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ABSTRACT

Truth finding is the problem of determining which of the statements
made by contradictory sources is correct, in the absence of prior
information on the trustworthiness of the sources. A number of ap-
proaches to truth finding have been proposed, from simple majority
voting to elaborate iterative algorithms that estimate the quality of
sources by corroborating their statements. In this paper, we consider
the case where there is an inherent structure in the statements made
by sources about real-world objects, that imply different quality
levels of a given source on different groups of attributes of an ob-
ject. We do not assume this structuring given, but instead find it
automatically, by exploring and weighting the partitions of the sets
of attributes of an object, and applying a reference truth finding
algorithm on each subset of the optimal partition. Our experimental
results on synthetic and real-world datasets show that we obtain
better precision at truth finding than baselines in cases where data
has an inherent structure.

1. INTRODUCTION

Many real-world applications, such as multi-source Web data
integration systems or online crowdsourcing platforms, face the
problem of discovering the truth when integrating conflicting in-
formation from a collection of sources with different (and often
unknown) levels of accuracy. Such applications can use truth find-
ing algorithms [1,7,9,13,16,17], which aim at discovering true facts
by determining the likelihood that a given data instance describes
the reality using estimated values of source accuracies.

We consider in this work the situation where conflicting state-
ments are made about objects with inherent structure, and where
the reliability of sources is correlated following this structure: for
example, examinations can naturally be decomposed into separate
exercises per subject, and students may score quite differently in
each subject; complex crowdsourcing tasks may be subdivided into
subtasks where different workers have different reliability levels
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based on their expertise in this subtask; information about ships
found on the Web [2] can be divided into groups of attributes such
as position, technical data, ownership, and each Web source may
have different precisions on these groups. In many of these scenar-
ios, though data items have an inherent structure, the corresponding
grouping of attributes may be unknown (for example, in data inte-
gration scenarios, the semantics of attributes may not be available).

We see this inherent structure of data as both a challenge and an
opportunity for truth finding algorithms: on the one hand, traditional
truth finding methods that assign a global quality level to each source
are not able to identify sources with varying reliabilities on different
parts of the data; on the other hand, exploiting the structure of data,
when relevant, should help improve the quality of truth finding.

In this paper, we investigate the truth finding problem when data
can be structured as an (unknown) partition of attributes with sources
having a uniform quality level on each subset. We consider a one-
truth scenario where each attribute of an object has only one true
value and several possible wrong values. We focus, as a running
example, on the evaluation of the truthfulness of answers provided
by workers on a list of tasks which encompass questions from
various fields. As a concrete example, see workers as students
undergoing a multidisciplinary examination where each given test
includes a set of questions from different subjects. The goal is
to automatically discover the correct answers from those given by
students, using truth finding. Certainly, we need a way to distinguish
among the different levels of students’ knowledge on subsets of
correlated subjects based on the quality of their answers separately
for each subset, as considering an average quality measure can
degrade the precision of the truth finding process.

We introduce the AccuPartition problem and propose a technique
which extends any base truth finding algorithm by searching for
an optimal partition of the set of attributes into subsets of corre-
lated attributes, over which different data quality levels of sources
are learned. Using a weight function built from accuracy values
themselves estimated by the truth finding algorithm, we define an
optimal partition for this particular algorithm; this optimal parti-
tion is deemed to properly describe the distribution of the source
qualities. In order to compute such an optimal partition, we first
devise a general exhaustive exploration algorithm. As this becomes
unfeasible when the number of attributes grows, we then propose
a sampling-based algorithm that returns a near-optimal partition
in reasonable running time. Finally, we present results about the
effectiveness of our approach through experiments conducted on
synthetic and real-world datasets.



We start by reviewing related work in Section 2. We then give
preliminary material, along with the definition of the AccuPartition
problem, in Section 3. In Section 4, we introduce our model for
truth finding under structural correlations among data attributes by
detailing our weight function, the proposed exploration algorithms,
and an extension of the approach when sources have partial data cov-
erage. Finally, we demonstrate in Section 5 the effectiveness of our
approach with respect to existing algorithms through experiments.

