events. Each
edge implicitly describes a directed derivation relationship
between two versions. A branch of G is a directed path that
implies a start node ei and an end node ej . The latter must
be reachable from the former by traversing a set of ordered
edges in E . We refer to this branch by B

j

i . A rooted branch
is a branch that starts at the root of the graph.

XML versions. An XML version is the document in D

corresponding to a set of version control events, the set of
events that made this version happen. In a deterministic ver-
sion control system, this set always corresponds to a rooted
branch in the version space graph. In our uncertain version
control system, this set may be arbitrary. Let us consider the
set 2V comprising all sub-parts of V . The set of versions
of a multi-version XML document is given by a mapping
Ω : 2V → D : to each sets of events corresponds a given tree
(these trees are typically not all distinct). The function Ω

can be computed from edit scripts associated with events as
follows:

• Ω(∅) maps to the root-only XML tree of D .

• For all i, for all F ⊆ 2V \{ei} Ω({ei}∪F) = [Ω(F)]∆i .
A multi-version XML document, Tmv , is now defined as a
pair (G ,Ω) where G is a DAG of version control events,
whereas Ω is a mapping function specifying the set of ver-
sions of the document. In the following we propose a more
efficient way to compute the version corresponding to a set
of events, using a p-document for storage.

4.2 Uncertain Multi-Version XML Documents
A multi-version document will be uncertain if the ver-

sion control events, staged in a version control process, come
with uncertainty as in open collaborative contexts. By ver-
sion control events with uncertainty, we mean random events
leading to uncertain versions and content. As a consequence,
we will rely on a probability distribution over 2V , that will,
together with the Ω mapping, imply a probability distribu-
tion over D .

Uncertainty modeling. Wemodel uncertainty in events by
further defining a version control event ei in V as a con-
junction of semantically unrelated random Boolean variables
b1, . . . , bm with the following assumptions: (i) a Boolean
variable models a given source of uncertainty (e.g., the con-
tributor) in the version control environment; (ii) all Boolean
variables in each ei are independent; (iii) a Boolean variable
bj reused across events correlates different version control
events; (iv) one particular Boolean revision variable b(i),
representing more specifically the uncertainty in the contri-
bution, is not shared across other version control events and
appears positively in ei.

Probability Computation. We assume given a probabil-
ity distribution over the Boolean random variables bj ’s (this
typically comes from a trust estimation in a contributor, or
in a contribution), which induces a probability distribution
over propositional formulas over the bj ’s in the usual man-
ner [22]. We now obtain the probability of each (uncertain)
version d of as follows: Pr(d) = Pr(

∨
F⊆V

Ω(F)=d

F) with the

probability of each set of events F ⊆ V given by:

Pr(F) = Pr




∧

ej∈F

ej ∧
∧

ek∈V \F

¬ek



 . (1)

Example 4.1 Figure 3 sketches an uncertain multi-version
XML document Tmv with four staged version control events.
On the left-side, we have the version space G . The right-side
shows an example of four possible (uncertain) versions and
their associated event set. We suppose that Tmv is initially
a root-only document. The three first versions correspond to
versions covered by deterministic version control systems,
whereas the last one is generated by considering that the
changes performed at an intermediate version control event,
here e2, as incorrect. One feature of our model is to pro-
vide the possibility for viewing and modifying these kinds of
uncertain versions representing virtual versions. Only edits
performed at the specified version control events are taken
into account in the process of producing a version: in T4,
the node r and the subtrees rooted at s1, s3 respectively intro-
duced at e0, e1 and e3 are present, while the subtree p3 added
at e3 does not appear because its parent node s2 cannot be

found. Finally, given probabilities of version control events,
we are able to measure the reliability of each uncertain ver-
sion Ti, for each 1 ≤ i ≤ 4, based on its corresponding event
set Fi (and all other event sets that map to the same tree).

