
Chapter 10

Databases

Michael Benedikt and Pierre Senellart

Introduction: Two Views of Database Research

This chapter is about database research (or as we abbreviateDBR). To people outside
of computer science – and perhaps to many within – it will be unclear what this term

means. First of all, what is a “database”? Used generally, it could mean any collection

of information. It is obvious that there are deep scientific issues involved in managing

information. But information and data are very general notions. Doesn’t much of

computing deal with manipulating data or information? Isn’t everything data? Clearly

the databases that DBR deals with must be something more specific.

Database research takes as its subject something more specialized: database man-
agement software, a term which we will use interchangeably with database manage-
ment systems (DBMSs or “database managers”). This refers to a class of software

that has emerged to assist in large-scale manipulation of information in a domain-
independent way. By domain-independent, we mean to contrast it with, say, a software

package that calculates your taxes, or tools that help show your family tree – these are

definitely processing data, but are manipulating it in ways that are very specific to one

dataset (set of data). In contrast, there are many complex tasks that are associated with

storage, update, and querying in a “generic sense”. As early as 1962 software products
emerged that were dedicated to providing support for these tasks. A particular concern

was with performing them on large amounts of data. A current DBMS can filter (read

and select) gigabytes of data in seconds, and canmanage terabytes (1012 bytes) of data.

In the last few decades a vibrant industry has sprung up around DMBS tools and tool

suites. For example,personal computer userswouldknow theDBMSMicrosoftAccess;
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software developers would know the major commercial vendors, such as Oracle and

IBM, along with open-source database management systems such as MySQL.

The relationship of generic database management products to end-to-end

applications has varied over the years. Many companies advertise software that

provides simply “generic database management”. In other cases DBMS software is

bundled either in application suites, or with e-commerce suites that also handle issues

that have little to do with data. Similarly at runtime the relationship of a DBMS to the

rest of the application could take many forms; there could be a dedicated database

management process communicating with other software processes via a well-defined

protocol. Alternatively, DBMS functionality could be available as libraries. Regard-

less of these “packaging” issues, database management software can be considered a

separate “functional entity” within an application. A systems programmer requires

special training to create it, wherever it sits. Someone (an application programmer or

an end-user) must interface with it, and often in doing so must understand how it is

engineered and how to tune it.

So there is a special kind of software called database management software. In a
narrow sense, DBR refers to the scientific study of this software. But why should

there be a field of database research? You may grant that database software is

important. But there is no theory of tractors or knapsacks, despite their utility and

fairly well-defined scope. In the software domain there is no field of “spreadsheet

theory”, or “word processor research”, at least not one of comparable significance.

Why does a DBMS warrant a separate research area?

We give two answers to this question. First of all, the design of a DBMS is

complex and the approaches to creating a DBMS are stable enough and specific

enough to the setting to be amenable to scientific study. Software of major database

vendors runs to hundreds of thousands of lines of source code, and has evolved over a

period of decades. Spreadsheets are also complex, but the tools and design principles

used are either not stable enough, or not unique enough to the spreadsheet setting to

sustain a separate discipline. Thus we can refine the definition of DBR as the study of

the stable architectural and component construction of database management

systems – the fundamental languages, algorithms and data structures used in these

systems. Database theory, a subset of DBR, would then be the formalization and

analysis of these languages and algorithms, e.g., semantics of the languages, upper

and lower bounds on the time or space used in the algorithms. The emphasis on

stable components explains why many features in a DBMS are not the subject of

much research – there are comparatively few research papers about report

generators, administrative interfaces, or format conversion for their lack of stability.

The complexity and uniqueness of software dedicated to data management

gives one justification for DBR. However, a deeper motivation is that database

management techniques and algorithms have become pervasive within computer

science. Many of the features of modern database systems that we shall discuss

in this chapter – indexing, cost-based optimization, transaction management –
that were first developed in the context of database management systems have

become essential components in related areas as well. The study of logic-based

languages, which received its impetus from the success of relational databases,
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has had impact on understanding the relationship between declarative specification

and computation throughout computer science. Thus much of DBR is concerned

with the application and expansion of “large-scale data management techniques”

wherever they are or could be relevant in computer science. This “migration”

accounts for a fact which will be fairly obvious to the reader of the proceedings

of database conferences: much of current DBR is not closely connected to current
DBMS product lines at all. Much of DBR involves languages that do not exist

within current DBMSs, or features that go radically beyond what current systems

offer. They may deal with proposed extensions of real languages, or modeling

languages that are put forth as theoretical tools but which are unrealistic for

practical use.

This phenomenon is not unique to DBR. A significant portion of programming

language research investigates ideas for novel languages or language features, and

security research often looks at the possible ways in which security might be

achieved, regardless of their practicality. Similarly, DBR examines the ways in

which computers could manage large quantities of information, rather than how

they do manage it. Thus, much of DBR deals with “managing information” in a

very wide sense. It concerns itself with broad questions: How can new information

sets be defined from old ones? How could one describe relationships between

datasets, and how could we specify the information that a user or program might

want from a collection of structured information? What kinds of structure can one

find in information? What does it mean for two sets of information to be the same?

In DBR, these questions are dealt with from a computer science perspective: precise

description languages are sought and algorithmic problems related to these descrip-

tion formalisms are investigated.

We see that DBR has a manifold structure; much of it revolves around existing

database management systems, while another aspect revolves around techniques for

data management in the wider sense: for use as a component within other software

tools (e.g. Web search), for insight into other areas of computer science, and

to explore the possibilities for managing information. The structure of this chapter

will reflect this.

By way of a short introduction, we start by giving a bit of history of database

management systems, leading up to the creation of relational database management

systems, which are the most important class of DBMSs currently. We go on to

describe the input languages and structure of a “traditional” (relational) DBMS. We

then give a sample of DBR that is oriented towards improving the processing

pipelines of existing DBMSs. In a subsequent section, we turn towards research

on expanding the functionality of data management systems, covering several

significant extensions, sometimes quite radical, that have been explored. In the

process we will try to give some idea of how research on these new systems has

been integrated into the standard feature set of commercial database systems, and

the extent to which it has had influence in other parts of computer science.

Owing to page length limits, for many systems we shall only sketch their

main features, giving references for details. We shall devote more space to the

informal level and leave technical-level details to references cited. Furthermore, we
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shall assume that the reader has some familiarity with such basic matters as

formatting data on punched cards and magnetic tapes and with common database

processes such as report generators (just what they sounds like), sorting (e.g.,

sequencing data, say alphabetically, according to some key fields in a table of data)

and traditional business applications such as payroll files. These topics are intui-

tively comprehensible without explicit introductory exposition.

The Relational Model

The Path to Relational Databases

The growth of database management software is a story of the growth of abstraction

in computing systems. As in many other areas of computing, in the beginning there

were low-level concrete tasks that were carried out first by special-purpose hard-

ware, then by special-purpose programs – for example, reading data from punched

cards, performing a hard-coded calculation on the data and then generating results

or reports in a custom format. Starting from the 1950s there were programs

dedicated to processing payroll data, purchase orders, and other pieces of structured
data. The software was tailored not only to the application at hand, but to the

hardware and the input formats. Even the data records themselves, starting with

punch cards and later magnetic tape, were often created on a per-task basis, with no

sharing of data between applications.

At the end of the 1950s software emerged that abstracted some general func-

tionality used in many data processing activities. Report generation and sorting

were two areas of particular interest. This abstract software evolved into the file
management systems of the 1960s. Although software was still often bundled with

hardware, independent software vendors such as Informatics began to offer file-

processing software in competition with mainframe vendors like IBM. This

decoupling spurred interest in making data processing software independent from

hardware, just as later on it would spur independence from the operating system.

File managers regarded structured files – plain text files that made use of some set of

delimiters – as the basic input abstraction. Here is a description of one system

(quoted from Postley 1998).

This program has been developed in response to a large number and wide variety of

requests for reports consisting of selected information from magnetic tape files. These

requests usually require the preparation of a new program or modification of an existing

program. This program provides a more general solution to the problems of information

retrieval and report generation. It combines four generalized capabilities. It can

1. Utilize any of a wide variety of tape formats

2. Make selections on the basis of complex criteria
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3. Produce reports in a wide variety of list-type formats

4. Produce several reports on a single pass of a magnetic tape file. This can be done with no

appreciable increase in retrieval time

By providing such a system, it is expected that a reduction in programming and machine

time will be realized. These savings, will, of course, be magnified for those retrieval/report

generations of short production life and for those reports requiring frequent alterations in

selection criteria or report format.

The emphasis even in these “generalized” systems was on batch processing, i.e.,

on entire files. With the move from magnetic tape to disk storage in the early 1960s,

the possibility of querying on-demand emerged. At the same time, the notion that

centrally managed data would be a way of radically increasing business productiv-

ity became popular within corporate management circles (Haigh 2006). The vision

was that managers would have a global integrated view of their business, being able

to answer questions “instantly” that would have previously taken hours or even

weeks of manual work. The development of advanced decision support and busi-

ness analysis tools that would realize this vision came much later in the evolution of

database systems. But the possibility of such systems inspired corporations to invest

more heavily in data processing technology, and gave added impetus to the devel-

opment of a flexible query language.

Throughout the 1960s systems were developed that had many of the features of

modern DBMSs, including some ability to perform querying of shared data and to

concurrently process updates sent from multiple processes. IBM’s IMS (Patrick

2009) andGeneral Electric’s IDS, the latter created by TuringAwardwinner Charles

Bachman, introduced more general procedures for defining data, the precursors of

modern data definition languages. While prior systems had left much of the respon-

sibility for management of concurrent updates to application programmers, systems

such as IMS managed them transparently. Still, the emphasis was on batch mode or

on a fixed set of queries. The view of data provided by IMS upon its initial product

release in the late 1960s is described as follows (McGee 2009):

The data model provided by the initial release of IMS was Data Language/1 (DL/1). In this

model, databases consisted of records, records were hierarchic structures of segments, and

segments were sets of fields stored in consecutive bytes. One field in a record root segment

could be designated the record key. The program’s interface to IMS provided calls to access

records sequentially or by key; to navigate to segments within the record; and to insert,

replace, and delete records.

Although in retrospect the convergence towards the current notion of data
management functionality is clear, as the 1960s ended, alternative visions of the

future were available. On the one hand, overlapping functionality in database

systems was incorporated in general-purpose programming languages such as

RPG and COBOL. These included querying and data definition as key elements,

while still focusing heavily on report generation features that are secondary in a

modern DBMS. On the other hand, research projects with far greater scope,

incorporating artificial intelligence and natural language interfaces, held out the

possibility that data management systems would be subsumed by software with

much broader capabilities in the near future.
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The current consensus on the functionality of a DBMS arose both from industry

trends (e.g., increasing specialization in the independent software industry) and

standardization efforts. The Conference on Data Systems Language (CODASYL)

was a consortium originally formed to develop a “business language”, but which

later worked on a variety of computing standards issues, including the development

of the business programming language COBOL. In 1965, CODASYL formed a

committee later known as the Data Base Task Group (DBTG), which published the

first standards for database management systems (Olle 1978). CODASYL arrived at

a fairly general definition of the role of data description and data manipulation

languages, while proposing concrete interfaces. In general outlines, it resembles

that of modern systems.

The deployment of an actual interoperable standard was still quite far off in the

marketplace. The functionality proposed by CODASYL was beyond that offered by

most database products. Furthermore the underlying model of CODASYL was not

that of today’s systems. Instead they were based on the network database model, an
extension of the hierarchic database model used in IBM’s popular IMS software.

In a network (graph) database, the possible relationships between data entities

are fixed as part of the schema – for example, an automobile equipment database

might consist of a mathematical graph (see Chap. 7, Appendix) of equipment types,

having graph connections (edges) or relationships pointing (for instance) from

cars to engines, from engines to cylinders, possibly cycling back to cars. Data

is described by graphs (networks) giving the basic kinds of information items

and their connections. The basic mode of querying was by navigating these

relationships. A query on a database of automobile parts might start by navigating

to a particular kind of engine, then moving to an engine component, and then down

to a subcomponent. This does represent some abstraction – the description of the

data does not deal with particular data formats, or the way that data is represented

on disk. But the navigational paradigm behind the network model forced the data

designer to anticipate all possible relationships in advance. Although the model

does not specify how to choose these relationships, many of them would be based

on performance considerations – in which direction a querier would be most likely

to navigate. Thus the distinction between a data description and an implementation

or index was muddied. Furthermore the navigational query language forced the

query-writer to think somewhat procedurally.

In the late 1960s the relational model evolved as a proposed mathematical basis

for database management systems. It began with articles advocating the use of

mathematical set theory as the core of database query languages. Although there

were many forerunners, such as the proposals of David Childs (1968), the model

was crystallized in the works of Edgar F. Codd. In his seminal paper overviewing

the relational model (Codd 1970), Codd summarized the state of existing

approaches to modeling data as follows:

The provision of data description tables in recently developed information systems

represents a major advance toward the goal of data independence. Such tables facilitate

changing certain characteristics of the data representation stored in a data bank. However,

the variety of data representation characteristics which can be changed without logically
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impairing some application programs is still quite limited. Further, the model of data with

which users interact is still cluttered with representational properties, particularly in regard

to the representation of collections of data (as opposed to individual items).

Codd defined a simple and elegant underlying model – a definition of what

a database is in mathematical terms. He went on to propose that a query language

should be employed that allowed users to define any logical relationship or

access path.

The universality of the data sublanguage lies in its descriptive ability (not its computing

ability). In a large data bank each subset of the data has a very large number of possible (and

sensible) descriptions, even when we assume (as we do) that there is only a finite set of

function subroutines to which the system has access for use in qualifying data for retrieval.

Thus, the class of qualification expressions which can be used in a set specification must

have the descriptive power of the class of well-formed formulas of an applied predicate

calculus.

Codd proposed two “pure mathematical” query languages – the relational
algebra and the relational calculus – proving that they had the same expressive-

ness, and arguing that they could be used as a benchmark by which to judge more

realistic query languages. We discuss these languages in the next section.

Codd’s work had an enormous impact on database research. It focused attention

on the analysis of the behavior of logical formulas on finite structures: evaluation,

equivalence, and simplification of logical formulas became a fundamental part of

database research. The impact on the database industry was just as large but not as

immediate. The presentations of the relational model were written in a highly

mathematical style. They were considered unrealistic by database vendors. Thus

while the relational model was proposed in the late 1960s, relational databases

evolved only gradually throughout the 1970s within the research community.

A major breakthrough was System R (Chamberlin et al. 1981), developed at IBM

research in San Jose. The project was initiated in 1974 and continued throughout the

1970s, with the first customer installation in 1977. The basic features of the

relational paradigm – which we describe next – were present in System R, including

transaction support, join optimization algorithms, and B-tree indexes. The major

database systems of the 1980s, from IBM DB2 to Oracle, descend directly from

System R. In the process of creating System R, Donald Chamberlin and Raymond

Boyce proposed the SEQUEL language (Chamberlin and Boyce 1974). This

evolved into the standard relational query language SQL, the first version of

which was standardized by ANSI in 1986.