2. RELATED WORK

Significant effort has been devoted to discovering the truth among
statements made about object instances shared by multiple contra-
dictory sources. This is known under various names such as truth
discovery [6, 16-18], fact finding, data fusion [3,7, 12, 14], etc.;
see [7,13] for early surveys and [1, 15] for recent comparative evalu-
ations. The simplest truth finding approach is majority voting which
trusts the answers provided by the largest number of equally reliable
sources. This naive technique, however, disregards the fact that
sources, in particular on the Web, come with different reliability lev-
els. As a consequence, most truth finding techniques have adopted
a weighted voting process with weights being the quality levels of
the input sources. As source quality is unknown in general, it is
estimated based on the level of truthfulness of the object instances.
Domain-specific characteristics — in particular those leading to cor-
relations between sources or object instances — have driven the need
for investigating different weighted voting models.

The similarity between data values from different sources has
been taken ito account by the weighted voting model in [16]. The al-
gorithm leverages the intuition that the levels of truthfulness of two
similar values should influence each other in a certain sense. [5, 6]
explores and computes, based on a Bayesian analysis [4], positive
source correlations due to copying relationships. The authors devise
a truth finding approach that does not significantly increase the be-
lief about the correctness level of information impacted by copying
relationships as false data can be propagated by the copying; in-
stead, more credit is given to data from independent providers. [14]
proposes to support a broader class of correlations between sources
including positive correlations (e.g., similar extraction patterns, im-
plementing similar algorithms) beyond source copying and negative
correlations (e.g., the fact that two sources cover complementary
information). The authors model those correlations between sources
using conditional probability theory in order to use them for the
computation of the truthfulness scores of data instances through a
Bayesian analysis within a multi-truth setting. The algorithm cap-
tures positive correlations as in [5], while negative correlations, in
contrast, are handled in such a way that they do not significantly
decrease the belief about the correctness level of information.

Other challenging aspects — beyond correlations — have been
also explored for enhancing the truth finding process. For instance,
a probabilistic model accounting for the hardness level of telling
the truth about some particular attributes has been presented in [9].
A framework modeling sources with heterogeneous data types is
introduced in [12]. At last, the long-tail phenomenon in truth finding
is studied by [11] by using a confidence interval for source accuracy
in oder to mitigate the impact of sources with low data coverage.

The present work is to be seen as complementary to these different
dimensions. As we shall see, any truth finding method can be used
in conjunction with our approach. To our knowledge, no previously
proposed truth finding algorithm has tackled the issue of harnessing
possible structural correlations among data attributes.

3. PRELIMINARIES

This section first introduces general relevant concepts for the truth

Test 1: 1. Provide the set of prime numbers smaller than 10.
2. What is the capital city of Romania?
Test 2: 1. Give a natural number x satisfying x mod 4 = 0.
2. What is the largest country in the European Union?
(a) Test questions

Test Math Geography
student 1 Test1 {2,3,5,7}  Budapest
student2 Testl {2,4,6,8} Bucharest
student3 Testl {2,3,5,7}  Belgrade
student 1 ~ Test 2 24 Spain
student 2 Test 2 26 France
student 3  Test 2 41 France

(b) Student’s answers
Figure 1: Example truth finding setting: examination

finding problem and then formally states the AccuPartition problem.

We restrict ourselves in this work to the common one-truth frame-
work where any attribute of every object has only one correct value
and many possible wrong values. We consider fixed finite sets of
attribute labels <f and values V', as well as a finite set of objects 0.
A source makes statements about the values of some attributes of
some objects:

DEFINITION 1. A source is a partial function S : O x o/ —
¥V with non-empty domain. A (candidate) ground truth is a total
functionG : O x o/ — V.

The overall objective of the truth finding problem is to determine
the actual ground truth based on the statements of a number of
sources. Sources are specifically defined as possibly incomplete; in
particular, they may not cover all attributes:

DEFINITION 2. The attribute coverage of a source S with re-
spect to X C of is the proportion of attributes a € </ for which
there exists at least one object o € O such that S(0,a) is defined:
COV(S,X) — \{an\Hoeﬁ’&(‘o,a) defined}| )

Two sources S and S’ are contradicting each other whenever there
exists 0 € 0, a € o such that S(0,a) and §'(0,a) are both defined
and S(0,a) # §'(0,a). A source is correct with respect to the ground
truth Gon o € 0, a € &/ when S(0,a) = G(0,a), and wrong when
S(0,a) is defined but S(0,a) # G(o,a).