We straightforwardly observe, for instance with the sim-
ple example in Figure 3, that the amount of possible (un-
certain) versions of any uncertain multi-version document
may grow rapidly (indeed, exponentially in the number of
events). As a result, the enumeration and the handling of
all the possibilities with the function Ω may become tedious
at a certain point. To address this issue, we propose an
efficient method for encoding in a compact manner the pos-
sible versions together with their truth values. Intuitively, a
PrXML

fie p-document compactly models the set of possible
versions of an uncertain multi-version XML document. As
stressed in Section 3, a probabilistic tree based on proposi-
tional formulas provides interesting features for our setting.
First, it describes well a distribution of truth values over
a set of uncertain XML trees while providing a meaningful
process to find back a given version and its probability. Sec-
ond, it provides an update-efficient representation system,
which is crucial in dynamic environments such as version-
control–based applications.

4.3 Probabilistic XML Encoding
We introduce a general uncertain XML version control

representation framework, denoted by T̂mv , as a couple (G , P̂)
where (a) G is as before a DAG of events, representing the

version space; (b) P̂ is a PrXML
fie p-document with random

Boolean variables b1 . . . bm representing efficiently all possi-
ble (uncertain) XML tree versions and their corresponding
truth-values.

We now define the semantics of such an encoding as the
uncertain multi-version document (G ,Ω) where G is the
same and Ω is defined as follows. For all F ⊆ V , let B+

be the set of all random variables occurring in one of the
events of F and B− be the set of all revision variables b(i)’s
for ei not in F . Let ν be the valuation of b1 . . . bm that sets
variables of B+ to true, variables of B− to false, and other

variables to an arbitrary value. We set Ω(F) := ν(P̂).
The following shows that this semantics is compatible with

the px-space semantics of p-documents on the one hand,
and the probability distribution defined by uncertain multi-
version documents on the other hand.

Proposition 4.1 Let (G , P̂) be an uncertain version con-
trol representation framework and (G ,Ω) its semantics as
just defined. We further assume that all formulas occurring

in P̂ can be expressed as formulas over the events of V (i.e.,
we do not make use of the bj ’s independently of version con-

trol events). Then the px-space JP̂K defines the same prob-
ability distribution over D as Ω.

The proof is straightforward and relies on Equation (1).

4.4 Updating Uncertain Multi-Version XML
We implement the semantics of standard update opera-

tions on top of our probabilistic XML representation system.
An update over an uncertain multi-version document corre-
sponds to the evaluation of some uncertain edits on a given
(uncertain) version. With the help of a triple (∆, e, e ′), we
refer to an update operation as updOP∆, e, e′

where ∆ is an

G)
e2 e3

e0 e1

e4

(a)

T1) r

s1

p1

t1

p2

t2

T2) r

s1

p1

t1

s2

T3) r

s1

p1

t1

s2

p3

t3

s3

p4

t4

T4) r

s1

p1

t1

p2

t2

s3

p4

t4
F1 = {e1} F2 = {e1, e2} F3 = {e1, e2, e3} F4 = {e1, e3}

(b)

Figure 3: (a) Graph of Version Space; (b) Four versions and their corresponding truth-values

Input: (G , P̂), updOP∆,e,e′

Output: updating Tmv in T̂mv

G := G ∪ ({e′}, {(e, e′)});
foreach (u in ∆) do

if u = insi, x then

y := findNodeById (P̂, i) ;
if matchIsFound(Ty , x) then

fieo(x) := getFieOfNode(x) ;
setFieOfNode (x, fieo(x) ∨ e′);

else

updContent(P̂ , insi, x);
setFieOfNode(x, e′);

else if u = deli then

x := findNodeById (P̂, i) ;
fieo(x) := getFieOfNode(x) ;
setFieOfNode(x, fieo(x) ∧ ¬e′);

return (G , P̂);
Algorithm 1: Update algorithm

edit script, e is an existing version control event pointing
to the edited version and e ′ is an incoming version control
event evaluating the amount of uncertainty in this update.
We formalize updOP∆, e, e′

over Tmv as below.

updOP∆, e, e′
(Tmv) := (G ∪ ({e ′}, {(e, e ′)}), Ω′).

An update operation thus results in the insertion of a new
node and a new edge in G , and an extension of Ω with Ω′

that we now define. For any subset F ⊆ V
′ (V ′ is the set

of nodes in G after the update), we have:

− if e ′ 6∈ F : Ω′(F) = Ω(F);

− otherwise: Ω′(F) = [Ω(F\{e ′})]∆.