As the computer industry moved from mainframes and dumb terminals to

networks of personal computers, database management systems migrated to the

use of a client–server model. In the 1990s with the rise of the Web (see Chap. 7),

database systems became an integral part of e-commerce solutions. A database

server would typically sit behind a Web server; remote client requests coming via

HTTP to the Web server would invoke SQL requests to the DBMS, with results sent

back to the client in HTML. By 1999, the relational database market (including OO

extensions), was estimated to have revenues of 11.1 billion dollars (an estimate of

the market research firm IDC, quoted from Leavitt 2000).
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We will now review the basic features of the relational paradigm – our name for

the features of a “traditional relational database”, representing both the core of most

commercial systems and the view of databases given in most database textbooks.

A Tour of the Relational Paradigm

The relational paradigm is based on several key principles:

• Data abstraction and data definition languages

• Declarative queries

• Indexed data structures

• Algebras as compilation targets

• Cost-based optimization

• Transactions

We will go through the principles individually, using the sample of a university

enrollment database given in Fig. 10.1 below.

Abstraction

Abstraction is a key principle in every area of computer science – shielding people

or programs that make use of a particular software artifact from knowing details

that are “internal”. In the database context, this means that users of database

systems should be shielded from the internals of database management – what

data structures or algorithms are utilized to make access more efficient. Thus a user

should be able to define only the structure of the data, without any information

about concrete physical storage. The interface which describes the structure is a

data definition language. Access to the data should only refer to the structure given
in the definition.

While standard programming languages provide a rich variety of data structures

that can be defined by a user, relational languages require the user to describe data in

terms of a very simple table data structure: a collection of attributes, each having

values in some scalar datatype. The attributes of a table are unordered, allowing the

data to be returned with any ordering of columns in addition to any ordering of rows.

Fig. 10.1 Example database for the university enrollment setting
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In the university example, the database creator would declare that there is a table for

students, listing their names, their student identifier, and their number of credits.

Such a Students table with example data is given in Fig. 10.1, along with other tables

in the university enrollment database.

The relational database standard language SQL (abbreviating “Structured Query

Language”, although it contains sublanguages for almost every database task)

provides a data definition language in the form of a repertoire of CREATE TABLE

commands, which allows the user to describe a table, its attributes, their datatypes,

along with additional internal information. For example, to create the Students table,
one could use the following SQL command:

CREATE TABLE Students (

id INT PRIMARY KEY, first TEXT, last TEXT, credits INT)

Relational data definition languages allow database designers to describe in a

declarative format important aspects of the semantics of the data in a way that

can be exploited by a DBMS. In particular, they can include integrity constraints,
which give properties the data needs to satisfy in order to be considered “sane”. The

PRIMARY KEY declaration above states that the Students table cannot contain two

rows with the same id field and is an example of an integrity constraint.

Relational query languages allow the user to extract information according to the

structure that has been defined. One could issue a query asking for all students who

have taken at least 50 credits of courses. In accordance with the data abstraction

principle, queries cannot be issued based on the internals of data storage; a user

could not ask for all data on a particular disk, or all data located near a particular

item within storage or accessible within a particular data structure.

Declarative, Computationally Limited, Languages

The fact that data is to be retrieved via an abstract descriptive interface leaves open

the question of what kind of programming infrastructure could be used to actually

access it. One approach would be to use “data-item-at-a-time” programming

interfaces, which allow a programmer to navigate through the database in the

same way they navigate through any data structure in a general-purpose program-

ming language (Chap. 4): issue a command to get to the entry point of the structure,

say an array, and then iterate through it. If we wanted to get the students who have

taken at least 50 credits of courses, such an API requires a program (in the host

programming language, e.g., C, Java, C++) that issues an API command to connect

to the student table, another command to access the first (in arbitrary order) row

(or tuple) in the table and put it into a host-language variable, and then a loop in

the host programming language that performs the following action: checking that

the current tuple satisfies the criterion (at least 50 credits) and if so, adding it to the

output, then proceeding to the next tuple via calling an API command.
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Such an iterative interface is simple for a programmer to use, since it requires

only the knowledge of a few basic commands – e.g., a command to get the next

tuple and store the result in a local variable. It allows the programmer to exploit all

the features of the host language.

There are two main drawbacks to a data-item-at-a-time approach. First of all, it

does not give a way for non-programmers to access the data. Anyone who wants to

get the students with at least 50 credits has to know how to program. Secondly, and

perhaps more importantly, performance will suffer in this approach. The program

will have to access every student record in order to access the ones of interest.

Further, records will be fetched one at a time, even though the architecture of any

computer would allow hundreds if not thousands of records to be transferred

between disk and main memory in a single-command.

The alternative pursued in relational database systems is the use of query
languages; access to the database is by issuing statements that define properties

of the set of tuples to be retrieved, giving no indication how they should be

obtained. In the example above, a user would state that they would like all student

ids for students with number of credit attributes above 50. The SQL representation

of this is basically a formal structured version of the natural language phrasing,

given in the query Q0 below:

SELECT s.id FROM Students s WHERE s.credits > 50

SELECT describes a subset of the tuples satisfying the WHERE (“such that”) clause.

The above is a very simple example, but query languages can express fairly

complex subset requests. For example, a query asking for the names of students

with number of credit attributes above 50 who are enrolled in databases would be

the following query Q1:

SELECT s.last FROM Students s

WHERE s.credits > 50 AND s.id IN (

SELECT e.id FROM Enrollment e WHERE e.course¼0databases0)

Here IN specifies the set membership relation.

The declarative style of set-theoretic subset interfaces allows additional abstrac-

tion: the database manager is now free to choose a procedural implementation of the

set theory operations that fits the current storage structure of the data. The second

approach has become the ideal for database access and also for database update and

transformation – programs or users describe the collection of data items that they

would like to see or to change, and the details of how to do this are left to the

database manager.

There are many possible declarative languages. Prolog, for example is a

paradigmatic declarative language, with no explicit control structures. It neverthe-

less allows one to express any possible computation, including arithmetic and

recursive definitions. Relational database systems, in contrast, looked for languages

with limited expressiveness – ones that can only express computations that can be

performed reasonably efficiently. The motivation is to prevent users from writing

178 M. Benedikt and P. Senellart



queries that cannot be executed, or queries whose execution will degrade the

performance of the database manager unacceptably.

What exactly does limited expressiveness mean? At a minimum, it means that

queries cannot be expressed in the language if they require time exponential, or

more generally super-polynomial, in the database cardinality. In practice, one

desires performance much better than this – for large datasets one generally

wants implementations that run in time less than C1jDj2 þ C2 on a database D,
where the coefficients C1;C2 are not enormous. One coarse benchmark for a query

language is given by polynomial-time data complexity: for every query Q there

should be a polynomial P such that the execution of Q on a database D can be

performed in time at most PðjDjÞ. (As usual, jDj is the cardinality of D.)
The standard query language that emerged as part of the SQL standard fulfilled

the polynomial time requirement. In fact, a large fragment of the language could

be translated into a much more restricted language, a variant of first-order logic.
(See Chap. 2, Appendix G.) This fragment is the one formed from nesting the basic

subsetting SELECT. . .FROM. . . WHERE clauses of SQL, connecting multiple clauses

via the quantifiers EXISTS and NOT EXISTS, or (equivalently) with the set mem-

bership constructs IN and NOT IN. We refer to this fragment as first-order SQL in

the remainder of this chapter. For example, the following first-order SQL query Q2

retrieves the names of students who did not take databases:

SELECT s.last FROM Students

WHERE s.id NOT IN (

SELECT e.id FROM Enrollment e WHERE e.course¼0databases0)

First-order SQL translates to a simple syntactic variant of first-order logic known

as relational calculus. Every relational calculus query can be performed in poly-

nomial time on a Turing machine, and in constant time on a parallel machine.

The translation to a predicate logic is not used for compilation of the language.

(As we shall see, queries are compiled into algebraic formalisms instead.) But

predicate logics are often useful for reasoning about the properties of a query

language, since logics are well-understood and well-studied formalisms. There

are translations in the other direction as well: for example, SQL can express all

Boolean queries that can be defined in first-order logic over the relation symbols.

While the polynomial time requirement represents a limit on the expressiveness of

query languages, the requirement of expressing all queries in a logic gives a lower

bound on expressiveness, often referred to as relational completeness. The ideal

would be to have a query language that corresponds in expressiveness exactly to a

predicate logic – preferably one with a well-established set of proof rules. Then the

optimization rules of the query language could be justified by the soundness of the

proof system for the logic. Relational languages do not meet this ideal – SQL is

much more powerful than first-order logic, and does not correspond exactly to any

well-studied logic – but they approximate it.

Just because database query languages are limited in expressiveness does not

mean that users are restricted in performing certain tasks. For example, a user can
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still filter data based on some complex arithmetic comparison or recursive function.

The idea is not that query languages would replace general-purpose programming

languages. They would only be used to express requests for information that

requires searching and combining data from a large dataset. Finer filtering of

information would be performed within a general-purpose language.

An example of the runtime flow for our first query Q0 might be:

Q0  SELECT s.id FROM Students s WHERE s.credits > 50;

D0  newDatabaseConnection();

results D0.execute(Q0 );

while not end of results do

studentRecord  results.next();

if good(studentRecord.credits) then print(studentRecord );

endw

The “execute” operation evaluates the query Q0 on the stored data. The result

of execution may be the transferring of all of the data into memory, or just the

determination of the initial record satisfying the query, with the remaining records

pulled in on demand. The “next” operator iterates through all of the records

satisfying the query. The filter “good” is a function on tuples written in the host

language, and could use any features available in that language. A database

management system thus divides up work between the host programming language

and a special-purpose language.

Indexed Data Architecture

Relational database managers were designed for datasets that would be too large to

fit into a computer’s main-memory. At any point in time, a portion of the data would

be in memory (in a buffer cache) and this portion could be accessed and navigated

quickly. The remainder would be on secondary storage (e.g., disk drives). The disk-

resident data can be divided up into blocks, a unit that can be transferred to main-

memory in one atomic operation. Query processing would involve locating relevant

blocks of data on disk, transferring block by block to the buffer, and then locating

the required data items by navigating a block.

The main tool relational database managers use to speed query processing is the

maintenance of auxiliary data structures that allow retrieval with fewer accesses.

The principal example of this are tree indexes, such as B-trees and B+-trees. In

the student example, we might create an index on id. If the ids range among 8-digit

numbers, the first level of the tree divides these numbers into some number

of intervals, and similarly each of these intervals is split into subintervals in the

next node.

To find the student with id 12345678, we follow a path down the tree by locating

12345678 within the collection of intervals under the root, then within the collec-

tion of subintervals, until finally arriving at the leaf node containing the block

180 M. Benedikt and P. Senellart



where the student record resides. Since the internal nodes of a tree index contain

only a subset of the values for one attribute (hence only a subset of the ids), they

will generally be dramatically smaller than the dataset. Still for a large dataset, the

bulk of the tree would reside on disk.

The trees used are balanced, like many tree structures used in computing: the

maximum number of levels below any given node is thus fixed, and this guarantees

that the access time for an id value will not vary from id to id. As data is modified

the tree indexes must be updated, but standard tree update algorithms can be applied

to make the update time a constant factor (between 1 and 2) in the number

of updates.

The key thing that distinguishes tree indexes from other tree data structures is

their branching. Instead of using binary branching, as search trees elsewhere in

computing do, the branching in B-trees is chosen so that one internal node can be

stored in a single block of memory, and thus a single navigation step in a tree

requires at most one data transfer step from disk to memory. Depending on the

block size of the machine and the size of a data item, there might be hundreds or

even thousands of entries at a given level.

Algebraic Query Plans

One of the key advantages of declarative languages is that the optimizer can choose

the best implementation, using a more global view of the query than the compiler

for a data-item-at-a-time language would possess.

A way to capture this extra dimension of flexibility between queries and evalua-

tion mechanisms is via the notion of a query plan. A plan is a description of high-

level steps that implement the query. Many plans can correspond to the query, and

have different performance characteristics.

Consider again the query Q1 above. A naı̈ve query plan would correspond to the

following step: getting all ids of students taking the course “databases”, using an

index I on the table, reading the blocks of this result one at a time; finding all the

student records that correspond to these ids; scanning through them to check the

number of credits, returning only those above the credit threshold; scanning through

the list of student records that survive the filtering process and returning all the

name fields. This plan might be represented internally within a database manager by

the following expression:

plastðs scan
credits>50ðStudents ffl pidðs I

course¼00databases00 ðEnrollmentÞÞÞÞ:

Here, s I
course¼00databases00 refers to a selection operator, which uses index I to

retrieve all records on a particular course; ⋈ is a join operator, which takes two

tables and merges all matching records – in this case, a table of ids and a table of

student records; sscancredits>50 is an operator that selects students within a student table

above 50 credits, via just iterating through the table block by block; finally, plast and
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pid refer to projection operators, which remove all columns from a table except,

respectively, the columns last and id, eliminating duplicate rows.

Of course, many details are omitted from this plan; in particular, there are many

ways of implementing the join operator ⋈. This plan follows the structure of the

query, and thus represents a fairly naı̈ve implementation. The key point is that there

are many other plans that implement the same query, some of which will not follow

the structure of the original query closely. For example, another plan is as follows:

use the index on the Enrollment table to get the list of records for “database”, then

use another index J on the Students table to get all student records for students

having at least 50 credits; then join the two tables; finally, remove all but the last
field, eliminating duplicates. This plan might be represented as follows:

plastðs J
credits>50ðStudentsÞ ffl s I

course¼00databases00 ðEnrollmentÞÞ:

The plan expressions that we are displaying are in a language called the relational
algebra. The relational algebra is still declarative. It has the same advantage over

formalisms such as the relational calculus as compilation formalisms for general-

purpose programming languages have over the corresponding source languages:

they are easier to optimize because there are fewer syntactic operators. In particular,

the language is variable-free – there are no explicit variables in the syntax – and thus
the conditions under which a new query can be formed from composing a new

operator are simpler.

The process of getting from a query to an efficient plan expression consists of a

translation to algebra and then transforming via applying equivalences – analogous

to the application of algebraic rules such as commutativity and associativity in

algebra. The standard example of such a rule is pushing selections inside

projections or joins: a query plan

scourse¼00databases00 ðscredits>50ðStudentsÞ ffl EnrollmentÞ

would be converted to

scredits>50ðStudentsÞ ffl scourse¼00databases00 ðEnrollmentÞ:

In searching through plans by applying transformations, we are exploring the space

of possible implementations of the query.

Cost Estimation and Search

The translation to algebra and the use of transformation rules allows one to explore

the implementation space. But two issues remain: how does one determine how

efficient an implementation is? And given that the search space is large – indeed,
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the collection of equivalent expressions is infinite – how does one search through it

in a way that makes it likely to find the best plan?

Relational database managers approach the first question by defining heuristic

cost estimates on a per-operator basis. Of course the real cost of basic operations,

such as retrieving all elements that satisfy a given selection criterion, depends on

the data – one cannot know it exactly without executing the query. Statistical

information about the data, refreshed periodically, can provide a substitute for

exact information. For example, if one stores a histogram telling what percentage

of the students have credit totals in any interval of length 5 between 0 and 150, then

one can get a very accurate estimate of the number of students having above

50 credits. This will allow one to estimate the cost of the selection on I in both

plans above. Cost estimation of basic operations on relations is highly tied to the

index structures and physical storage – it takes into account index structures, when

they are present, cached data, and locality of data on disk. Thus much of the

implementation of relational structures is encapsulated within a cost function,

which serves as an interface to the query optimizer.