EXAMPLE 3. Figure I shows the results of three students (sources)
in a multidisciplinary examination, consisting of two tests (objects),
each test including two questions (attributes) respectively in math
and geography, as given in Figure 1(a). Figure 1(b) shows a ta-
ble containing the answers provided by the three students to each
question. The first and second column of each row in the table cor-
respond to the student name and the identifier of the test (its name
here). The remaining columns represent the different questions of a
test object on two different subjects: math and geography. To have
a gold standard against which we can evaluate the precision of any
truth finding technique on this dataset, we obtain from an expert the
correct answers for questions in each test; those are given in bold
in the table: {2,3,5,7} and Bucharest; 24 and France.

Contradictions occur in this example: for instance, the first stu-
dent states that the capital city of Romania is Budapest (and is
wrong) while the second student claims Bucharest (and is correct).

Formally, a truth finding algorithm, such as those reviewed in
Section 2, is defined as follows:

DEFINITION 4. A truth finding algorithm F is an algorithm that
takes as input a set of sources . and returns a candidate ground
truth F(&), as well as an estimated accuracy Accuracyp(S) for
each source S € 7.



Most truth finding processes compute a candidate ground truth
based on source accuracy values; when this is the case, we just
use these as Accuracyg(S). If a truth finding algorithm F does not
specifically use source accuracy values (this is the case, for instance,
of naive majority voting, in short vote), we define source accuracy
for F' simply as:

_ {o€ O,ae o |S(0,a)=F()(0,a)}|
{o€ 0,ae o |S(0,a) defined}|

In Section 5, we will use the accu algorithm proposed in [5] (with
no dependency detection, value popularity computation, or value
similarity consideration) as a reference truth finding algorithm for
experiments. However, we stress that our approach is independent
of this choice and any other truth finding algorithm can be chosen
for F. We refer the reader to [4, 5] for an in-depth presentation of
accu. It will suffice in this work to see accu as a black box.

Accuracyp(S) :

EXAMPLE 5. Reconsider the example of Figure 1 and apply
accu by starting with a priori accuracy value € = 0.8. The algo-
rithm converges after two iterations, returning 0.26, 0.26, and 0.97
as accuracy values for students 1, 2, and 3 respectively. Concerning
true answers for Test 1 and Test 2, accu wrongly concludes, e.g.,
that the capital city of Romania is Belgrade and 41 is a divisor of 4.
The algorithm derives this truth by computing the confidence score
of each possible answer for every question; for instance confidence
scores estimated by the algorithm for Budapest, Bucharest, and
Belgrade are respectively 3.63, 3.63, and 7.5.

Algorithms similar to accu use global source accuracy values
when computing the confidence scores of attribute values. In so
doing, however, the confidence scores of certain specific attribute
values can be biased, which, in turn, may drastically impact the
precision of the truth finding process.

EXAMPLE 6. Following the example from Figure 1, student 3
has a global accuracy of 0.97, which leads to accu selecting wrong
answers, e.g., Budapest and 41 from this student. What actually
happens is that, though student 3 is fairly accurate w.r.t. the gold
standard, student 1 is very accurate on mathematics while being
inaccurate on geography, and vice-versa for student 2. Therefore
using local accuracies for each subject yields better results for the
truth finding process as a whole: by splitting the attribute set into
two independent subsets {Math} and {Geography} we can obtain
right answers from student 1 on math and student 2 on geography.

DEFINITION 7. Given a source S: 0 x of — V¥V and X C o,
we write S|y the restriction of Sto 0 x X.

Let 7 be a finite set of sources. We denote S|x == {S|x | S € 7}.
The local accuracy of S by X as estimated by truth finding algo-
rithm F on J|x is Accuracyp (S|x), also written Accuracyg (S,X)
(by convention, Accuracyy (S,X) =0 if S|x is the empty function).
We also write F (7, X) for F(Z[x).

We are now ready to state our problem of interest, in an informal
manner (formal definitions will come in the next section):

PROBLEM 8. Let F be a truth finding algorithm and . a finite
set of sources defined over fixed finite sets of objects € and attributes
/. The AccuPartition problem aims at finding an optimal partition
P of o such that running F on each subset of P independently
maximizes the overall accuracy of F w.r.t. the gold standard.