What precedes gives a semantics to updates on uncer-
tain multi-version documents; however, the semantics is not
practical as it requires considering every subset F ⊆ V

′.
For a more usable solution, we perform updates directly on
the p-document representation of the multi-version docu-
ment. Algorithm 1 describes how such an update operation
updOP∆,e,e′ is performed on top of an uncertain representa-

tion (G , P̂). First, the graph is updated as before. Then, for
each operation u in ∆, the algorithm retrieves the targeted

node in P̂ using findNodeById (typically this is a constant-
time operation). According to the type of operation, there
are two possibilities.

1. If u is an insertion of a node x, the algorithm checks

if x does not already occur in P̂, for instance by look-
ing for a node with the same label (the function matchIs-

Found searches a matching for x in the subtree Ty rooted

at y). If such a matching exists, getFieOfNode returns
its current formula fie

o
(x) and the algorithm updates it to

fie
n
(x) := fie

o
(x) ∨ e ′, specifying that x appears when this

update is valid. Otherwise, updContent and setFieOfNode

respectively inserts the node x in P̂ and sets its associated
formula as fie

n
(x) = e ′.

2. If u is a deletion of a node x, the algorithm gets its
current formula fie

o
(x) and sets it to fie

n
(x) := fie

o
(x) ∧

¬e ′, specifying that x must be removed from possible worlds
where this update is valid.

The rest of this section shows the correctness and effi-
ciency of our approach: First, we establish that Algorithm 1
respects the semantics of updates. Second, we show that
the behavior of deterministic version control systems can be
simulated by considering only a specific kind of event set.
Third, we characterize the complexity of the algorithm.

Proposition 4.2 Algorithm 1, when ran on a probabilis-

tic XML encoding T̂mv = (G , P̂) of a multi-version doc-
ument Tmv = (G ,Ω), together with an update operation

updOP∆,e,e′ , computes a representation updOP∆,e,e′(T̂mv) of
the multi-version document updOP∆,e,e′(Tmv).

Proof. Let:

{
updOP∆,e,e′(T̂mv) =(G ′, P̂ ′)

updOP∆,e,e′(Tmv) =(G ′,Ω′)
(it is clear that

the version space DAG is the same in both cases). We

need to show that Ω′ corresponds to the semantics of P̂
′;

that is, if we note the semantics of (G ′, P̂ ′) as (G ′,Ω′′), we
need to show that Ω′ = Ω′′. By definition, for F ⊆ V

′,
Ω′(F) = Ω(F) if e′ 6∈ F , and Ω′(F) = [Ω(F\{e′})]∆ oth-
erwise. Let us distinguish these two cases.

In the first scenario implying subsets F which do not con-
tain e ′, we have Ω′(F) = Ω(F). Since Tmv is the semantics

of T̂mv , we know that Ω(F) = ν(F) for a valuation ν that
sets the special revision variable b′ corresponding to e′ to

false. Now, let us look at the document ν(P̂ ′). By construc-

tion the update algorithm does not delete any node from P̂

but just inserts new nodes and modifies some formulas. Sup-

pose that there exists a node x ∈ ν(P̂) such that x 6∈ ν(P̂ ′).

Since x ∈ ν(P̂), x cannot be a new node in P̂
′. Thereby,

its new formula fie
n
(x) after the update is either fie

o
(x)∨e ′

or fie
o
(x) ∧ ¬e ′. In both cases, fie

n
(x) satisfies ν, because

fie
o
(x) satisfies ν and ν sets b′ (and therefore e′) to false.

This leads to a contradiction and we can conclude that for
all node x ∈ ν(P̂), we have x ∈ ν(P̂ ′). Similarly, if a node x

is in F (P̂ ′), because ν sets e′ to false, x will also be in ν(P̂).

Combining the two, Ω′′(F) = ν(P̂ ′) = ν(P̂) = Ω(F).