In terms of the second question, relational database managers have no universal

solution for searching the space of query plans. They apply some standard search

techniques, but customized to the database setting. In particular, they rely heavily

on divide-and-conquer, breaking up the algebraic expression into subparts and

optimizing them separately; the variable-free nature of relational algebra

expressions makes it easy to analyze components of queries in the same framework

as queries, which assists in defining algorithms via recursion on query structure.

ACID Transactions

Above we have focused on querying databases, but databases are also being

updated concurrently with query accesses. The concurrency of updates and queries

introduces many issues. Consider two users of our university database. User A is

doing an update that is removing a student S from the Students table along with all

of the student’s records in the Enrollment table. Concurrently user B is querying for

the average number of courses for any student, a query that involves both the

number of total courses in the Enrollment table and the number of students. The

high-level query of B translates to a number of access operations on the database,

while the update performed by A translates to changing records in two distinct

tables. If the low-level operations are interleaved in an arbitrary order at the

database, then the users may see anomalous results: the average seen by B might

reflect a student table that includes student S, but an Enrollment table that lacks the
records of S, or vice versa. Indeed, the average seen by B might reflect a table

including only a portion of the enrollment records of S.

The issue is related to the level of abstraction provided to users by a database

system; a complex data-intensive activity like querying for an average is provided

as a single primitive to user B, who will consider it to be atomic – something that

cannot properly overlap with other database activities. At the very least, the
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database should support this. Furthermore, user A would like an even higher-level

of abstraction: A would like the two updates together to be considered as a single

primitive, which should not properly overlap with other database activities.

A DBMS provides additional language support that allows A to do this – to state

that the delete of student S and the elimination of S’s enrollment records represents

a transaction, which should have the properties of a single indivisible action.

Above we have spoken of an action or sequence of actions being treated as

“atomic” or “indivisible”. But what does this mean in practice? Relational

databases have formalized this by the requirement that transactions satisfy the

following properties:

Atomicity

No transaction should be “implemented in part”. If there is a failure in the process

of performing one of the updates in the transaction (e.g., due to hardware failure or

integrity constraint failure), then any other updates that have been applied should be

rolled back, and their effects should not be seen by other database users.

Consistency

Transactions should leave the database in a consistent state: one in which all

integrity constraints hold.

Isolation

Until a transaction has completed, no concurrent user should see results that are

impacted by the updates in the transaction.

Durability

Conversely, once a transaction has completed, its results should not be rolled back

regardless of hardware or software failures. We say that the transaction should be

durable.

Support for transactions that satisfy the properties above – abbreviated as

ACID transactions – is one of the main goals of relational systems. ACIDity

can certainly be achieved by running each transaction serially: assigning each one

a timestamp, and running the transactions in timestamp order (queuing those with

lower timestamp), rolling back the transactions that do not complete. Logging

mechanisms can be used to track the impact of the transaction to enable rollback.

The problem is that this can lead to unacceptable delays in running updates and

queries. The goal is then not just to enforce the ACID properties, but to enforce

them while allowing updates and queries to proceed without blocking whenever

this would not destroy ACIDity – that is, to allow as much concurrency as

possible.

Locking mechanisms are the most popular technique for managing concurrent

use of the data; transactions are only allowed to modify data items that are not

locked by another transaction, and when they act on an item they receive a lock

on it, which generally remains in place until the transaction completes or aborts.

When a transaction queries data it receives a weaker lock on the data, one which
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allows other transactions to query the same data but not to update it. Lock-based

concurrency control has many variants, particularly concerning the granularity at

which data is locked.

The Evaluation Pipeline of the Relational Paradigm

The relational paradigm gives a flow of processing for queries that is closely-

modeled on the flow of processing of programs in a general-purpose programming

language (GPPL), such as C or Java. Figure 10.2 shows a comparison of the

processing flow at query/program evaluation time for a general-purpose program

and for a database query or transform. In both cases, source language expressions

are parsed, and eventually arise at a form more suitable for optimization.

The algebraic expressions are run through a logical optimizer which has an

abstract interface to information about program executions. The optimized expres-

sion is either translated directly into an executable plan, or is run with the help of a

runtime system. In the case of a DBMS, the runtime system would include indexes

and other auxiliary data structures.

Several differences stand out between the two scenarios:

• Database languages are much smaller and syntactically less complex than

GPPLs, and hence the parsing stage is fairly uninteresting. Similarly, the seman-

tic analysis phase is often much simpler than for a GPPL.

Fig.10.2 Processes for database programs and general-purpose programming languages

10 Databases 185



• Database queries are often issued interactively, or sent from across a network.

Thus optimization as a rule must usually be quite a small phase – in seconds if

not milliseconds. In the case of GPPLs, the common case is that the program text

is available for some time before execution, making a more robust optimization

phase possible.

• GPPLs often make use of interesting runtime data-structures – byte-code

interpreters, or garbage-collectors. But not all GPPLs do, and one generally

cannot say that a particular program requires auxiliary runtime structures. In

most applications database queries could not be executed at all without the help of

large and complex runtime structures. These structures, in turn, need to be

maintained after program execution (see bottom left in the figure), which may

be as complex and as time-consuming as execution itself. Designing and

maintaining these structures thus plays a central role in DBR.

Related to the above, DBMS systems are often tuned for many runs of a query or

set of queries, not just for an individual execution. The initial population and

period maintenance of runtime structures may thus represent an independent

process, taking place far prior to execution or at intervals between executions.

• A DBMS makes use of not only a program text, but information about the

semantics of the data – the schema. There is no corresponding standard input

description for GPPLs.

• A distinction that is not exhibited in the figure, but has an even greater impact, is

that, typically, database programs run in a heavily concurrent environment, with

hundreds, even tens of thousands of concurrent queries and updates sharing the

same data. Hence the handling of concurrency is paramount.

• Both GPPLs and DBMSs can be used in a distributed setting where resources

(data, computing power, etc.) are distributed over a computer network. How-

ever, for reasons that we will explain further on, even when there is no inherent

distribution in these resources, it is common for a DBMS to manage its data in a

distributed manner.

Let us return to the question of the manifold nature of database research

mentioned in the introduction. We said that part of database research is driven by

improving the performance of existing database management products, while other

DBR is geared towards exploring the possibilities for managing data and extending

the use of database management techniques.

If we consider the first kind of research, parallels with programming languages

suggest that its structure could be broken down along the same lines as for PL

research – there is research on optimization, research on improving runtime data

structures, concurrency, etc. Of course, as the figure shows, DBR in no sense

reduces to PL research, and indeed the research on DB performance has not been

closely-tied to work in PL. Still in rough analogy with programming language

work, one would expect the structure of DBR to follow the lines of the flow on the

left-hand side of Fig. 10.2. And indeed much of the first kind of database research

naturally works in exactly this way. We will refer to this as core database research,
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and we will give an idea of some aspects of it in the next section, following the

processing flow on the left of Fig. 10.2 in our tour.

For research extending the functionality of DBMSs, and considering ways in

which data could be managed, there is a dichotomy: some of the work tries to

preserve the flow of processing in the relational paradigm, but with some new

functionality at the query language level. Some of this work takes as a given the

relational perspective of database query languages as a logical formalism, and looks

at to what extent other logics could be evaluated in the same way as first-order

predicate logic on relations. A second line in the more speculative kind of DBR looks

at more radical changes in the processing pipeline, which have no analog in program-

ming languages. We will overview both of these extensions further in this chapter.

Core Database Research Sampler

In this section, we provide a sampler of what research in the database field has

focused on and accomplished over the years concerning the processing pipeline of

relational database management systems, as was presented in the previous section.

Following Fig. 10.2, we start at the query level, then move to logical optimizations,

physical optimizations, down to the execution of the query on actual hardware.

Each research area is represented by a selection of significant research results, with

no intention of exhaustiveness or objectivity in the choice. We also indicate the

impact research has had on the design of modern DBMSs, discussing whether

models, algorithms, and data structures from the scientific literature have been

implemented in widely used systems.

Query Languages

We previously explained how first-order SQL has nice logical and algebraic

interpretations in terms of relational calculus and relational algebra. However, even

the very first version of the SQL query language (Chamberlin and Boyce 1974) went

beyond that fragment and included aggregate functions and grouping. Over the years,
the standard and implementations of the SQL query language evolved towards more

and more expressive power. We present in this section the additions that have been

made to SQL to overcome some of its limitations, both in the standard and in actual

implementations, that do not always follow it strictly.

Aggregation

One of the most common functions of database management systems is to compute

summaries of existing data by aggregating the numerical values that appear in these
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tables. Going back to the example database of Fig. 10.1, one can for instance ask the

following questions:

• What is the average number of credits obtained by students?

• How many students have more than 50 credits?

• What is the maximum number of credits earned by a student enrolled in the

databases course?

• For each course, what is the average number of credits of students enrolled in

this course?

All these queries make use of an aggregation function to compute the average,

count, or maximum of a collection of values. The last query also uses a grouping
operator, where the aggregation is performed for each group of results to a sub-

query that have the same value for a given attribute. As already mentioned, both

aggregate functions and grouping are basic features of SQL. They correspond to

forming families of sets.The last query can for instance be expressed as:

SELECT e.course, AVG(s.credits)

FROM Students s, Enrollment e

WHERE s.id ¼ e.id

GROUP BY e.course

It is also possible to define extensions of the relational algebra for queries that

involve aggregation and grouping (Klug 1982; Libkin 2003). Using a similar

notation as in Libkin (2004), a relational algebra expression for the query above is:

Groupcourse½lS:AvgðSÞ�ðpcourse;creditsðStudents ffl EnrollmentÞÞ:

As in the non-aggregate case, database management systems use such algebraic

expressions to represent and manipulate query plans.

In essence, the queries definable in the early versions of SQL (Chamberlin and

Boyce 1974; ISO 1987) are the ones of this aggregation and grouping algebra.

Queries with aggregation and grouping, with their standard syntax and semantics,

are supported by all relational database management systems. In the following, we

will refer to this language as vanilla SQL to distinguish it from more recent and less

well-supported additions.

Recursion

A natural question is that of the expressive power of vanilla SQL. Can all

“reasonably simple” queries that one may want to ask over a relational database

be expressed in SQL? Again, consider the university enrollment example. The table

Dependencies lists the courses that a student must have followed in the past in order

to get enrolled in a given course. Suppose that a new student aims at taking the Web

course. Then he needs to query the database to retrieve all courses this one depends
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on, so as to plan his curriculum. This is a simple enough request: if the table

Dependencies is seen as the relation defining a directed graph, the problem becomes

determining all nodes in the graph reachable from the “web” node. This can be

solved in time linear in the size of the relation by simple depth-first or breadth-first

graph search algorithms (in other words, by computing the transitive closure of the

relation); because of the inherent recursion in these algorithms, such a query is

called recursive. We have isolated earlier in the chapter polynomial-time data

complexity as an indicator of the limits of expressiveness for database query

language. The course dependency query and other similar recursive queries fit

this criterion. Are they expressible in vanilla SQL?

It is well established that recursion cannot be expressed in first-order logic (and

thus, in the relational calculus). This can be proved using a locality (Libkin 2004)

argument: a relational algebra expression is unable to distinguish between two

nodes in a graph whose neighborhood of a certain radius are isomorphic, while

computing the transitive closure is essentially a non-local operation. It turns out that

the same result holds for vanilla SQL (Libkin 2003), with aggregation and group-

ing, when datatypes are unordered (the problem is more complex and still open for

ordered datatypes).

The (apparent) inability to write simple recursive queries in SQL has led the

designers of the SQL3 standard (ISO 1999) to add to the language the WITH

RECURSIVE feature that enables recursion. As an example, the course dependency

query can be written as:

WITH RECURSIVE Closure(course) AS (

VALUES(0web0)

UNION

SELECT d.dependson FROM Dependencies d, Closure c

WHERE d.course ¼ c.course

) SELECT ∗ FROM Closure

Support for this kind of query in DBMSs varies. In Oracle, for instance, it is not

possible to use WITH RECURSIVE queries at the time of this writing. A similar

feature, however, has been available in Oracle since the early 1980s (Stocker et al.

1984) with the proprietary CONNECT BY operator, which demonstrates the early

interest in such a functionality. IBM DB2, Microsoft SQL Server, and PostgreSQL

all support WITH RECURSIVE, while other less feature-rich DBMSs such as

MySQL do not allow any form of recursive queries, short of stored procedures.

Stored Procedures

The components of the SQL query languagementioned so far (the relational algebra,

aggregation and grouping, recursion) all have in common a polynomial-time

data complexity. As already discussed, this is a design choice, to avoid queries

that would be too costly to evaluate. The philosophy was that more complex
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processing of the data would be done outside the database management systems, in

applications written in traditional programming languages. This may mean, how-

ever, redundant implementation of data-related functionalities (e.g., data

validation) in all applications (possibly written in different programming languages)

that interact with a given database. For this reason, users have felt the need to move

larger parts of the application logic, in the form of arbitrary code that manipulates

data, into the database management system. Database vendors have thus offered the

possibility to implement stored procedures and user-defined functions directly in the
DBMS, using extensions of the SQL language with control flow statements (variable

assignment, tests, loops, etc.). These procedures are stored in the database itself,

along with the data. This has led in turn to the addition of stored procedures to

the SQL standard, under the name SQL/PSM (ISO 1996) (for persistent stored
modules). Though few vendors follow this standard to the letter and there

are many variations in the actual stored procedure languages used in DBMSs,

all major systems provide this functionality. Oracle’s stored procedure language,

PL/SQL, introduced in 1992, has been especially influential.

Using stored procedures, it is possible to implement arbitrary processing of the

data inside the database management system (in other terms, the addition of stored

procedures make the SQL language Turing-complete). As a consequence, queries

making use of stored procedures do not have any guarantee of polynomial-time data

complexity and most query optimization techniques are not applicable any more.

The database management system focuses on optimizing subparts of the stored

procedures that do not make use of control flow statements.

The relational algebra, aggregation and grouping, recursive queries stored

procedures and user-defined functions are the tools thatmodern databasemanagement

systems provide to query relational databases. Other commonly available features

of the query language either add syntactic sugar on top of these basic functionalities,

or allow the querying of other kinds of data structures, such as XML documents (see

further), geospatial coordinates, or plain text queried through keyword search.

Logical Optimizations

Let us move to the realm of query optimization. The goal here is to find an efficient

way of evaluating a user’s query. As already mentioned, database management

systems do this in two ways: by first rewriting the query into a form that is easier to

evaluate, independently of the data it runs on, and then by generating a set of

possible evaluation plans for the query and using statistical information to choose

an efficient one for this particular database. We are looking now at the former type

of techniques, that we call logical optimizations. Plan generation and statistics-

based cost estimation are described further. Logical optimizations can either be

local (the query is rewritten parts by parts) or global (an optimal rewriting of

the query as a whole is sought for). Since optimizations considered here are
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independent of the actual data they are particularly useful when the same query is

run multiple times over different database instances.