4. TRUTH FINDING WITH PARTITIONING

In this section, we present our approach to the AccuPartition prob-
lem. We start by introducing a weighting function which evaluates
the level of optimality of a given partitioning of input data attributes
under a truth finding process. Then we present, as a reference, a

general exploration algorithm which solves AccuPartition by con-
sidering the entire search space in order to return the best partition
found based on our introduced weight function. For further effi-
ciency, we finally devise and propose a sampling-based exploration
technique that finds a near-optimal partition within a set of a fixed
number of partitions.

Fix 0, o/, and . the finite sets of objects, attributes, and sources
respectively. Let F be a truth finding algorithm.

Optimal Partition Estimation. As shown in [8], the only man-
ner to evaluate the quality of a truth finding algorithm outcome when
we have no knowledge about the real data is through its estimated
accuracy values for sources. We exploit the same intuition in the
computation of the weight of a partition.

Let & be the set of all partitions of <. We introduce a weighting
function ® : & — [0, 1] that maps to every partition P in & a
weight ®(P) whose main purpose is to model the level of optimality
of the partition when using F. We define our weighting function ®
by accumulating evidence about the quality of F' over the different
subsets of the corresponding partition. In order to describe the
quality of F' on a subset, we harness local source accuracy values
returned by F and devise a general scoring function that can be
instantiated in several ways.

DEFINITION 9. We define the score T(X) of a subset X C </ as
a monotone function of local accuracy values returned by F(.%,X).

We present next various scoring strategies and we refer to Sec-
tion 5 for an experimental comparison:

e The maximum scoring function, in short maxAccu, is defined
as Tpaxaccu (X ) = maxge » Accuracyg(S,X).

e The average scoring function, in short avgAccu, is defined as
Tavghccu(X) = ‘91,—‘ Y sc.o Accuracyp (S, X).

e The probabilistic analysis-based method, in short appAccu,
was introduced in [8] as an estimator of the quality of a truth finding
process over a set of sources in the same domain. It is based on
source accuracy values and popularity of false values. We refer
the reader to [8] for a detailed description of this approximation
technique.

e As a reference point, we also introduce the oracle function,
in short oracle, with respect to a gold standard ground truth G
obtained, for instance, from domain experts:

o€ O,aeX|F(7,X)(0,a)=G(o,a)}|
wX)= G

It is not realistic to assume such a function is available, as the goal
of truth finding is to find this ground truth, but it is useful as a
comparison with other methods.

We define the weight of a given partition based on the scores of
its subsets, as follows.

DEFINITION 10. The weight of a partition P of </ is the average
of the scores of its different subsets. Formally, we set: O(P) =
ﬁ ‘Y xecpT(X) where | P | represents the number of subsets in the
partition. A partition P of </ is optimal if it has the highest weight
among all partitions of < .

The AccuPartition problem (see Problem 8) thus amounts to
finding an optimal partition as given in Definition 10. The following
observation is immediate:

OBSERVATION 11. When the trivial partition with only one sub-
set is optimal, AccuPartition amounts to the same as F.

We now describe a general exponential-time algorithm for Ac-
cuPartition and then we introduce an approximation technique for
gaining in efficiency.



General Exploration Technique. A naive but exact solution
for AccuPartition is to explore all possible partitions of the input at-
tribute set. The algorithm GenAccuPartition computes the weight
of each possible partition, and derives an optimal partition among
ones sharing the highest weight. The algorithm finds the truth with
respect to this optimal partition, and returns a correct optimal parti-
tion when the used scoring function is accurate. However, it does
not scale since the number of partitions grows exponentially in the
size of the input attribute set (the number of partitions of a set is
given by the Bell numbers, which grow exponentially fast [10]).
We thus present an approximation algorithm to reduce the search
space of GenAccuPartition while giving a near-optimal partition.

Sampling-Based Exploration Technique. We use arandom
sampling approach in order to effectively restrict the search of an
optimal partition to a limited number of candidates from the entire
set of partitions. Fix the number ¢ of samples to explore. In order to
efficiently sample uniformly from the entire set & of all partitions of
an input attribute set o of size n, we proceed in several steps. First,
we randomly draw a number k with drawing probability proportional
to the Stirling number of the second kind (see Chapter 6 in [10]),
S(n, k), that is equal to the number of partitions having k sets. Then,
we use a recursive technique to draw a partition at random among
those having k sets, based on the recurrence relation obeyed by the
Stirling numbers: S(n,k) = S(n—1,k—1)+k-S(n— 1,k). For effi-
ciency reasons, we use precomputed Stirling numbers and the time
complexity to draw a random partition is O(n - k). The weight of
each partition is then computed, and the one with the highest weight
is kept. This procedure is repeated as many times as the number ¢
of partitions to be sampled.