The second scenario concerns subsets F
′ in which e ′ ap-

pears. We obtain a version Ω′(F ′) by updating Ω(F ′\{e ′})
with ∆. Let us set F = F

′\{e ′}. There exists a valuation

ν such that ν(P̂) = Ω (and thus, Ω′(F ′) = [ν(P̂)]∆) with
ν setting all variables of events in F to true, and making
sure that all other events are set to false. Let ν′ be the
extension of ν where all variables of e′ are set to true. It
suffices to prove that [ν(P̂)]∆ = ν′(P̂ ′). First, it is clear

that the nodes in ν(P̂) which are not modified by ∆ are also

in ν′(P̂ ′). Indeed, their associated formulas do not change

in P̂
′, and hence the fact these satisfy ν are sufficient for

selecting them in P̂
′ with the valuation ν′. Suppose now an

operation u in ∆ involving a node x: u either adds x as a
child of a certain node y or deletes x. In the former case, if

y exists in ν(P̂), then its formula satisfies ν and x is added
in the document when it does not already exist. With Algo-

rithm 1, u is interpreted in P̂
′ by the existence of x under

y with an attached formula being either fie
n
(x) = e ′ (newly

added) or fie
n
(x) = fie

o
(x) ∨ e ′ (reverted node). As a con-

sequence, ν′(P̂ ′) selects x as in both possible expressions of
fie

n
(x). Let us analyze the case where u is a deletion of x. If

x is not present in ν(P̂), i.e., u changes nothing in this doc-
ument. Through Algorithm 1, u results in a new associated

formula set to fie
n
(x) = fie

o
(x) ∧ ¬e for the node x in P̂

′.

Obviously, we can see that x will not be in ν′(P̂ ′) because
the satisfiability of fie

n
(x) requires the falseness of e ′ whose

condition does not hold in F . Now, if x is found in ν(P̂),
u deletes the node, as well as its children, from the docu-
ment. As a result, the outcome does not contain x, which is

conform to the fact that x 6∈ ν′(P̂ ′). We have proved that

for all node x in [ν(P̂)]∆, x is also in ν′(P̂ ′). By similar
arguments, we can show that the converse is verified, i.e.,

for all node x in ν′(P̂ ′), x belongs to [ν(P̂)]∆.

The semantics of update is therefore the same, whether
stated on uncertain multi-version documents, or implemented
as in Algorithm 1. We now show that this semantics is com-
patible with the classical update operation of version control
systems.

Proposition 4.3 The formal definition of updating in un-
certain multi-version documents implements the semantics
of the standard update operation in deterministic version
control systems when sets of events are restricted to rooted
branches.

Proof. (Sketch) The update in our model changes the
version space G similarly to a deterministic version control
setting. As for its evaluation over the set of versions, we only
need to show that the operation also produces a new version
by updating the version mapping B

i
0 (with e the ith version

control event in G) with ∆ as in a deterministic formalism.
For building the resulting version set, the operation as given
above is defined such that for all subset F ⊆ V with e ∈ F ,
we carry out ∆ on Ω(F) for producing a new version Ω′(F∪
{e ′}). Amongst all the subsets satisfying this condition,
obviously there is at least one which maps to B

i
0.

We conclude by showing our algorithm is fully scalable:

Proposition 4.4 Algorithm 1 performs the update process
over the representation of any uncertain multi-version XML

document with a constant time complexity with respect to the
size of the input document. The size of the output probabilis-
tic tree grows linearly in the size of the update script.

Proof. The first part of the algorithm consists in up-
dating G . This is clearly a constant-time operation, which
results in a single new node and a single new edge in G for
every edit script. As for the second part of the algorithm,
i.e., the evaluation of the update script over the probabilis-

tic tree, let |P̂| and |∆| be respectively the size of the input

probabilistic document P̂ and the length of ∆. By imple-

menting P̂ as an amortized hash table, we execute a lookup

of nodes in P̂ based on findNodeById or matchIsFound in
constant time. (matchIsFound requires storing hashes of all
subtrees of the tree, but this data structure can be main-
tained efficiently – we omit the details here.) The upper
bound of Algorithm 1 occurs when ∆ consists only of inser-
tions. Since the functions getFieOfNode, updContent and
setFieOfNode also have constant execution costs, we can
state that the overall running time of Algorithm 1 is only a
function of the number of operations in ∆. As a result, we
can conclude that the update algorithm performs in O(1)

with respect to the number of nodes in P̂ and G .
At each execution, Algorithm 1 will increase the input

probabilistic tree by a size bounded by a constant for each
update operation, together with the size of all inserts. To
sum up, the size increase is linear in the size of the original
edit script.