Local Optimizations

For reasons that we shall attempt to explain further on, though research has

considered and proposed both local and global logical optimization strategies,

DBMSs mostly use local optimizations. To go beyond what is presented in this

section, a good starting point is Chaudhuri (1998).

Equivalence Rules

The first idea used for query rewriting has already been mentioned: exploiting

equivalence rules of relational algebra expressions (especially, commutativity or

distributivity of operators). Thus, it is often more efficient to push selections inside

joins, i.e., evaluate the selection operator in each relations before joining two

relations, or to distribute projection over union, i.e. to transform pAðR1 [ R2Þ into
pAðR1Þ [ pAðR2Þ. It is not always clear, however, when applying a given equivalence
rule makes the rewritten query more efficient. Therefore equivalence rules are also

used extensively for generating the space of query plans a cost-based estimator

chooses from. Equivalence rules of relational algebra expressions involving classical

operators are folklore, but each time a new operator has been considered, new

equivalence rules have been investigated. This is the case, for instance, in Rosenthal

and Galindo-Legaria (1990) with the outer join operator that retains every tuple of

one of the two tables being joined, even if no matching tuple exists in the other table.

Equivalence rules are an important component of the query optimizer of all DBMSs.

Unnesting Complex Queries

Another form of logical optimization at a local level deals with nested SQL queries.

SQL offers the possibility of expressing complex queries that use nested sub-

queries, especially in the WHERE clause:

SELECT s.first, s.last

FROM Students s

WHERE s.id IN (

SELECT e.id FROM Enrollment e WHERE e.course¼0databases0)

A naı̈ve evaluation of this query, which asks for names of students enrolled in the

“databases” course, would enumerate all tuples of the Students table, and, for each
of them, would evaluate the sub-query and return the tuple if the sub-query returns

the identifier of the student. Obviously, in this particular example, such complex

processing is not required, since the query and its sub-query are uncorrelated:
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the sub-query does not refer to the current tuple of the main query. This means the

sub-query can be evaluated once and its results used for matching identifiers from

the Students table.
There are more complex examples of nested queries, for which such a simple

strategy cannot work. Consider for instance the following query, that retrieves

names of students enrolled in a course that would allow them to graduate (assuming

they need 150 credits to graduate, counting those they were already awarded):

SELECT s.first, s.last

FROM Students s

WHERE s.credits < 150 AND s.id IN (

SELECT e.id FROM Enrollment e

WHERE e.credits > 150 � s.credits)

Here, the main query and its sub-query are correlated: the sub-query has a condition
on the value of the current tuple of the Students table.

Research has investigated the conditions under which nested queries could be

unnested and rewritten as simple one-block queries. The seminal work (Kim 1982)

proposes an algorithm to simplify nested queries, which depends of the kind of

correlations existing between a query and its sub-query. In this example, a simplifi-

cation is possible, and yields:

SELECT s.last

FROM Students s, Enrollment e

WHERE s.id ¼ e.id AND s.credits < 150

AND e.credits > 150 � s.credits

This rewritten query can be shown to be equivalent to the original one. This

decorrelation procedure is actually very simple when the two tables are joined by

the IN operator and when the correlation between the two tables does not involve any

aggregate function: just put all conditions of the sub-query in the main WHERE clause,

and replace the IN operator with an equality join. Other works, such as Dayal (1987),

have extended the decorrelation procedure of Kim (1982) to support, for instance,

grouping, and other forms of correlation between a query and its sub-query.

Obviously, whenever such simplifications are possible (which is not always the

case!) they can be applied repeatedly to complex sub-queries to reduce the number of

nested blocks, possibly reducing them to a simple SELECT-FROM-WHERE query. The

reduced query is typicallymore efficient to directly evaluate, leads to a search space of

query plans of reduced size, and is also more easily subject to other forms of logical

optimizations, such as static analysis. For these reasons, modern-day query optimizers

perform such unnesting, at least in simple cases (Lorentz 2010).

Global Optimizations: Static Analysis

We discuss here a global approach to query optimization, based on static analysis:
independently of actual data, determine important characteristics of a query as a
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whole that can be used, in particular, to determine whether the query can actually

return any result, what is the optimal evaluation order, or how to rewrite it into a

simpler one.

We limit ourselves in this section to the well-understood case of conjunctive
queries, the fragment of the relational calculus without disjunction, negation, or

universal quantifiers. A conjunctive query is thus a conjunction of relational facts

(also called subgoals) involving either output variables, or existentially quantified

variables, or constants, for instance the query Q1, previously introduced:

Q1ðlastÞ:¼9i9f9c:Studentsði; f ; last; cÞ ^ c>50 ^ Enrollmentði;00databases00Þ:

Equivalently, this can be seen as a fragment or the relational algebra with the

selection, projection, join, and cross product operators, or also as simple SQL

queries involving only the SELECT, FROM, and WHERE keywords.

The most basic static analysis problem is that of satisfiability: does there exist a
database for which the query returns a non-empty result? In the case of conjunc-

tive queries, and without any restrictions on the data, it is easy to see the answer is

always yes, because of the monotonicity of the query language. For the full

relational calculus, satisfiability is undecidable. The undecidability of the exis-

tence of arbitrary models of a first-order logic formula is a consequence of

G€odel’s incompleteness theorem (see Chap. 2, Appendix G); however, the proof

of the undecidability of relational calculus satisfiability (Di Paola 1969) relies on

the undecidability of the existence of finitemodels of a first-order logic formula, a

result known as Trakhtenbrot’s theorem (Trakhtenbrot 1963).

Query Evaluation and Query Containment

Another fundamental problem in static analysis is query containment: query Q1 is

said to be contained in query Q2 (Q1 � Q2) if, for all databases D, the set of results
of Q1 over D, Q1ðDÞ, is a subset of Q2ðDÞ. For conjunctive queries, a fundamental

result known as the homomorphism theorem (Chandra and Merlin 1977) relates

query containment and query evaluation through the canonical database DQ of

a conjunctive query, constructed as follows: each subgoal occurring in the query

forms one tuple of its canonical database, and each constant occurring in the

query or output variable of the query is the sole tuple of a new unary relation.

A homomorphism between two relational databases is a mapping h from one to the

other such that if Rðc1 . . . cnÞ is a tuple of the first database, then Rðhðc1Þ . . . hðcnÞÞ
is a tuple of the second. The homomorphism theorem states that the following three

statements are equivalent:

1. Q1 � Q2;

2. The output variables of Q1 are in Q2ðDQ
1 Þ;

3. There is a homomorphism from DQ
2 to DQ

1 .

In other words, testing containment amounts to evaluating a query, and, con-

versely, evaluating a query Q over D amounts to testing containment of a query for
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which D is the canonical model in Q. An efficient algorithm for query containment

would thus give us an efficient query evaluation strategy. It is easy to see, however,

that conjunctive query containment is an NP-complete problem (Chandra

and Merlin 1977), and (thus) that in terms of combined complexity (Vardi 1985)

(i.e., the complexity when both the data and the query are part of the input), query

evaluation is NP-complete. In fact, satisfiability of propositional formulas in con-

junctive normal form (Chap. 2, Appendix 1), the most well-known NP-complete

problem, (see Chap. 13), is a special case of query evaluation over a database where

the domain of each relation has only two elements.

Acyclic Queries

Given this intractability of conjunctive query evaluation in the query size, research

on query optimization has investigated subclasses of conjunctive queries for which

(a) containment is in polynomial time and evaluation is therefore in polynomial

time in combined complexity and (b) the recognition problem – determining

whether a query belongs to the subclass – is tractable. In particular, the class of

acyclic queries (Chekuri and Rajaraman 2000) has been widely studied.

To define acyclicity, first consider a simple case when all relations used in a

conjunctive query have arity 1 or 2. We define the graph of such a query. Nodes of

the graph are constants or variables occurring in the query, and there is an edge

between two nodes if there is an atom that involves both these nodes. A query is

acyclic if its graph is acyclic. For example, the query 9x9y9zRðx; yÞ ^ Rðy; zÞ is
acyclic, while 9x9y9zRðx; yÞ ^ Rðy; zÞ ^ Rðz; xÞ is cyclic. For general conjunctive
queries with no restriction on the arity of the relation, the definition of acyclicity

involves the hypergraph of the query, and essentially means that there exists a tree-

like decomposition of the hypergraph; the precise definition is a bit technical and

can be found in Beeri et al. (1981), along with equivalent characterizations.

Acyclic queries are of particular interest because query evaluation can be

performed in polynomial-time combined complexity (Chekuri and Rajaraman

2000). Intuitively, for a query with no output variables, it is possible to use the

tree decomposition of the query as a query plan where join operators can be

replaced with semijoins (the semijoin of two relations is the tuples of the first

relation for which a matching tuple exists in the second one). One can easily see that

testing acyclicity is also tractable. Numerous queries encountered in practice are

indeed acyclic; this is the case of most queries related to the university enrollment

example encountered so far. But some simple queries are cyclic. Consider for

instance the following one, that checks if there is any student enrolled at the same

time in a course and one of its prerequisites:

Q3 :¼ 9i9c19c2:Enrollmentði; c1Þ ^ Enrollmentði; c2Þ ^ Dependenciesðc1; c2Þ:

This query is obviously cyclic. In order to extend tractable query containment to

simple yet cyclic queries, the notion of treewidth (Chekuri and Rajaraman 2000)
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and the more general hypertree-width (Gottlob et al. 2002b) have been introduced

to characterize the “degree of cyclicity” of a query; intuitively, the tree decomposi-

tion of a query is allowed to have more than one subgoal, and the maximum number

of these subgoals in the tree gives the width. We omit the precise definition of these

concepts, but treewidth and hypertree-width have in common that acyclic queries

have width of 1, a “cycle” query such as Q3 has width of 2, and, more generally,

the more complex the sharing patterns of variables across subgoals, the larger the

width. Though computing the treewidth or hypertree-width is NP-hard, there are

polynomial-time algorithms that check whether a query has width less than or equal

to a given constant k. Furthermore, if a query has treewidth or hypertree-width at

most k for any fixed k, query containment can be tested in polynomial time, and thus

query evaluation is polynomial-time in the size of the query and data. The advan-

tage of hypertree-width over treewidth is that for some queries, the hypertree-width

can be arbitrarily smaller than the treewidth.

Query Minimization

A query optimization problem orthogonal to finding an efficient evaluation strategy

is minimization: does the query have a minimum number of subgoals among all

equivalent queries, and if not, how can we rewrite it into an equivalent, minimal,

query? As a rule of thumb, the shorter a conjunctive query is, the faster it can be

processed. The problem of query minimization is especially significant when the

query is not hand-written but automatically generated, e.g., by a content manage-

ment system or in data integration contexts. Such automatically generated queries

are commonly much longer than minimal equivalent queries, involving many join

computations that could be avoided.

A consequence of the homomorphism theorem is that every conjunctive query

has a unique minimal equivalent query (up to the renaming of variables). Further-

more this minimal query is a homomorphic image of the original query. A strategy

for query minimization (Abiteboul et al. 1995) is thus to repeatedly try reducing the

overall number of subgoals of the query by mapping variables to constants or other

existing variables, testing at each step whether the reduced query is still equivalent

to the original query. When no further reduction in the number of subgoals is

possible, we have obtained the minimal query. Consider for instance the Boolean

query 9x9y9z:Rðx; yÞ ^ Rðz; 5Þ. By mapping x to z and y to 5 we obtain the reduced
query 9z:Rðz; 5Þ which can be checked to be equivalent to the original query.

Further minimization is obviously impossible, so this is the minimized query.

Note that the homomorphic image of an acyclic query is also acyclic. This means

that this minimization procedure can be run in polynomial time over acyclic

conjunctive queries. A query optimizer can thus start by checking whether a

given query is acyclic, and if so, minimize it, to reduce the cost of its evaluation,

and also evaluate it in polynomial time. Once again, this approach can be

generalized to queries of bounded treewidth or hypertree-width.
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Use of Static Analysis in DBMSs

Basic static analysis is used in relational database management systems, e.g., to test

if a query is acyclic in order to replace joins with semijoins (Lorentz 2010). More

advanced treewidth-based query evaluation and query minimization, to the best of

our knowledge, are not used in any major database management systems, despite

the potential usefulness of such techniques in practical applications (Kunen and

Suciu 2002). The reason may be that queries are often already minimal and in an

easily evaluable form when hand-written; more and more scenarios call for auto-

matically generated queries of arbitrary structure, however. Another reason is the

generally good performance of classical cost-based optimizers.

Between Logical and Physical Optimizations: Views

Before moving down the query processing pipeline to plan generation and cost-

based query optimization, let us remain at the logical level to discuss views: a view
is a named query that can be used in other queries as if it were a base table in the

database. Views can be defined in SQL like this:

CREATE VIEW PredictedCredits AS

SELECT s.id, s.credits + SUM(e.credits) AS credits

FROM Students s, Enrollment e

WHERE s.id ¼ e.id

GROUP BY e.id

This statement creates a view PredictedCredits that contains the number of credits

for each active student at the end of the term, provided they pass all courses they

enrolled in. This view can now be referred to in subsequent queries (e.g., SELECT

AVG(credits) FROM PredictedCredits).
Views can either be virtual ormaterialized. Virtual views are just aliases for sub-

queries; when they are used inside a query, they are substituted with their definition.

The full expansion of queries that use views can become relatively complicated,

and the unnesting procedures discussed in the previous section can be helpful to

optimize them. In materialized views, the situation is different: the query defining

the view is evaluated to produce the result table, and this result table is stored and

can be directly used as a table in query evaluation.

Virtual views can be used as an extra abstraction layer on top of the original data:

one sometimes consider views as belonging to an external layer that users access,
on top of the logical layer of relational tables that organize the data, on top of the

physical layer of indexes and data storage structures. Separating views from data

allows them to be used for confidentiality purposes: the view PredictedCredits
can be published and used for statistics purposes, without the identity of the
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students being unveiled. Virtual views are also crucial in data integration contexts,

when a source does not provide access to all its data, but just to a view over its data.

Materialized views are generally used for optimization purposes: if a compli-

cated query or sub-query is often used, a materialized view defined by this query

avoids repeating the same computation again and again, functioning as a cache over

the data. This can be done in two ways: either the user needs to refer to the

materialized view in the query for it to be used, or the materialized view is

automatically used whenever useful, the database engine rewriting the query to

make use of this cached data, typically using query containment tests to check for

the usability of the view.

All relational DBMSs support virtual views. Materialized views are not part of

the SQL standard (there is the possibility of defining tables by a query, but such

tables are not maintained as we discuss further) but major systems offer the

possibility of creating them, with a proprietary syntax. At creation, it is generally

possible to specify whether the materialized view should be used for optimization

purposes when finding a rewriting of a query (e.g., the ENABLE QUERY OPTIMI-

ZATION clause of DB2’s materialized query tables).