Extension with Partial Coverage. Inthe case where the truth
finding process with partitioning uses sources with very diverse
levels of data coverage, we revisit our approach by just revising the
definition of the scoring function in order to account for the source
coverage on given subsets of partitions.

DEFINITION 12. Given a scoring function T, we define the par-
tial coverage revision of T as the version of T where every occurrence
of Accuracyy (S,X) is replaced with Accuracyp(S,X) x Cov(S,X).

This allows biasing towards sources with high coverage. We rede-
fine thus our maxAccu, avgAccu, and appAccu for partial coverage.
We refer to the corresponding scoring strategies with maxAccuCov,
avgAccuCov, and appAccuCov respectively.

5. EXPERIMENTAL EVALUATION

In this section, we report the results of our experiments on syn-
thetic and real-world datasets. We evaluated the precision of our
GenAccuPartition algorithm — with and without sampling — against
accu [4, 5] when sources exhibit distinct accuracies on different
subsets of data attributes. We stress that we are interested in im-
provements obtained by GenAccuPartition over the advanced
truth finding procedure on which it is based on, i.e., accu, that can
be substituted with any other truth finding algorithm. For complete-
ness, we also report the results of the naive vote approach. As we
shall see, vote can outperform accu; this has been observed in [1]
as well, and highlights the fact that truth finding is a hard problem.
All the algorithms were implemented! in Java.

We used three different kinds of datasets: purely synthetic data to
study in depth the trade-off brought by AccuPartition, semi-synthetic
data showing features exploited by AccuPartition, and real-world
data. We present the corresponding experiments in turn.

I As the accu source code is not available, we reimplemented it
ourselves and obtained results consistent with the ones reported in
the original papers [1,5,13].

Table 1: Mean values for dataset configurations

Configs m; my m3

configl 1.0 00 1.0
config2 1.0 0.0 0.8
configd 1.0 02 0.8
configd 0.8 04 0.8
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Figure 2: Precision results on synthetic data

5.1 Experiments on Synthetic Data

To systematically evaluate our algorithms in various conditions,
many not easily found with readily available gold standard in real-
world datasets, we started by experimenting on synthetic data. We
set up a synthetic data generator that allows to simulate various
settings in which every involved source has a level of accuracy
unevenly distributed over the entire attribute set. That is, we mainly
generated datasets with sources that are very accurate on some
specific subsets of attributes while being less accurate on some
others.

Synthetic Data Generation. We set up a synthetic dataset gen-
eration process which requires five parameters: number of attributes
(na), number of objects (n0), number of sources (ns), and two mean
values m; and my for uniform probability distribution functions U
and U;. These probability functions enable to randomly assign high
source accuracy values (using U;) and low source accuracy values
(using U,) to distinct subsets of attributes. The generator proceeds
with this input as follows. First, it initializes sets <7, &, and .% of
specified number of attributes, objects, and sources. Each source
has full coverage. This step is followed by a random selection of
a partition P of o7. For each subset in P, we randomly choose a
source from . which is deemed to be highly accurate on this subset.
Let us denote by .7’ the subset of chosen sources for subsets in
P. Let 7" := . — .7 be the subset of non-selected sources. For
every source in ., we generate the attribute values of each object
as follows. For every subset X in P together with the corresponding
chosen source S in ./, we uniformly set using our distribution
functions U and U,: (i) Accuracy(S,X;) to a high local accuracy
value; and (ii) Accuracy(S, X3 ) to a low accuracy value, for any other
X> # X from P. We choose a source subset from .%”, e.g., half of
them, for which we set fairly high accuracy values on attributes in
X1, depending on how the accuracy of S on X is distributed over the
object set. Furthermore, we ensure that sources in . have neither
significant local accuracy values, nor significant global ones. Two
distinct attributes in a subset may contribute differently to the local
source accuracy measured on this subset. As a result, we devise
a finer source accuracy value at the attribute level, depending on
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Figure 3: Precision results on semi-synthetic Exam

the local source accuracy on the attribute subset and the number
of its covered objects. This is done by using a uniform probability
distribution function whose mean, denoted by m3, is set to 1.0 or
0.8. Once the accuracy values at the attribute level are fixed, we
generate true and false values, for every attribute of every object, for
every source. For example, for source S and for every object, fairly
correct values are generated for attributes in X; and false ones for
attributes in X,. The generation process uses a quite large domain
of false attribute values to avoid having very popular false values.
At last, our generator produces the corresponding ground truth data.