5. EVALUATION OF THE MODEL
This section describes the experimental evaluation of the

proposed model, based on real-world applications. We first
present a comparative study of our model with two popular
version control systems Git and Subversion, in order to prove
its efficiency. Then we describe the advances in terms of
content filtering offered by our model.

All times shown are CPU time, obtained by running in-
memory tests, avoiding disk I/O costs by putting all accessed
file systems in a RAM disk. Measures have been carried out
using the same settings for all three systems.

5.1 Performance analysis
We measured the time needed for the execution of two

main operations: the commit and checkout of a version.
The tests were conducted on Git, Subversion, and the im-
plementation of our model (PrXML). The goal is to show
the feasibility of our model rather then to prove that it is
more efficient than the mentioned version control systems.
We stress that, though for comparison purposes our system
was tested in a deterministic setting, its main interest relies
in the fact that it is able to represent uncertain multi-version
documents, as we illustrate further in Section 5.2.

Datasets and Implementation. As datasets, we used the
history of the master branches of the Linux kernel develop-
ment [4] and the Apache Cassandra project [1] for the tests.
These data represent two large file systems and constitute
two examples of tree-structured data shared in an open and
collaborative environment. The Linux kernel development
natively uses Git. We obtained a local copy of its history by
cloning the master development branch. We maintained up-
to-date our local copy by pulling every day the latest changes
from the original source. We followed a similar process with
the Cassandra dataset (a Subversion repository).

0 50 100 150 200 250 300

101

102

103

104

Commit (Linux kernel)

C
o
m
m
it

ti
m
e
(m

s)

Subversion

Git

PrXML

0 200 400 600

101

102

103

104

Commit (Cassandra project)

C
o
m
m
it

ti
m
e
(m

s)

Subversion

Git

PrXML

Figure 4: Measures of commit time over real-world datasets (logarithmic y-axis)

In total, each local branch has more than ten thousand
commits (or revisions). Each commit materializes a set of
changes, to the content of files or to their hierarchy (the file
system tree). In our experiments, we focused on the commits
applied to the file system tree and ignored content change.
We determined the commits and the derivation relationships
from Git and Subversion logs. We represented the file system
in an XML document and we transposed the atomic changes
to the file system into edit operations on the XML tree. To
each insertion, respectively deletion, of a file or a directory
in the file system corresponds an insertion, respectively a
deletion, of a node in the XML tree.

We implemented our version control model (PrXML) in
Java. We used the Java APIs SVNKit [5] and JGit [3] to
set up the standard operations of Subversion and Git. The
purpose was to perform all the evaluations in the same con-
ditions. Subversion uses a set of log files to track the changes
applied to the file system at the different commits. Each log
file contains a set of paths and the change operations associ-
ated to each path. As for Git, it handles several versions of
a file system as a set of related Git tree objects represented
by the hashes of their content. A Git tree object represents
a snapshot of the file system at a given commit.

Cost analysis. Figures 4 and 6 compare the cost of the
commit and the checkout operations in Subversion, Git, and
PrXML. The commit time indicates the time needed by the
system to create a version (commit), whereas the checkout
time corresponds to the time necessary to compute and re-
trieve the sought version. The obtained results show clearly
that PrXML have good performance with respect to Git
and Subversion systems. The experiments were done using
the datasets obtained from the Linux Kernel and Cassandra
projects, as indicated above. For both datasets, we observe
in Figure 4 that our model has in general a low commit cost1

(note that the y-axes are logarithmic on Figure 4).
An in-depth analysis of the results show that the commit

costs depend in our model on the number of edit opera-
tions associated to the commits (see Figure 5), as implied
by Proposition 4.4. However, PrXML remains efficient com-
pared to the other systems, except for some few commits
characterized by a large number of edits (at least one hun-
dred edit operations). This can be explained by the fact that
our model performs the edit operations over XML trees,
whereas Git stores the hashes of the files indexed by the

1Our measures of the commit time in PrXML include the
computation cost of the edit scripts ∆.