Updates in Relational Databases

Most research about views in relational databases relates to their interaction with

database updates. Until now, we have mostly had a static view of databases: the

content of tables is fixed, and we interact with them through queries. Obviously, in

most applications, tables change over time, as new data appears, data gets modified,

and old data is removed from the database. These three basic operations can be

carried out in SQL as follows:

INSERT INTO Students VALUES(5, 0Alice0, 0Liddell0, 0)

UPDATE Students SET credits ¼ credits + 10 WHERE id ¼ 3

DELETE FROM Students WHERE credits < 50

These three update operations respectively insert a new student in the database,

increase the credits of a given student, and delete a student from the Students table.
Note that the location of the tuple to update or delete is given in the WHERE clause

similarly as it would be expressed in a query: the idea of using locator queries to

express updates is a very general one.

Two fundamental problems arise when views are defined over dynamic data.

First, materialized views need to be updated whenever the result of their defining

query changes because of updates in the database; this is known as view mainte-
nance. Second, since views can be used as an external layer that users can

query without knowledge of the logical organization of the data, they should also

be able to update the data through views, and this update should be propagated

to the original data: this is the view update problem. We now elaborate on these

two problems.
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View Maintenance

The view maintenance problem is to determine how to efficiently maintain an

up-to-date materialized view when its base tables are updated. Consider again the

view PredictedCredits that we assume has been materialized. It is clear that each

time a student is removed from the Students table, or the current credits of a student
are updated, or a new tuple is inserted into the Enrollment table, the relevant portion
of the view needs to be updated as well.

In order to avoid unneeded computations, the system needs to detect whether a

view can be affected by a given update, i.e., whether the update is relevant to
the query. For instance, no update in theDependencies table, and no modification of

the name of a student, can have an impact on the PredictedCredits view. Static

analysis approaches can be used to determine the potential impact of an update on a

view, independently of the current data. Once an update is found relevant to the

view, the query defining the view can be evaluated again and the view

reconstructed.

In most cases, it is possible to do better, with an incremental maintenance
approach, that aims at avoiding this recalculation step together, and just incremen-

tally maintaining the view by adding or removing individual tuples. Let us see a

practical example, with the simple yet elegant counting algorithm (Gupta et al.

1993) for incremental view maintenance. Consider the following (materialized)

view, that lists all courses at least one student is enrolled in:

CREATE VIEW Courses AS

SELECT DISTINCT e.course FROM Enrollment e

The main idea of the algorithm is to store in the view, in addition to the tuples, an

extra counter that indicates how many derivations of this tuple can be found in the

database. For example, the “databases” course appears twice in the table Enroll-
ment so there are two different derivations of the tuple (“databases”) in the view

Courses. Consider now an update on the table Enrollment. For simplicity, we

assume it is either an insertion or deletion, modifications being dealt with as a

sequence of a deletion and an insertion (it is possible to extend the algorithm to deal

with modifications in a direct manner). We describe how the view is maintained. If

we deal with an insertion, let c be the projection of the new tuple on the attribute

course. The value c is searched in the materialized view Courses. If it occurs, the
corresponding count is incremented by 1; otherwise, it is inserted, with a count of 1.

For a deletion, we proceed similarly: we decrease the counter associated with the

course deleted, and if it reaches 0, we delete the tuple from the view. Such a simple

procedure can be defined for a large class of queries, with support for aggregation or

negation. For a broader outlook on view maintenance approaches, see Gupta and

Mumick (1995).

DBMSs that support materialized views, such as Oracle or DB2, allow

specifying at view creation time whether a view should be maintained auto-

matically, and, if so, whether the view should be entirely recomputed after each

update operation or incrementally maintained (when possible) (Lorentz 2010).
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View Update

The view update problem is the converse of the view maintenance problem. Instead

of determining the consequences on a view of an update on the database, we now

look at how to translate on the databases an update on a view. Imagine a secretary

with access to the sole view Courses needs to change the name of the “automata”

course to “formal languages”. Does this make sense? In other words, is there any

reasonable translation of this update operation on the table Enrollment? In this case,
it seems there is: just replace every occurrence of “automata” with “formal

languages” in the table Enrollment. What if someone with access to the

PredictedCredits view wants to change the credits of a given student? Now, there

does not seem to be any reasonable way to translate this into a database update

operation, since the credits attribute of the view has been computed as an aggregate

of several values, and it is unclear which value should be changed.

The view update problem consists in determining in which cases updating a

database through a view makes sense, and when it does, what the most reasonable

translation of the view update is. In Keller (1985), algorithms are proposed for view

update translation when views are defined using simple conjunctive queries with all

join variables exported in the view. In addition to these algorithms, this work is of

particular interest because it identifies a number of criteria that a view update

translation should verify to be “reasonable”:

1. The translation should not have any effect on the tuples not exported in the view.

2. The translation should affect at most once a database tuple.

3. The translation should be minimal, i.e., there should not be unnecessary

operations.

The SQL standard supports updatable views only when the view is defined using

a single table, and no aggregation or grouping is used. Implementations may go

beyond that and sometimes allow updating simple multiple-table views. The stan-

dard WITH CHECK OPTION clause that can be used in view definitions states that

updates that would cause changes to tuples not visible in the view should be

disallowed.

Plan Generation

Looking back at Fig. 10.2, we arrive at the step where query plans are generated and

the physical plan that will be run on the actual data is chosen. In order to decide on a

query evaluation strategy, query optimizers are built out of three components:

• Logical rewriting rules and index access strategies that are used to generate,

given a query, its possible execution plans
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• A cost model for estimating the cost of a plan, typically based on the expected

number of disk accesses and CPU use of every atomic operation; for the estimate

to be precise, it needs to be based on statistical information about the data

• A search strategy that guides the optimizer in exploring the space of possible

evaluation plans

The design of the query optimizer, and in particular, the heuristics for estimating

plan costs, are an important component of database management systems, that is

kept as a secret in commercial DBMSs. We now present in more detail research

about using histograms for storing statistical information, and how these statistics

can be used to estimate the cost of a query, before presenting the architecture of a

typical query optimizer. For further reading on query optimization, we refer the

reader to (Chaudhuri 1998).

Cost Estimation and Histograms

Consider the query Q>50 ¼ scredits>50ðStudentsÞ. Such a simple query has usually at

most two possible evaluation plans: either the table Students is linearly scanned, and all
tuples with more than 50 credits are returned, or an ordered indexed on the attribute

credits is browsed to retrieve all relevant tuples. TheStudents table is probably stored in
the order of its primary key, id, however; this means the index of credits is a secondary
index that stores, for each possible value, a list of pointers to all corresponding tuples

in the database (a primary index on id could avoid this extra indirection).
Let us try to build a cost estimate of these two query plans, based on a simple

cost model that only looks at the number of disk pages accessed. A page is the

elementary unit of storage used by the DBMS; retrieving the whole content of a

page is considered as an atomic operation, while accessing another page requires a

costly random-access seek. Assuming a typical page size of 4 kilobytes and that

64 bytes are required to store each tuple of the Students table, the whole table uses
N/64 pages where N is the number of students. Consequently, a linear scan of the

table has a cost of N � 64/4096 ¼ N/64. The cost of using the index can be

decomposed as follows: first, looking up 50 in the index; second, accessing all

index entries for value equal or greater than 50; third, accessing all tuples pointed to

by these index entries. Let C be the number of different credit values. Assuming

storing a credit value requires 2 bytes, index lookup using a B+ tree structure has a

cost of log512C (512 is half the number of entries one could store in a leaf node, see

Silberschatz et al. 2010). The number of pages in the index entries accessed is

roughly N>50=1024 if 4 bytes are used for storing a pointer. Here N>50 is the number

of entries having value above 50. Finally, the number of pages accessed while

retrieving tuples can be as large as N>50 since two successive tuples are typically

not contiguous (it would be possible to refine a little bit this estimate by considering

the probability that a tuple is in the same page as a previously accessed tuple,

provided that this page was cached). Summing up, using the index is cheaper if:

N

64
� log512Cþ N>50 1þ 1

1024

� �
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In most practical situations, the first and last terms of the right-hand side are

negligible, and the question becomes whether N>50 is less than or equal to N=64.
To decide, we need statistical information about the credit values, usually stored in

a histogram.
A histogram is a summary of the distribution of the values of a relation attribute,

formed of a fixed number K of buckets, chosen small enough so that this summary

can be stored in main memory and used by the query optimizer without incurring

the cost of a disk seek. For each 1� i�K, bucket i contains statistical information

about tuples for which the attribute value is between vi and viþ1. Thus, v1 is the

minimum attribute value and vnþ1 the maximum value. The information stored is

typically the number of distinct values in the interval ½vi; vi þ 1Þ, the number of

tuples containing a value in this interval, and possibly other statistics of interest,

such as the mean or median value in each bucket. A histogram can be used to

estimate the number of results to a range query such as Q>50: add up the number of

tuples in buckets whose range intersects the range of the query, possibly refining the

estimate for buckets that are at the boundary.

There are different ways to organize attribute values into histograms. Equi-width
histograms partition the set of values ½v1; vnþ1� into K intervals of the same size.

This scheme is well adapted when the data distribution is close to a uniform one, but

fails when the distribution is too biased. Going back to our example, assume that the

minimum and maximum number of credits are respectively 0 and 1,000, but most

students have credits less than 150. If we construct an equi-width histogram with

5 buckets, most of the data values are represented by the bucket ½0; 200Þ, and the

histogram is not very helpful to estimate N>50. To avoid this issue, it is possible to

use equi-height histograms, where the buckets are constructed such that the number

of tuples per bucket is more or less uniform. In our example, this means that several

buckets cover the interval ½0; 150�. An estimate of N>50 adds up the total number of

tuples in all buckets whose lower bound is greater than 50, plus a fraction of the

number of tuples of the bucket where 50 is contained, which yields a more precise

approximation. An equi-height histogram, however, is more difficult to maintain in

the presence of update operations than an equi-width histogram.

Research on histograms has aimed at proposing new ways of splitting the

data values into buckets (e.g., v-optimal histograms (Ioannidis and Poosala 1995)

whose frequency estimates are provably optimal for a large class of queries), at

maintaining histograms when the data is updated (analogous to the problem of view

maintenance), at efficiently computing histograms from the base data (mostly with

the help of sampling techniques), or at building join summaries for the distribution

of several attribute values, to deal with queries with multiple selection criteria.

We refer to Poosala et al. (1996) for more details. DBMSs typically use both

equi-width and equi-height histograms (Breitling 2005) and allow choosing between

the two when tuning a database.
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The Cascades Optimizer

We now explain briefly how a real query optimizer might generate a number of

possible query plans, using logical optimization rules and available data access

methods, evaluate their cost and decide on the plan to run. One of the main

problems is to avoid a combinatorial explosion that would result in trying to

apply all possible transformations. We take the example of the Cascades query

optimization framework (Graefe 1995) that was intended as the basis of the query

optimizer of Microsoft SQL Server. All logical optimization rules (transformation
rules) and data access methods (implementation rules) are described as algebraic

rewritings of a query plan. Each query plan is associated with its cost, which can be

computed from the costs of the sub-plans. Cascades optimizes a query in a top-

down manner using memoization to remember the optimization decisions for each

encountered sub-query plan. When optimizing an expression, the system first

considers if this expression (or one that is “similar enough”) has not already been

optimized, and, if so, directly uses the result. Otherwise, transformation rules and

implementation rules applicable at the top-level are applied, using the guidance of

the predicted cost of the resulting query plan, They also use heuristics that bias the

exploration strategy, and promises for each rule that can be used to condition its

application depending on previous and subsequent rule applications, in a goal-

driven manner. Sub-expressions of the query are then optimized one by one,

following the top-down process.

Data Indexing and Storage

Once a query plan has been selected by the optimizer (see Fig. 10.2), it is executed,

using the indexes and data storage structures referred to in the plan (remember that

the different methods of accessing the data have been considered and their cost

estimated when optimizing the query). Most DBMSs index and store the data in a

similar way: ordered datatypes are indexed using B-trees or B+-trees (Bayer and

McCreight 1972; Comer 1979), unordered datatypes with hash tables (sometimes

dynamically maintained (Fagin et al. 1979; Litwin 1980)), and whole tuples are

stored either in the nodes of the B-tree or B+-tree index for their primary key, or

sequentially sorted along their primary key, aligned with disk pages. A large body

of research was dedicated to improve and build variants of these classical data

structures, widely used for generic database applications. We present now research

on alternative indexing and storing strategies that have been widely used for

specific kinds of data: multidimensional indexes to efficiently retrieve objects

based on their locations in Euclidean spaces, column stores that organize the data

column-by-column instead of the traditional row-by-row storage strategy, and

stream databases where data is not stored at all but queries are processed continu-

ously as data arrive.
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Multidimensional Indexes

B-trees and their variants are used for indexing linearly ordered data (integers,

character strings, etc.) and efficient processing of point or range queries over the

indexed attribute, i.e., selections like scredits¼50 and scredits>50. Imagine now that

the Students table contains two additional columns, lat and long that respectively

contain the latitude and longitude of their home address, and that we want to

retrieve the list of students who live less than 10 km away from campus. We

could index these two attributes with a B-tree, but B-trees are not well adapted to

this kind of query, and the best we could do would be something like computing the

minimum and maximum latitudes covered by the 10 km radius, retrieving all

students with latitude in this range, and then checking for each of them whether

their combined latitude and longitude fall in the 10 km radius. Indexing structures

have been proposed to better deal with such queries, such as quadtrees or R-trees.

Let us start with quadtrees (Finkel and Bentley,1974). Assume that latitudes and

longitudes of student home addresses form a multiset of two-dimensional points.

A quadtree divides a bounded region of 2D space (say, a square containing all

points) into subregions in the following way. The square is divided into four squares

of equal size, and each subsquare is divided again, recursively. A square is not

divided further when it contains less than K points, for a fixed threshold K. This
division of the 2D space naturally defines a tree of arity 4: the root of the tree is the

whole region, the children of a node are the four subsquares of this node, and leaves

point to the �K points contained in the corresponding region. The construction and

maintenance of such a structure is relatively easy. To answer the 10 km radius

query, we retrieve, by a top-down browsing of the quadtrees all leaves that intersect

the 10 km disc. Points in leaf regions entirely contained in the disc are returned

immediately, while points in leaf regions that only partially intersect the disc are

filtered one-by-one.

Quadtrees usually provide an efficient way of answering a geographical query,

but they have one weakness: if the distribution of points is too biased (e.g., if many

students live on campus accommodation, very close to each other), the tree may

become quite unbalanced. Furthermore, in contrast to B-trees, the arity and depth of

the tree are not optimized with respect to the number of disk pages accessed while

searching the trees. R-trees (Guttman 1984) provide a solution to both of these

problems. Again, the space is divided into a number of rectangular regions that are

organized in a tree, but now the regions may overlap, are of arbitrary size and shape

(though the region corresponding to the parent of a node is still a proper superset of

the region of this node), and the tree is organized like a B-tree, with a large arity that

is computed so that each tree node fits into a single disk page. Algorithms for

searching and updating the R-tree are move involved than for quadtrees and directly

inspired by their counterparts in B-trees. Again, answering the 10 km radius query

means retrieving all leaves that intersect the 10 km disc, and subsequent filtering of

the points contained in the leaves. R-trees generalize more easily to arbitrary

dimensions than quadtrees, for which the arity is necessarily an exponent of the

dimension.
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Quadtrees and R-trees are widely used in geospatial extensions of DBMSs

(Kanth et al. 2002), to index multidimensional data. They illustrate how the

database community has proposed efficient data structures when new datatypes

and applications of database technology appeared.