Experimental Setup. We worked on four distinct configurations
during our tests on synthetic data. These configurations share the
same number of attributes, objects, and sources which are set as
follows: na = 6, no = 1000, and ns = 10. For each source, we
therefore obtained, 6,000 attribute values, i.e., 60,000 data items
in total. The distinct configurations are obtained by varying the
distribution means m1, m, and ms3, as presented in Table 1. To each
configuration will correspond a different synthetic dataset.

Precision Results. We analyzed the precision of GenAccuPar-
tition (without sampling) under the various scoring functions
introduced in Section 4. Figure 2 presents a comparison of the
precisions of GenAccuPartition — with scoring functions ora-
cle, maxAccu, avgAccu, and appAccu — against those of accu and
vote. The reported precisions represent the results averaged over 10
random data generations given the same configuration parameters.
For all tested synthetic datasets, we observe that GenAccuParti-
tion (without sampling) outperforms accu in terms of precision,
under the different scoring functions. This highlights and experi-
mentally proves the importance of the partitioning approach and its
ability to improve accu in scenarios where sources have different
levels of accuracy on the given data attribute set. The explanation for
the striking improvement (10% precision increase in the best case)
that GenAccuPartition brings for the first configurations relies
on the way these configurations were generated: the differences
between the local source accuracy values on the different subsets of
the same partition are the strongest in the first configuration, having
been created with mean values m |, my, and m3 respectively equal
to 1.0, 0.0, and 1.0, which boosts the performance of GenAccu-
Partition. These differences are then smoothed out due to the
choice of the mean values that create homogeneous sources with
similar accuracies on different attribute subsets. We also observe
that maxAccu scoring method outperforms avgAccu on synthetic
data, which is no longer the case on the other datasets we study next.

5.2 Experiments on Semi-Synthetic Data

Our semi-synthetic datasets are derived from a real-world Exam
dataset that has partial attribute coverage, based on different ways
to generate missing data attribute values.

Experimental Setup. We first describe the real-world Exam
dataset and then our different techniques for filling the missing data
attribute values within this dataset.

The Exam dataset was obtained by aggregating anonymized en-
trance examination results for overseas students applying to the
ParisTech program in 2014. ParisTech, the Paris Institute of Tech-
nology, is a collegiate university gathering graduate schools in the
Paris area. The exam, seen as one object, is a multiple-choice ques-
tionnaire where each question has 5 possible answers, out of which
only one is correct. We had access to the answers of 247 students
(the set of sources), from 3 different countries. They had to answer
124 questions (the set of attributes) in total from 9 different domains:
Math 1A, Chemistry 1, Math 1B, Physics, Electrical Engineering,
Computer Science, Chemistry 2, Life Sciences, and Math 2. The set
of correct answers to all the questions represents the ground truth.

This dataset has very low attribute coverage, i.e., 36% on aver-
age, and this sparsity is explained by the examination conditions:
students were required to answer the questions of two domains
(Math 1A and Physics), they had to pick one extra domain out of
two (Chemistry 1 or Math 1B), and answering questions from all the
other five domains was entirely optional. Furthermore, the students
were discouraged to answer questions they did not master, since
wrong answers were penalized. Therefore, the coverage is bigger
on domains like Math 1A, Chemistry 1, Math 1B or Physics than on
the optional ones.

In order to avoid the heterogeneity introduced by the low dataset
coverage, for every unanswered question we synthetically generated
a false answer, randomly chosen in a value domain of size equal to
25,50, 100, or 1000. Using false value domains of bigger sizes gives
similar results as the ones reported for domain size 1000. Working
with false value domains of smaller sizes drastically decreases the
truth finding accuracy and generates very similar performances for
all tested algorithms.

Precision Results. As we did on the synthetic datasets, we also
studied the precision of GenAccuPartition against the accu algo-
rithm. As explained in Section 4, since the number of partitions of a
set grows exponentially with the set size, we are no longer able to
generate all possible partitions of the attribute set when working on
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Figure 4: Precision results on real-world datasets

average

the Exam dataset. We thus use GenAccuPartition with the sam-
pling technique which explores 1000 randomly generated partitions
and we report the precision results obtained for the partition with the
best weight. Moreover, we report results separately on a manually
split partition obtained by grouping together questions that belong
to the same subject.