101 102 103

102

103

104

Number of edit operations
C
o
m
m
it

ti
m
e
(m

s)

Subversion

Git

PrXML

Figure 5: Commit time vs number of edit operations
(for edit scripts of length ≥ 5)

directory names, and Subversion logs the changes together
with the targeted paths in flat files. An insertion of a sub-
tree (a hierarchy of files and directories) in the file system
can be treated as a simple operation in Git and Subversion,
whereas it requires a series of node insertions in our model.

Our model is able to generate linear versions (correspond-
ing to event sets that are rooted branches) as well as ar-
bitrary ones. However, traditional version control systems
are only able to produce linear versions. As a consequence,
in this paper we focused our experiments on retrieving lin-
ear versions for comparison purposes. Figure 6 shows the
measures obtained for the checkout of successive versions in
PrXML, Git and Subversion. The x-axis represents version
numbers. Retrieving a version number n requires the recon-
struction of all previous versions (1 to n − 1). The results
obtained show that our model is significantly more efficient
than Subversion for both datasets (Linux Kernel and Cas-
sandra projects). Compared to Git, PrXML has a lower
checkout cost for initial versions, while it becomes less effi-
cient in retrieving recent versions for the Cassandra dataset.
Note that, traditional version control models mostly use re-
versible diffs [33] in order to speed up the process of recon-
structing the recent versions in a linear history.

5.2 Filtering capabilities
Efficient evaluation of the uncertainty and automatic fil-

tering of unreliable contents are two key issues for large scale
collaborative editing systems. Evaluation of uncertainty is
needed because a shared document can result from contri-

0 50 100 150 200 250 300

100

200

300

400

Revision (Linux kernel)

C
h
ec
k
o
u
t
ti
m
e
(m

s)

Subversion

Git

PrXML

0 200 400 600

100

200

300

400

Revision (Cassandra project)

C
h
ec
k
o
u
t
ti
m
e
(m

s)

Subversion

Git

PrXML

Figure 6: Measures of checkout time over real-world datasets (linear axes)

butions of different persons, who may have different levels
of reliability. This reliability can be estimated in various
ways, such as an indicator of the overall reputation of an
author (possibly automatically derived from the content of
contributions, cf. [10]) or the subjective trust a given reader
has in the contributor. For popular collaborative platforms,
like Wikipedia, an automatic management of conflicts is also
necessary because the number of contributors is often very
large. This is especially true for documents related to hot
topics, where the number of conflicts and vandalism acts can
evolve rapidly and compromise document integrity.

In our model, filtering unreliable contents can be done
easily by setting to false the Boolean variables modeling the
corresponding sources. This can be done automatically, for
instance when a vandalism act is detected, or at query time
to fit user preferences and opinion about the contributors.
A shared document can also be regarded as the merge of
all possible worlds modeled by the generated revisions. We
demonstrate in [7] an application of these new filtering and
interaction capabilities to Wikipedia revisions: an article is
no longer considered as the last valid revision, but as a merge
of all possible (uncertain) revisions. The overall uncertainty
on a given part of the article is derived from the uncertainty
of the revisions having affected it. Moreover, the user can
view the state of a document at a given revision, removing
the effect of a given revision or a given contributor, or fo-
cusing only on the effect of some chosen revisions or some
reliable contributors.

We also tested the possibility for the users to handle more
advanced operations over critical versions of articles such as
vandalized versions. We chose the most vandalizedWikipedia
articles (Cf. Wikipedia:Most vandalized pages), and we used
our model to study the impact of considering as reliable
some versions affected by vandalism. We succeeded in re-
constructing the chosen articles as if the vandalism had never
been removed; obtaining this special version of the article is
very efficient, since it consists in applying a given valuation
to the probabilistic document, which is a checkout operation
whose timing is comparable to what is shown in Figure 6.
Note that in the current version of Wikipedia, the content
of vandalized versions is systematically removed from the
presented version of an article, even if some users may want
to visualize them for various reasons. Our experiments have
shown that we can detect the vandalism as well as Wikipedia
robots do, and automatically manage it in PrXML, keeping
all uncertain versions available for checkout.

6. RELATED WORK

Our previous work. We present in [7,13] initial studies to-
wards the design of an uncertain XML version control sys-
tem: [7] is a demonstration system focusing on Wikipedia
revisions and showing the benefits of integrating an uncer-
tain XML version control approach in web-scale collabora-
tive platforms; [13] is a PhD workshop paper with early ideas
behind modeling XML uncertain version control.