Column Stores

The main idea of column stores (Stonebraker et al. 2005) is simple: instead of

storing tables row-by-row, with a whole tuple stored contiguously, they store tables

columns-by-columns. Assuming again a page size of 4 kilobytes and 64 bytes for

storing a tuple of the table Students, a traditional DBMS stores 64 tuples per page.

Assuming 2 bytes for the credits attribute, a column store puts 2,048 values of this

attribute in a single page. The interest of column stores is immediate in this numeric

example: computing an aggregate of the credits attribute across all students, such as
its average or sum, requires 32 times less disk page accesses than with a row store.

Not all operations benefit of this data storage organization, however: any operation

that needs access to all tuple values, such as computing a full join between two

tables, or inserting individual tuples, typically requires more random seeks in a

column store than in a row store. Generally speaking, applications that heavily

use aggregates, statistics computation, or more generally individual attribute values

rather than whole tuples, usually benefit from column stores. These applications are

sometimes called online analytical processing (OLAP), in contrast with online
transaction processing (OLTP) that cover more traditional database applications,

such as order processing or banking. Another advantage of column stores is their

ability to use more effective compression mechanisms to reduce the size of the data

store, since data of a single type are stored contiguously.

Commercial (e.g., Sybase IQ, Vertica, KDB) and open-source (e.g., MonetDB)

column-oriented databases coexist with traditional DBMSs. For a long time, all

database-related tasks had been handled by traditional engines; the emergence of

column stores might be an illustration that there is room for technologies that

depend on the applications (Stonebraker 2008).

Stream Databases

Following up on the idea that classical DBMSs may not be adapted to all database

management problems, we now consider the case when data is produced in such a

large volume or at such a high rate that it cannot even be stored. A typical example

is network data (see Chap. 7.): IP packets that go through a router of the Internet

core are too numerous to be stored on disk. If one needs to query these packets

(selection, aggregation, grouping), e.g., to detect potential attacks or trends in the

use of the network, one needs to reverse the model: instead of evaluating various

queries over a somewhat fixed collection of data, we want to evaluate a fixed set of
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queries over continuously streaming data. This is the model of stream database

systems, such as Gigascope (Cranor et al. 2003).

For flexibility, one would like to use a general-purpose query language like SQL

to query the stream of data. Note, however, that since it is impossible to store the

entirety of the stream, some queries cannot be evaluated, such as those involving

arbitrary joins with past or future data. For this reason, Gigascope defines a

restriction of SQL where queries need to be evaluable in a sliding window of

fixed size. All relevant packets in this sliding window are typically stored in

memory. Query optimization has very different constraints than in classical settings

to avoid missing some of the packets, it is critical to reduce the amount of data kept

in memory by pushing the operations with the highest selectivity as early as

possible, sometimes even implementing them in the code of the network interface

controller. Higher-level operations (joins, grouping, etc.) can be applied later on the

buffered data. It is also possible to increase performance by partitioning the stream

and have each substream handled by a different computer; this partitioning, how-

ever, must not put in two different groups packets that need to be used together to

answer a given query, which implies basing the partitioning operation on the query

(Johnson et al. 2008).

A number of prototypes and commercial systems for database stream manage-

ment have appeared. Even more so than for column stores, their applicability is

restricted to very particular scenarios: network traffic, real-time auction market

analysis, etc.

Hardware and Why it Matters

We are now at the bottom of the query processing system, where the query is

executed on actual hardware. Perhaps even more so than for other software, the

performance of database management systems has been strongly tied to the evolu-

tion of hardware architectures. The design of cost models, index structures, storage

engines in traditional DBMSs has been based on a number of assumptions on how

hardware functions:

1. High cost of disk accesses, and, especially, random seeks

2. Limited amount of available main-memory

3. Mostly serial CPU instruction processing model

4. Relatively low network bandwidth

However, as elaborated in Chap. 5, hardware and network infrastructure have

evolved to the point where the validity of all these assumptions can be questioned:

1. The recent advent of flash memory and solid-state disks radically change the

performance of disk accesses (see below)
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2. The amount of main memory available in even low-end PCs makes it possible to

store database indexes and sometimes even the data itself in main memory

(Garcia-Molina and Salem 1992)

3. Parallel architectures are more and more frequent, to the point where standard

modern graphics processor units are able to process hundreds of parallel execu-

tion flows, which makes them suitable for some database management tasks

(Govindaraju et al. 2006)

4. The network bandwidth in a local cluster can be higher than disk transfer speeds,

which has the ability of making main-memory distributed DBMSs more efficient

than centralized disk-based ones (Apers et al. 1992) (see the next section for a

discussion of distributed databases)

These examples explain why the evolution of hardware architectures does

matter for database management systems, and why research on understanding and

exploiting new capabilities of hardware is an active component of database

research. We illustrate with the example of solid-state drive for database storage.

SSDs vs Magnetic Hard Drives

Secondary (i.e., non main-memory) storage of data in DBMSs has mostly relied on

magnetic hard disk drives. These disks are made of one or several rotating platters

where information is encoded by the orientation of the magnetic field generated by

localized regions, organized in concentric cylinders and radial sectors. Information

is read and written with magnetic heads that hover over the platter. Reading or

writing to an arbitrary region of the disk requires a random seek: the head of the

appropriate platter needs to be positioned over the correct cylinder and then wait for

the moving disk to reach the correct sector. A sequential read that retrieves

contiguous portions of data, on the other hand, is much faster since the head can

remain fixed and the data is read as the disk rotates. The order of magnitude of the

seek time and read sequential data transfer rate are, for a modern disk, respectively

10 ms and 50 megabytes per second.

Since the mid-1990s, a new form of permanent data storage has appeared: flash
memory, using floating-gate transistors, transistors wired on chips so as to store an

amount of charge for extended periods of time. Recently, the technological

advances in building flash memories have led to the commercialization of solid-

state drives (SSDs for short), which are drop-in replacements for hard disk drives

formed of an array of flash memory units. The absence of any mechanical parts in

such drives leads to negligible seek times. Modern SSDs have read data transfer

rates comparable to that of magnetic drives, whereas sequential write transfers are

somewhat slower (but random writes are typically faster).

The near-absence of seek times makes SSDs particularly suitable for

database applications, where it is common to read small data blocks scattered

across the storage area. Recent studies (Lee and Moon 2007) show that, indeed,

read performance of DBMSs can be dramatically improved by using SSDs.
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However, using a traditional DBMS on a solid-state drive causes other forms of

problems, related to an inconvenience of flash memories: it is impossible to update

a data item in place without first erasing the corresponding block of flash memory.

This means that actual writing speeds are considerably slower than expected. To

avoid this issue, Lee and Moon (2007) proposes to implement updates by logging

all update operations in a fragment of each memory block kept free for this purpose.

Reading the current state of the data consists thus in reading the base data, and

updating it in memory with the extra logged updates. When the logging area is full,

the whole block is erased and rewritten. This approach, which heavily relies on the

behavior of flash memory, in the same way as traditional indexing approaches

heavily rely on the fact that disk seeks are costly, allows obtaining improved

performance over a regular DBMS on magnetic drive, even when considering

update operations.

Another important aspect of building database systems with SSD storage is to

understand the precise behavior of SSDs. A number of SSDs are thus benchmarked

in Bouganim et al. (2009), exhibiting some counterintuitive results. For instance,

despite the lack of mechanical parts, some seek latency appears, mostly because of

the overhead introduced by controlling software. Another observation is that SSDs

often do not exploit the possibility of parallelizing reads and writes operations over

the flash memory arrays. Some of these characteristics are likely to be transitory

behavior of SSD controllers, while some others will be important in designing

future database management systems.

Distributed Databases

Before concluding this section on core database research, we want to mention the

important aspect of distribution in database management systems that pervades

the entire query processing pipeline. We say that a database system is distributed
when the data itself is spread over a number of computers (also called peers, or

hosts) connected over a network (See Chaps. 7, 8, 9.) The role of a distributed
DBMS is then to manage this distributed database and to “make the distribution

transparent to the users” (Özsu and Valduriez 2011). There are several reasons why

we might want to distribute data:

• Data may be distributed to begin with, because of organizational reasons. Think,

for instance, of the human resource and sales data of a company, which might

reside in different departments, possibly in different physical locations, but

sometimes needs to be seen as parts of a single database, e.g., for business

intelligence purposes. At the extreme, the World Wide Web may be seen as a

gigantic database consisting of data distributed all over the planet, seen as a

whole by applications such as search engines.

• Data may simply not fit on the disk(s) of a single computer, however large they

may be. A database that records stock market transactions, or meteorological
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data, for instance, may get to enormous sizes: several hundred of terabytes for

the database maintained by the Max-Planck-Institute for Meteorology

(WinterCorp 2005).

• Non-distributed databases provide a single-point of failure: should the computer

hosting the database fail, or should the number of data access exceeds what the

database management system is capable of handling access to the entire database

would be lost. Conversely, if the data is distributed, the load is divided between

all peers, and a failure of a single host only affects part of the data. Availability

can even be guaranteed to some extent if data is replicated over several peers of
the network.

• It is possible in some cases to distribute data to improve the efficiency of query

evaluation. We have already mentioned that a distributed database with data in

main memory may be more efficient than a traditional local database with data

on disk. Even when data is stored on disk, distribution allows parallel processing

of a query. Recall that queries of first-order SQL can be evaluated in constant

time on a parallel machine, which means that first-order SQL query evaluation

can be very efficiently run in a parallel manner.

How data is distributed over the network depends on the reason data is

distributed. When distribution is inherent in the organization of the database,

there is no choice and it is often the case that data is stored in a heterogeneous

manner and needs to be integrated, as we explain further in this chapter. When data

is distributed for size, reliability, or optimization reasons, different data distribution

strategies can be selected. Most commonly, relations are either horizontally or

vertically fragmented (Özsu and Valduriez 2011). In horizontal fragmentation, a

table is partitioned along its tuples, and groups of tuples are stored in different peers

of the network. In vertical fragmentation, the partition is made according to the

attributes of tuples, and each peer stores a subset of the attributes of each tuple, as

well as its primary key. This storage choice is reminiscent of the distinction

between row stores and column stores, and similar tradeoffs arise. Another point

of interest is the network architecture used, which can range from centralized

settings where a master host, connected to a number of slave hosts, acts as an

entry point to the database, to distributed tree structures or fully distributed models

such as distributed hash tables over peer-to-peer networks (Abiteboul et al. 2011).

A number of traditional database problems, such as query optimization or

transaction management raise radically different challenges in a distributed envi-

ronment. In some cases, this has led to relaxing some of the constraints traditionally

imposed by relational DBMSs. This trend, sometimes dubbed the NoSQL move-

ment, has resulted into distributed data and computation systems that do not support

ACID transactions and have limited expressive power, but very high efficiency on

extremely large collection of data, such as the MapReduce framework (Dean and

Ghemawat 2008), extensively used by companies such as Google to process

petabytes of data a day.

For an in-depth discussion of distributed database systems, we refer to the

textbook (Özsu and Valduriez 2011).
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Research on core database technology covers a large spectrum of areas, from

logics to systems and optimization issues, even up to the benchmarking of modern

hardware. We now move to a different vein of research, to extend the main

approaches that have made the success of relational databases (abstraction, algebraic

representations, etc.) to cover other applications and functionalities.

Extending Database Functionality

We have stressed that the relational model is a natural evolution point as data

management systems increase in their abstraction – hiding from the programmer or

end-user details of the physical layout of data and the implementation of queries.

But in some ways the relational model is low-level: the data model (at least, as

visible to the data definition language) imposes quite a few restrictions, including

allowing only a fixed set of simple data types as attributes of a tuple, requiring the

data developer to spend time “breaking down” information into small components.

Indeed, this is a basic part of the philosophy of the relational paradigm towards data

design. In addition, the set of features in a relational schema – particularly with

regard to integrity constraints – are very limited compared to the kinds of semantic

restrictions that one may want to express about real-world data.

Much of the research in the database community has revolved around extending

the mathematical foundation of database systems to be less “low-level” (in data

model). Another direction has been to look at richer data definition languages, even

within relational databases. A closely-connected topic is the ways of building

up larger datasets from components – data integration. Some of these extensions

have been pursued while trying to preserve the relational approach in its entirety.

For example, in the case of query languages for XML documents, database research

still takes a declarative approach, compiles into an algebra, and applies rule-based

optimization. In other cases essential features of the relational paradigm are

jettisoned completely. We will take a quick look at each of these general lines of

research within this section.

Data Design

The relational database model is built on a very simple data structure, a table

where each cell contains a simple type. Nevertheless, it was seen that one can

represent the information in many applications using relations, by breaking down

more complex structures into tables. But exactly how should complex data be

translated into tables?

The major challenge is that there are many ways of representing the same

information. In the university example, we had a Students table including id, first,
last, and credits (the student’s current credits), and an Enrollment table that
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included id, course, and credits (the course credit value for this student). But one

could also have one large table StudEnroll that had all of the previous attributes.

The second possibility seems odder, but can we say that it is worse?

The subject of data design originated very early in database research; its goals

included:

• Capturing a notion of two schemas representing the “same information”

• Formalizing the notion that one schema is better than another

• Providing algorithmic techniques for getting to a good schema

These goals could be seen from the same two-pronged perspective that defines

database research as a whole. On the one hand, in attempting to define the notion of

“information equivalence”, database research was exploring the “theory of infor-

mation” in a very grand sense. Certainly an insight into what constitutes the same

information content within data would be significant even if it was not accompanied

by effective methods. On the other hand, data design research had a pragmatic goal

of offering advice to database designers on how to create and maintain database

schemas.

It should be clear that such a project must limit its scope in some way. First of all,

there are many human factors in determining what a good schema is – database

research cannot say if one column name is better than another, or whether it is better

to store the yearly salary or the monthly salary of employees (since clearly one can

derive one from another). Thus the best we can hope for is that computer science

research could identify certain designs as being inferior or superior to others:

we cannot hope to identify a unique “best design”. Second, such a process must

take as input some information about the semantics of the database, not just that

which is captured in standard table meta-data. For example, if we only know that we

have a table named StudEnroll, including columns id, first, last, course,
creditsObtained, and creditsCourse, but with nothing about its meaning, we cannot

identify that there is any shortcoming. Data design thus starts with a description of

the “semantics of information to be stored” in some richer data model (these may

include nested tables, lists, sequences, or other higher-level structures), and then

gives a method for translating to a relational database schema. Entity-relationship
diagrams represent one such formalism for high-level data description; there is a

simple algorithm for generating a relational schema from an entity-relationship

diagram. More powerful modeling languages, such as UML, can also serve as a

starting point.

The most well-developed theory of “better design” has looked at simpler

languages for describing the semantics of information. Most of the algorithmic

results work in a simple modification of relational data definition languages, in

which information is described using a set of tables plus integrity constraints. These

include SQL key and foreign key constraints, as well as more powerful constraints.

The paradigmatic example uses functional dependencies as the constraint language.
A functional dependency states that a subset of the columns determine other

attributes of the table. In the StudEnroll example, we have that the value of id
determines the values of first and last.
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The standard theory contributes a notion of “better schema”, formalizations of

“information equivalence”, and a method for going from bad schema to a better one.