We focus on two different scenarios. In Figure 3(a), we consider
only the 62 attributes that come from the four domains (Math 1A,
Chemistry 1, Math 1B, Physics) on which, as we explained above,
original coverage is bigger. In Figure 3(b), we present results for
all 124 attributes from all domains. We also experimented on the
32 attributes of the two compulsory domains, Math 1A and Physics.
In this case, the original coverage is high enough that synthetically
increasing coverage does not impact the results obtained on raw data
(presented in Section 5.3, Figure 4(a)).

We observe that the precision of GenAccuPartition evaluated
on the manually split partition is significantly higher than the one
obtained with accu when filling missing answers with false values
from small value domains. In this case, some false values become
dominant for certain attributes, which drastically decreases the per-
formances of accu and vote, increasing the difference between
algorithm performances. Observe that the manually split partition
is not generated while sampling the 1000 partitions we worked on.
The results obtained by GenAccuPartition with sampling, with
different subset score functions improve the results found by accu,
even though the improvements are milder for bigger false value
domains. We also observe that results obtained for the false value
domain size of 1000 are similar to the ones obtained on raw data, as
presented in Section 5.3, Figure 4(a).

5.3 [Experiments on Real-World Data

Finally, we run tests on two real-world datasets: the Exam and
the Flights dataset.

Experimental Setup. We use the raw data from the Exam dataset
introduced in the previous section. Moreover, we experiment on

the Flights datasetz, previously used in [1,8, 13, 15], over which a
manual cleaning was required. It contains information over 1200
flights with 6 attributes each, collected from 38 sources over 31
consecutive days. Both real-world datasets used in this section have
partial data coverage. As introduced in Section 4, we use subset
score functions that take partial coverage into account. Therefore,
we use maxAccuCov, avgAccuCov, and appAccuCov, instead of
maxAccu, avgAccu, and appAccu.

Precision Results. For the Exam dataset, we present results for
different subsets of attributes. We experiment on 32, 62, and all
124 attributes, that correspond respectively to the two compulsory
domains (Math 1A and Physics), to four domains (the two com-
pulsory ones and two more from which students have to choose
only one, Chemistry 1 or Math 1B), and to all nine domains. The
results, presented in Figure 4(a), follow the same trend as the ones
presented before, showing improvements of GenAccuPartition
(with sampling) over accu. However, partial coverage tend to de-
crease the overall quality of the experimental results. Therefore
these improvements are more pronounced when experimenting over
a high coverage dataset (81% coverage for the 32 attributes dataset)
than on lower coverage ones (36% coverage for all 124 attributes).

In Figure 4(b), we present the precision results of GenAccuPar-
tition (without sampling) on the Flights dataset averaged over the
entire one month period, after having evaluated our algorithms on
each day separately. We also present results for the 8th of December,
the same random date on which results are reported in [13]. Since
the attributes of the Flights dataset (scheduled and actual depar-
ture date, scheduled and actual arrival date, departure and arrival
gate) do not exhibit different subsets of correlated attributes, this
dataset is not particularly well suited to emphasize the benefits of
using GenAccuPartition over accu. Nevertheless, GenAccuPar-
tition tested with different subset score functions outperforms
accu for the particular date of 8th of December.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a novel technique for improving the
precision of a typical truth finding process in a domain where state-
ments made by sources about real-world objects have an (unknown)
inherent structure, and where the reliability of sources is correlated
following this structure. Our approach first searches for an optimal
partitioning of the attribute set into subsets of correlated attributes
over which sources have different local accuracies. Then, it applies
the truth finding process on such an optimal partition. Experimental
results over synthetic and real-world datasets show that our pro-
posed method can significantly improve the precision of the truth
discovery process.

There are many interesting challenges in this problem for fur-
ther development. First, we are experimenting with new scoring
strategies and different greedy algorithms, that construct an optimal
partition starting from the set of singletons. The initial results show
that they are more efficient in terms of total execution time with
a resulting near-optimal solution. Second, we aim at combining
our partitioning approach with source selection methods in order to
further leverage both the inherent structure of data and knowledge
from domain experts.
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