Version Control Systems. While a lot of work was car-
ried out on version control in object-oriented systems (e.g.,
[8, 11, 14, 19]), recent research and tools are focusing on
document-oriented models. Many products, seen as general-
purpose systems, are used for version control over different
kind of documents. Subversion, ClearCase, Git, BitKeeper,
and Bazaar are some examples of them. In general, the
considered approaches do not take into account the seman-
tics of the changes represented by the successive versions.
The concern is the reconstruction of the committed versions,
rather then the understanding of the evolution of the mod-
eled world. In Subversion [18] and similar systems, version
control is based on edit distance algorithms designed for flat
text, whereas the Git family [15] of tools uses cryptographic
approaches. For XML and structured documents, both tech-
niques are inadequate because the semantics of the changes
is crucial in this case. A lot of work was done on change
detection on XML documents, and different XML diff tools
have been developed [17,27,32]. An in-depth analysis of the
proposed approaches can be founnd in [16]. Besides that,
XML version control models such as [33] and [35] store all
versions in the same XML document, and extend the XML
schema of the latter with some elements used for the iden-
tification of each version. However, the drawback of these
approaches is the redundancy of the content shared between
different versions and the cost of the updates operations.

Probabilistic XML. Uncertainty handling in XML was orig-
inally associated to the problem of automatic Web data ex-
traction and integration. In this context, uncertainty may
have different origins: the extraction process, the unrelia-
bility of the data sources, the incompleteness of the data,
etc. Several efforts have been made and some probabilis-
tic approaches have been proposed (see [28] for a survey),
especially the work of van Keulen et al. [36,37]. Then a rep-
resentation system that generalizes all the existing models
was proposed in [9] and [22]; we refer to [25] for a survey of
the probabilistic XML literature.

7. CONCLUSION
We presented in this paper an uncertain XML version

control model tailored to multi-version tree-structured doc-
uments, in open collaborative editing contexts. This is one
of the first actual work focusing on concrete applications of
the existing literature on probabilistic XML [9,22–25,30,37].
The comparison of our model to the most popular version
control systems, done on real-world data, shows its efficiency.
Moreover, our model offers new filtering and interaction ca-
pabilities which are crucial in open collaborative environ-
ments, where the data sources, the contributors and the
shared content are inherently uncertain. The main direc-
tion for future developments is the support of more complex
version control operations, notably merging. Similarly to in-
sertions and deletions, it is possible to implement merging
by directly modifying the p-document, leading to an efficient
management of uncertain versions. At last, the model could
be extended to also support other kinds of edit operations
like moves of intermediate nodes in XML.

8. ACKNOWLEDGEMENTS
This work was partially supported by the Île-de-France

regional DROD project, and the French government under
the STIC-Asia program, CCIPX project. We would like to
thank the anonymous reviewers for their valuable sugges-
tions on improving this paper.

9. REFERENCES
[1] Cassandra Project. http://cassandra.apache.org/.

[2] Google Drive. https://drive.google.com/.

[3] Java Git. http://www.eclipse.org/jgit/.

[4] Linux Kernel. https://www.kernel.org/.

[5] [Sub]Versioning for Java. http://svnkit.com/.

[6] Wikipedia Platform. http://www.wikipedia.org/.

[7] T. Abdessalem, M. L. Ba, and P. Senellart. A
probabilistic XML merging tool. In EDBT, 2011.
Demonstration.

[8] T. Abdessalem and G. Jomier. VQL: A query
language for multiversion databases. In DBPL, 1997.

[9] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart.
On the expressiveness of probabilistic XML models.
VLDB Journal, 18(5), 2009.

[10] B. T. Adler and L. de Alfaro. A content-driven
reputation system for the Wikipedia. In WWW, 2007.

[11] A. Al-Khudair, W. A. Gray, and J. C. Miles. Dynamic
evolution and consistency of collaborative
configurations in object-oriented databases. In Proc.
TOOLS, 2001.

[12] K. Altmanninger, M. Seidl, and M. Wimmer. A survey
on model versioning approaches. IJWIS, 5, 2009.