The problem with the schema above can be identified formally by the presence

of a functional dependency (id implies last) that does not follow from a key

constraint (id is not a key, it is repeated in multiple rows): such a dependency

implies that information in some columns in the row is redundant, and hence will be

repeated many times. If physical storage reflects the repetition in the table structure,

then this will clearly lead to performance issues, as well as extra infrastructure

needed to maintain consistency during updates. The difficulty is summarized as:

a piece of information should only be represented in one place, and to change it

one should only need to modify in one place. A schema that includes funct-

ional dependencies is said to be in Boyce–Codd Normal Form (BCNF) if all

functional dependencies follow from key dependencies.

What does it mean for two schemas to have the “same information”? One well-

studied definition is that a schema B is a lossless-join decomposition of schema A if

tables inA can be obtained by joining projections of tables inB. The schema consisting

of tables Students and Enrollment, with the obvious key dependencies, is a lossless-

join decomposition of the StudEnroll table; the lossless-join property states that

StudEnroll can be exactly recaptured using the join Students⋈Enrollment.
Algorithms exist (Codd 1975) for automatically finding a lossless decomposition

of an arbitrary schema into a BCNF schema. Normalization can be seen as a design

methodology; start with an initial design – for example, one reflecting the user

interfaces that end-users would like to see. Then continue to decompose until a

normal form schema is obtained. The original tables can be re-captured either as ad-

hoc queries, or as materialized or virtual views. If the un-normalized tables are

materialized, many of the space benefits of normalization are lost. But even then the

benefits for software infrastructure will remain; updates will need to be specified

only on one table, and any update of redundantly-stored information will be done

automatically.

From a theoretical point of view BCNF decomposition is the most basic example

of normalization theory. Normalization has been considered for richer schema

languages, including a number of other kinds of integrity constraints, such as

multi-valued dependencies (Fagin 1977) and join dependencies (Fagin 1979).

Stronger notions of information preservation have also been considered, such as

being able to enforce all of the original integrity constraints on the decomposed

schema using simple key constraints. In each case, the theory investigates whether

or not equivalent schemas can be found for any schema in the data model.

For example, a basic positive result in the theory is that for any schemas consisting

of rich collections of integrity constraints (functional dependencies and multi-

valued dependencies), one can find a lossless decomposition that requires only

key constraints (Fagin 1977): the corresponding decomposition is said to be in

Fourth Normal Form – a stronger normal form than BCNF. A sample negative

result in the theory states that there is a schema S consisting of very simple integrity

constraints, such that there is no lossless decomposition of S into schema S0 in
which key constraints on S0 suffice to enforce all integrity constraints in the original
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schema. This result motivates enforcing weaker criteria on the decomposed schema

(such as Third Normal Form (Zaniolo 1982)).

Normalization theory is an extreme example of the dual role of database

research. On the one hand, a basic understanding of the virtues of normalized tables

is considered essential for data designers and database consultants. On the other

hand it represents a broad investigation into the meaning of information.

Advanced Data Definition

From Stored Data to Virtual Data

Data definition languages represent an important component of the relational

model, playing a role analogous to type systems in general-purpose programming

languages. The basic DDLs describe the attributes and attributes types in a set of

tables and give integrity constraints that encode restrictions on the possible

instances of the tables, along with relationships that must hold between tables.

One kind of “relationship” is a foreign key constraint, mentioned already. Another

extreme example of a relationship between tables is when one table is completely

determined by another. This is exactly the case of view definitions, previously
discussed.

Tables with foreign key constraints between them can still be updated indepen-

dently, and a collection of such tables generally have the same “status” as a

representation of the real-life facts to be stored. In contrast, the use of view

definitions – whether materialized or virtual – requires a distinction in the kinds

of tables that a database manager knows about, into those that are “basic” and those

that represent derived data. Hierarchies of derived data can then be defined with

views defined over views.

A particular use of virtual views is in data integration. Suppose we have several
different database schemas S1 . . . Sn aiming at storing similar information. We wish

to create a single unified interface to the data. Our first step is to come up with a

single global schema S that can represent all information in any Si. After that, we
can give a logical definition of the global object in terms of the data Ii for each Si
stored on each local source. The single integrated database is a prime example of a

virtual database – it can be given a precise definition, in terms of existing data, but

it need not exist on any source.

How can we unambiguously define the integrated database? The simplest way is

to create a query Q that takes instances ~I ¼ I1 . . . In over S1 . . . Sn and outputs a

global view instance I over the global schema. The global instance I need not ever

be materialized explicitly; instead the backend of the integrated interface generates

queries to the appropriate Si in response to queries over S.
The approach outlined above, often referred to as global-as-view (GAV), is

conceptually straightforward, though performing the query-generation at runtime

can be problematic. But the simplicity is misleading: when n is large a query Q

212 M. Benedikt and P. Senellart



describing S in terms of the Si may be difficult to write, and possibly impossible to

evaluate. Furthermore, maintaining Q as the sources are modified is difficult, since

its rewriting in terms of the source schemas may not even be human-readable.

More Complex Virtual Databases

An alternative is implicit specification of the global instance, as a data source I over
the global schema S that satisfies various constraints with respect to the local

sources ~I. The most common approach to doing this, known as local-as-view
(LAV) (Lenzerini 2002) describes I by giving constraints of the form Ii � QiðIÞ.

Given instances Ii:i� n for the input schema, constraints of this form do not

determine a unique database I, but rather a collection SolVð~IÞ of instances satisfying
the constraints.

Although we cannot talk about “the integrated view”, we can still make sense of

querying an integrated view: the result of a queryQ on the view is taken to mean the

intersection of all QðDÞ for D in the collection SolVð~IÞ. This set of results, often
called the certain answers of Q, is equivalently seen as the set of facts of the form

t 2 QðIÞ that are logical consequences of the input data ~I and the view definitions

relating ~I to an arbitrary solution I.
As an example, consider a data integration system that defines a virtual relation

Enrollment with attributes id and course. One local source may have a

stored relation StudentIds which has a single attribute id, while another might

have a relation Courses with attribute course. The global view is related to

the local sources by the mappings: StudentIds ¼ pidðEnrollmentÞ and

Courses ¼ pcourseðEnrollmentÞ. This defines the collection of enrollment tables

that project onto the sources in the expected ways.

The advantage of the LAV approach in specification is fairly evident:

specifications can now be much smaller, since they relate only two instances at a

time. There is an enormous gain in modularity, since when a new source is added

one must only write a new set of constraints involving only I and that source, and

changes to the schema of a source Ii require only modifications to constraints

involving I and Ii.
The disadvantage is also obvious: since the collection of instances satisfying the

constraints is generally infinite, it is not clear how to calculate the tuples that lie inT
D2SolVð~IÞ QðDÞ at all, much less how to calculate them efficiently. A fundamental

result is that for LAV views the certain answers for positive queries (an extension of

the conjunctive queries) can be calculated efficiently in the size of the data (Levy

et al. 1996). In fact, one can create a single view instance I that is “universal”, in the
sense that performing a conjunctive query on I gives the certain answers of Q with

respect to the source instances ~I and the view definitions. One forms the universal

instance I by simpling throwing in “dummy witnesses” that are implied by the view

definitions.
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For example, the view definition may state that for the integrated view I with
attributes a; b; c, we have the requirement that Ii � pa;bðIÞ where Ii is a given

source. Then for any tuple ða0; b0Þ in Ii, a solution I must have some value

ða0; b0; cÞ in it. The universal solution is formed by choosing a distinct c for each

such ða0; b0Þ.
The ability to form universal instances gives an algorithm for determining the

certain answers that is polynomial in the size of the data sources ~I. This shows that
implicit ways of defining virtual databases can still be efficiently implemented.

Integration vs. Extraction in Commercial Systems

The notion of data integration above is to create a virtual interface to data in

different formats that may be accessed by external sources as if it were a centralized

database. An alternative is to extract the data from the diverse sources and materi-

alize the data.

One form of integration system, federated databases, has a fair amount of

commercial support. For example, there is support in IBM DB2 and Microsoft

SQLServer for creating views that refer to external databases. Federated database

managers are not limited to relational databases (or to views defined via queries) but

can encapsulate access to pre-relational or proprietary data, via hand-coded stored

procedures.

Extraction-based approaches, in which explicit or implicit derived databases are

materialized, are also supported by many commercial systems. IBM’s DataStage

product includes support for extraction based on implicit view definitions; most of

the commercial usage of such systems, however, is done via manual coding of

transformations.

More General Implicitly Specified Databases

There aremanyother formalisms that have been devised for defining virtual databases.

Many extend the general contours of the LAV approach: the virtual database I is
defined by a set of constraints that hold between it and stored data instances Ii. Source-
to-target dependencies are one example of such constraints (Fagin et al. 2005). Care

must be taken in both the constraints and the queries one is allowed to pose against the

virtual database. Calculating the certain answers requires solving a satisfiability

problem, and satisfiability is known to be undecidable for many query languages,

including the relational calculus.

Another example of an implicit database formalism is that of deductive

databases; in this case, a virtual database is defined by giving facts that it contains

as well as axioms on the database itself, rather than on its relationship to other

databases. Answering a query against the virtual database is again defined in terms

of deduction: a fact is in the query result if the axioms and facts of the virtual

database imply it. These axioms must be of restricted form in order for deduction to
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be decidable. For example, Horn clauses, of the form 8~x:Rð~xÞ ! Sð~xÞ, are one

popular formalism for deductive databases.

Ontologies and Databases

Our last example of an implicitly specified database comes from ontologies.
An ontology consists of a collection of facts coupled with axioms written in a

restricted fragment of logic. The collection of facts is not taken to include all true

statements about the real-world relation, but only a subset. The axioms are

interpreted to hold not over the database of facts, but over the entire universe.

In the university example, we may have facts listing certain entities as being

math professors, certain entities as being students, and some facts about which

students are advised by which professors. For example, we may have a fact that

student Bob Jones is advised by Rob Smith: Advises(Bob.Jones, Rob.Smith). We

have an additional axiom stating that every math student is advised by a math

professor. In the notation of description logics, this would be written:

MathStudent� 9AdvisesMathProf . This axiom is not treated as an integrity con-

straint on the set of facts: if it had been, then it would fail if Rob.Smith is not listed

as a physics professor. Instead it is used to derive new facts. A query asking for all

mathematics professors will then return Rob.Smith, since the axiom coupled with

the fact base implies that Smith is a math professor.

As in the case of LAV integration, an ontology gives an incomplete description

of a collection of data. Answering a query against an ontology is defined again in

terms of certain answers: for a query Q, we return all the tuples t such that the

database of facts and axioms derives that t is an answer to Q.
The exact formalism used for the axioms is restricted so that the derivation of

facts can be effectively decided. A standard has emerged over a set of ontology

languages, based on description logics (Baader et al. 2003) – a limited logical

language in which all input relations must have at most two attributes. The queries

must also be restricted, usually to be positive SQL queries without aggregation.

Even with these restrictions, the complexity of the decision procedures is high: even

for the simplest language, consistency of a fact is PSpace-hard (Schmidt-Schaubß

and Smolka 1991) in the ontology. Nevertheless, the complexity for a fixed set of

axioms, varying only the set of facts, is often manageable. Indeed, for many

ontology languages, the certain answers can be determined using database methods:

for any fixed query Q and ontology O based on axioms within the family, we can

generate a first-order SQL query Q0 that returns the derivable answers when

evaluated on the facts. This is true of the commonly used DL-lite family (Calvanese

et al. 2007), and also of more recent extensions (Calı̀ et al. 2010) that subsume

ontology languages and LAV-like data-exchange formalisms.

Ontology languages have been standardized by the World Wide Web consortium.

The resulting family of languages, OWL (Horrocks et al. 2003) have a number of

prototype implementations, in addition to limited commercial support. The approach

via rewriting to a database language has been implemented in several research
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systems, particular QuoOnto (Acciarri et al. 2005). Themain issue in these approaches

is that ontologiesmay have thousands of axioms, and even an efficient translationmay

yield a query of size larger than current database managers can handle.

New Models: Complex Objects

Programming languages have available a rich collection of data types – they can

form lists, associative arrays, vectors, and object classes that contain fields that may

themselves be complex structures.The type system of relational databases in com-

parison is quite impoverished. Relational DBMSs manipulate “tables” or

“relations” – from the theoretical point of view, a relation is a set of tuples, with

each tuple being a function taking a column within a predefined set of column

names to a datatype that is associated with the column. When we compare this to

arbitrary programming language datatypes, we can see several dimensions in which

they are limited: Relational tables are homogeneous – the data type within a table

cannot vary row-by-row. They are also flat: although the columns of a relational

database can have arbitrary built-in scalar datatypes, they cannot have any internal

structure – or at least, no internal structure that can be referred to in the query

language. Finally, they have no order and no duplication.

Of course, some of the use of complex data structures in programming languages

is related to their more general mission – arrays and lists play a role in many

fundamental algorithms, which are not intended to be implemented within a

database manager. Still, much application data does have a rich internal structure,

and relational databases often force users to use a structure that does not reflect their

natural level of abstraction. This “impedance mismatch” has caused considerable

concern in the database community, particularly since the move to relational

database managers was prompted by a desire for greater abstraction.

We list these as limitations of the relational model, as espoused in papers and

textbooks. Commercial database systems have worked from the beginning in a

model that does not abide by these limits. They allow some limited heterogeneity

by allowing certain cells of a row to be optional. The SQL query language supports

this via primitives that can test for the presence or absence of a value for a given

column. Although they generally require stored tables to be duplicate-free, they

allow query results to contain duplicates, and SQL allows a query both to filter

based on the position of a row in a result and to specify the ordering of the results.

Nesting is supported as part of aggregate functions.

Still, the SQL extensions to support these are ad-hoc; the operators that support

them cannot be freely composed, and some of them are available only at top-level.

Researchers have tried to fill the gap between the theoretical model of pure tables

and the SQL data model in practice, by developing a formal model that incorporates

richer data types. The general goal is to follow the paradigm of the relational model:

define a query language that (a) corresponds to a “natural” logic; (b) defines only
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polynomial-time queries; (c) can be translated into an algebra – defined loosely as a

variable-free formalism.

Nested Structures

In the relational model, the basic object is a set of tuples. In the complex-value data
model we can iterate tuple formation and relation formation, generalizing schemas

to types that can combine aspects of both relations and tuples. Data types are build

up from a given set of scalar types via tuple formation and table formation:

if t1 . . . tn are types, and a1 . . . an are names, then there is a new type

f a1:t1 . . . an:tng whose instances are tuples, where a tuple consists of functions

taking each ai to an element of ti;
if t is a type, then there is a new type SetðtÞ whose elements are finite sets of objects

of type t.

A database schema will then consist of a collection of objects of distinct types.