[13] M. L. Ba, T. Abdessalem, and P. Senellart. Towards a
version control model with uncertain data. In PIKM,
2011.

[14] W. Cellary and G. Jomier. Consistency of versions in
object-oriented databases. In VLDB, 1990.

[15] S. Chacon. Git Book. http://book.git-scm.com/.

[16] G. Cobéna and T. Abdessalem. A comparative study
of XML change detection algorithms. In Services and
Business Computing Solutions with XML:
Applications for Quality Management and Best
Processes. IGI Global, 2009.

[17] G. Cobéna, S. Abiteboul, and A. Marian. Detecting
Changes in XML Documents. In ICDE, 2002.

[18] B. Collins-Sussman, B. W. Fitzpatrick, and C. M.
Pilato. Version Control with Subversion. O’Reilly
Media, 2008.

[19] R. Conradi and B. Westfechtel. Towards a uniform
version model for software configuration management.
In System Configuration Management, 1997.

[20] G. de la Calzada and A. Dekhtyar. On measuring the
quality of Wikipedia articles. In WICOW, 2010.

[21] L. Khan, L. Wang, and Y. Rao. Change detection of
XML documents using signatures. In Real World RDF
and Semantic Web Applications, 2002.

[22] E. Kharlamov, W. Nutt, and P. Senellart. Updating
Probabilistic XML. In Updates in XML, 2010.

[23] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query
evaluation over probabilistic XML. VLDB Journal,
18(5), 2009.

[24] B. Kimelfeld and Y. Sagiv. Modeling and querying
probabilistic XML data. SIGMOD Rec., 37(4), 2009.

[25] B. Kimelfeld and P. Senellart. Probabilistic XML:
Models and complexity. In Z. Ma and L. Yan, editors,
Advances in Probabilistic Databases for Uncertain
Information Management. Springer-Verlag, 2013.

[26] A. Koc and A. U. Tansel. A survey of version control
systems. In ICEME, 2011.

[27] T. Lindholm, J. Kangasharju, and S. Tarkoma. Fast
and simple XML tree differencing by sequence
alignment. In DocEng, 2006.

[28] M. Magnani and D. Montesi. A survey on uncertainty
management in data integration. J. Data and
Information Quality, 2, 2010.

[29] S. Maniu, B. Cautis, and T. Abdessalem. Building a
signed network from interactions in Wikipedia. In
DBSocial, 2011.

[30] A. Nierman and H. V. Jagadish. ProTDB:
probabilistic data in XML. In VLDB, 2002.

[31] S. Rönnau and U. Borghoff. Versioning XML-based
office documents. Multimedia Tools and Applications,
43, 2009.

[32] S. Rönnau and U. Borghoff. XCC: change control of
XML documents. CSRD, 2010.

[33] L. I. Rusu, W. Rahayu, and D. Taniar. Maintaining
versions of dynamic XML documents. In WISE, 2005.

[34] M. Sabel. Structuring wiki revision history. In
WikiSym, 2007.

[35] C. Thao and E. V. Munson. Version-aware XML
documents. In DocEng, 2011.

[36] M. van Keulen and A. de Keijzer. Qualitative effects
of knowledge rules and user feedback in probabilistic
data integration. VLDB Journal, 18, 2009.

[37] M. Van Keulen, A. de Keijzer, and W. Alink. A
Probabilistic XML Approach to Data Integration. In
ICDE, 2005.

[38] J. Voss. Measuring Wikipedia. In ISSI, 2005.

[39] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: An
Effective Change Detection Algorithm for XML
Documents. In ICDE, 2003.

http://cassandra.apache.org/
https://drive.google.com/
http://www.eclipse.org/jgit/
https://www.kernel.org/
http://svnkit.com/
http://www.wikipedia.org/
http://book.git-scm.com/

	Introduction
	Preliminaries
	Probabilistic XML
	Uncertain Multi-version XML
	Multi-Version XML Documents
	Uncertain Multi-Version XML Documents
	Probabilistic XML Encoding
	Updating Uncertain Multi-Version XML

	Evaluation of the model
	Performance analysis
	Filtering capabilities

	Related work
	Conclusion
	Acknowledgements
	References