Normal tables can be thought of as very special cases, of the type

Setðf a1:t1 . . . an:tngÞ, where ti are scalar types.
Some special cases of the data model restrict the ways in which tuple formation

and table formation can alternate – when these type-formers are required to

alternate strictly (thus disallowing, e.g., a tuple whose attributes are tuples), the

objects in this model are referred to as nested relations. At the query language level,
the most well-studied proposal is nested relational algebra (NRA), defined initially
for the nested relation model. NRA contains new operators for both navigating a

complex-valued structure and building new structures. It includes the identity

mapping on schemas as a basic query, and also the relational algebra operators

product, renaming, and projection, extended to the nested case in the obvious way:

for example, pa1...am is a query on objects of type f a1:t1 . . . an:tng returning objects

of type f a1:t1 . . . am:tmg. Selection can be extended to nested relations by allowing
selection conditions to include not only equalities of two top-level attributes but

also identifications of scalar attributes nested within them.

The main new language feature is for nesting and un-nesting, The nesting

operator is closely related to the GROUP BY construct of SQL. It is parameterized

by a datatype t of the form Setðf z1:t1 . . . zn:tngÞ where z1 . . . zn are attributes, and a
subset of the attributes z1 . . . zk. Given a set of tuples, it returns a set of nested tuples,
where there is one nested tuple for every set of tuples that share the same values for

z1 . . . zk, with each nested tuple having attributes containing the attributes z1 . . . zk
with their common values along with a new attribute containing the set of values for

zkþ1 . . . zn obtained for this group. Un-nesting acts as an inverse of the above

operation, taking a set valued attribute and pairing it with all distinct values of

the projection of an additional collection of attributes.

A related language with the same expressiveness is based not on nesting and un-

nesting but on adding a mapping operation, which “applies a query pointwise”. One

formalization of this is using an operator that takes as input a query QðxÞ taking
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objects of type t to objects of type t0, along with a queryQ0 creating an object of type
SetðtÞ; the result is a “set comprehension” fQðxÞjx 2 Q0g that applies Q to all

elements of Q0, producing a set of t0 objects. A variant of this combines application

with “flattening”: the query Q being applied in this case produces Setðt0Þ objects,
and the operator applies it to each element produced by Q0, unioning the results to

form an object of type Setðt0Þ. Such a family of languages was defined in this way in

Tannen et al. (1992), parameterized by a signature of basic operations, under the

namemonad algebra. In addition to the “flat mapping” operator, monad algebra has

the basic operations of the l-calculus (see Chap. 2, Appendix 2) along with

operations for pairing and projection, union, and singleton-formation. Tannen

et al. (1992) shows that when either a difference or an equality operator is taken

as a primitive, the resulting language captures NRA.

How do the languages above fare in meeting the desiderata of query languages?

There is strong evidence that the language is not “too expressive”: queries are

polynomial-time, and the Boolean queries expressed by the language are exactly

those expressed in relational algebra – this is the conservativity theorem (Paredaens

and Van Gucht 1992). An extension (Wong 1996) shows that it is never necessary

to build up sets whose nesting depth is bigger than the combined depth of the input

and output.

Is the language expressive enough? Evidence in the affirmative is that there are a

number of languages that have equivalent expressiveness to it. In addition, if we

look at natural representations of nested relations as flat relations, we find that not

every relational query on representations is expressible in NRA.

Adding Support for Duplication

What about adding support for tables with duplicate rows, or sequences? In the

absence of nesting, it is easy to simply re-interpret the relational algebra on bags;

for example, the difference operator can be interpreted to subtract multiplicities of

occurrences of tuples. It is more challenging to arrive at a query language handling

nested bags, as is needed to model aggregate operators in SQL. The approach of the

monad algebra can be easily modified to deal with a data model where the set type-

former is replaced by a multiset or list type-former. The pointwise application

operator is adapted to bags or list in the obvious way – a query is applied pointwise,

preserving multiplicities in the bag case. For bags an extension of this type was

formalized by Libkin and Wong (1997) and given the name Bag Query Language

(BQL). Related languages are given in Grumbach and Milo (1993). BQL certainly

satisfies some of the desiderata of the relational paradigm: queries are given

algebraically (basically, by definition), and queries are in polynomial-time, in fact

in LOGSpace (Grumbach et al. 1996)

What is the relationship of the BQL language to logic? One major difficulty

encountered is in selection. In analogy with selection in relational algebra, we

would like to be able to check if two bag- or list-valued attributes are the same.

Set equality can be expressed as bi-containment, which requires checking

218 M. Benedikt and P. Senellart



membership of every element in one set in the other. For any fixed nesting, this

check runs bottoms up with a check of membership on values, and hence can be

expressed using a fixed alternation of the quantifiers 9 and 8 in first-order logic. In

the case of bags, equality requires that the multiplicities of each element are the

same, which requires some form of counting. In fact, in any of the basic bag query

language, one can express basic cardinality constraints on flat structures – e.g., that

the in-degree of a binary relation is the same as its out-degree – by using bag

creation followed by a bag equality test.

So counting is somehow inherent to a bag query language. The expressiveness of

BQL over flat bags can be characterized using an extension of relational algebra

with arithmetic (Libkin and Wong 1993). Although this is arguably not a standard-

enough logical language to say that BQL is “canonical”, the characterization is

useful for showing that certain queries cannot be expressed in BQL.

More Powerful Languages

The complex-value models above are analogs of the relational algebra and calculus,

which capture restricted classes of the polynomial-time queries. But what are the

analogs of relational languages with recursion? For example, in the relational

setting, the language of least fixed-point logic captures exactly the polynomial-

time queries, assuming the existence of an order. Abiteboul and Beeri (1995)

defines an extension of the nested relational algebra with a powerset operator,

and shows that it is sufficient to define recursive operators. Gyssens and Gucht

(1992) and Suciu (1997) define more limited recursive extensions of nested rela-

tional algebra; Suciu shows that they have a conservativity property with respect to

fixpoint logic over relations, while Gyssens et al. (2001) shows that the two

languages have equivalent expressiveness.

We motivated the complex-value model via the impedance mismatch problem

between databases and programming languages. But nested structures are only one

feature of modern programming language type systems. One additional feature is

that of pointer or reference types. Relational database attributes can model pointers,

but not the ability to create new objects (or new references) dynamically in

fixpoints. Abiteboul and Kanellakis (1998) takes the natural step of considering

nested languages with both recursion and object creation. The resulting language is

shown to be able to define arbitrarily complex database transformations. Seen from

the limitative philosophy of the relational paradigm, this shows that recursion and

pointer creation is simply too powerful a combination.

Data Design for Nested Structures

DBR has also been concerned with extending relational data design to complex

objects. At the level of theoretical analysis, there has been considerable work on

defining dependencies on nested structures and studying their interaction
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(Hartmann et al. 2006). Normal forms have been defined, which represent schemas

for nested objects with “less redundancy” (Ozsoyoglu and Yuan 1987; Mok et al.

1996; Tari et al. 1997; for a comparison, see Mok 2002).

Industrial Support and DBR for Complex Objects

In the 1990s, support for richer programming language types was seen as the natural

evolution point for commercial database systems. It seemed clear that both the

relational model and relational DBMSs would be supplanted by object-oriented

counterparts. Vendors made two practical cases for objected-oriented systems. The

first emphasized the software productivity increase obtained by diminishing the

“impedance mismatch” between program objects and storage. The second was

based on performance: by retrieving data object-at-a-time, rather than relation at

a time, an object DBMS could improve performance in a way similar to the benefits

of set-at-a-time over tuple-at-a-time.

But while object-oriented features are found in most database managers today,

there is no convergence on an object-oriented paradigm for data management that

replaces relational databases. DBMS software vendors have taken several distinct

approaches to merging objects and databases.

• Some products add persistent storage to an object-oriented language,

emphasizing integration with the type system of the language rather than

faithfulness to the features of data management software. VOSS, for example,

adds persistence and transaction support to the object-oriented language

SmallTalk.

• Other products build a standalone object database management solution with

several programming language interfaces, supporting both navigational access

(following pointers) as well as an object query language. The language OQL

(Cattell 1997) was proposed as a standard object query language for object

databases (ODBMSs), corresponding to an extension of nested relational algebra

with powerset of (Abiteboul and Beeri 1995) and introduced with the O2

ODBMS (Deux 1990). The ODBMS Versant supports a variant of OQL, as

well as a proprietary query language VQL.

• Object-relational database systems (ORDBMSs) build standalone database

products on a more evolutionary approach, adding on object features to rela-

tional systems. A key for ORDBMS products is extensibility: they give the

developer the ability to define new types and functions; some of them (notably

PostgreSQL) give ways of extending the optimizer. The SQL-99 standard

incorporates many features of object-relational systems.

• Object-relational mapping tools, such as Hibernate, provide support for storing

programming language objects in relational tables. These tools work on top of a

third-party relational database, providing languages for programmers to define

mappings between objects and relations, and runtime APIs that implement
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transformations on objects by translating them to calls to the DBMS. Some of

these tools support their own object query languages.

Object-relational mapping tools are in widespread use, particularly for Web

development; however, they do not replace relational DBMSs, but only supplement

them. ORDBMs have had broader commercial success than ODBMSs: Postgres and

its successor PostgresSQL are heavily-used open-source database products that

embody many ORDBMs features. All major commercial vendors claim some

support for ORDBMS features, but with wide variations: none of them support

the full SQL-99 standard. Since the least common denominator capability over all

of these systems consists of relational database management, it is difficult to say

that the era of object systems has come.

The connection between the languages proposed by ORDBMS products and

those proposed in DBR is radically weaker than for relational systems. The

ORDBMS standard query language SQL-99 has little resemblance to the algebras

proposed for complex objects. When we turn to object-oriented database design, we

find that the gap between DBR and practice is even wider: not only are the normal

forms for object-oriented databases not applied in designing ODBMS and

ORDBMS schemas, the normal forms are barely known outside of the research

community.

XML and Tree-Structured Data

XML data management arose as an application several years after query languages

for complex values and objects appeared. In querying XML documents, one notices

several features that were related to complex-value models. And it is in XML that

the goal of extending the relational paradigm en masse to a richer set of datatypes

has had the most commercial and theoretical success.

An XML document has many of the properties of a list-oriented model, an

ordered variant of the bag models discussed earlier. In fact, documents could be

coded as nested lists. Ignoring attributes for a moment, a document consisting of a

root node with tag A and children C1 . . .Cn could be represented as a nested list

whose first element is a singleton set representing A (e.g., using a one-attribute

schema) and whose next n elements are representations of each Ci.

The close connection between documents and complex values gives a motiva-

tion for a query language built on an extension of the application operator (the

“functional approach”) mentioned above for complex objects. Consider queries Q
that take as input a variable binding – a mapping of free variables of a query to a

node in a document – and which output a nodeset sequence of nodes in some

document obtained by enlarging the input document. Given Q and nodeset O, we
iterate Q on O by applying it to all members of O in sequence, concatenating the

resulting nodelists to get a new nodelist. This operator is the basis for the main
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operator of the XML query language XQuery. A FLWR expression in the XML

language XQuery iterates a query Q over a list created by another expression E. For
example, the XQuery query:

For $x In $root/descendant::Prof
Return {Prof / @lastname}

returns the lastname attribute of every professor element in a document.

A major distinction between XML and list- and bag-oriented data models is that

the latter have schemas that fix the nesting-depth of the data. Since queries in these

former models have inputs that are typed to satisfy a given schema, this implies that

any given query must only deal with structures of some fixed nesting depth.

In contrast, an XML query should be able to deal with documents of arbitrary

depth. The navigation or selection component of a query language must therefore

have some mechanism for searching arbitrarily far down within a document.

XML query languages borrow a mechanism from modal logic, the use of path
expressions for navigation. A path expression consists of a command to move in a

certain direction within a structure. In the case of XML documents, these directions

are referred to as axes, and they are given relative to a node in a document. The

descendant axis, for example, refers to navigation to any descendant of a node,

while the following-sibling axis refers to navigation to a right-sibling. Path

expressions are built by composing steps, which consist of axis plus tag-filters; an

expression $x/descendant::A selects all descendants of the node (or nodes)

associates with variable $x that are labeled with A.

The use of path expressions to navigate XML documents was pioneered by

James Clark, who developed the language XPath, later standardized by the World

Wide Web consortium (W3C 1999). XPath was not intended as a query language,

but as a sublanguage for selecting nodes within an XML document; it was used

within a variety of other XML languages, such as the transformation language

XSLT. The original language was variable-free, consisting of compositions of

navigation steps and filters, where filters could be built up from existence tests

using built-in functions and operators. For example, descendant::Prof [not
(child::Advisee)] is an XPath query that selects all professor element nodes that

are descendants of a given node, where the nodemust not have any advisee-elements

as children. Later versions of the language added variable bindings (W3C 2007a).

We have already mentioned the query language XQuery. XQuery was developed

for “database-style” transformations on XML documents – data-intensive

transformations that do not require a recursion procedure. XQuery combines the

node selection facilities of XPath with the FLWR iteration facility – roughly

speaking, modal logic combined with function application. Consider a document

which contains professors (Prof elements) and their advisees (Advisee children of

Prof elements), and which also redundantly contains students (Student elements).
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The following XQuery query returns a list of professors who do not advise anyone,

listing as children all the students without an advisor:

for $x in $root/descendant::Prof[not(child::Advisee)]

return

<Prof>{Prof/@lastname }</Prof>
<CouldAdvise>

for $y in $root/descendant::Student[not(child::Advisor)]
return $y

</CouldAdvise>

The outer for loop iterates the variable $x over the path expression returning the

collection of Prof nodes without advisees; the inner for loop iterates variable $y

over another path expression returning potential student advisees. The query also

makes use of element constructors (such as <Prof>. . .</Prof>) that generate new

nodes – these play a role roughly analogous to nesting in complex-valued models.

What can we say about XQuery in regard to the desired characteristics of query

languages from the relational paradigm? The core of XQuery defines only queries

with polynomial-time data complexity (Koch 2006). The variable-free language

XPath itself satisfies even better bounds, having complexity polynomial in both

the query and the document (Gottlob et al. 2002a); indeed, for a large fragment the

combined complexity of evaluation is linear (Gottlob and Koch 2004). In terms of

limitation on its expressiveness and relationship to logic, a conservativity theorem

similar to that of bag query languages holds: the Boolean queries that are express-

ible in the XQuery core are exactly those expressible in first-order logic with an

additional counting quantifier (Benedikt and Koch 2009). Furthermore, the frag-

ment of XQuery Boolean queries that corresponds to first-order logic has been

identified (“atomic XQuery” of (Benedikt and Koch 2009)).

At the level of industrial acceptance, XQuery has been quite successful, albeit

not yet at the level of SQL. While languages for nested relations have been mainly

confined to academia, XQuery has been standardized by the World Wide Web

Consortium (W3C 2007b) as a Web standard. It is is supported both in commercial

data management systems and by XML document storage products.

Conclusions

The history of database research is strongly tied with that of database management

systems: in particular, Codd’s work on the relational algebra has been hugely

influential in the development of systems. The history of database management

systems, in turn, is filled with success stories. Oracle Corporation, historically and

primarily concerned with database systems, is a company with 100,000 employees,

and one of the 50 largest market capitalizations (Financial Times 2010). Most Web

sites critically rely on database software for managing their content, user data, and

10 Databases 223



transaction information, using either major commercial systems such as Oracle,

DB2, or SQLServer, or open-source software such as PostgreSQL and the compar-

atively lightweight MySQL (now owned by Oracle), very popular for simple Web

sites and which has captured one third of the market since its initial release in 1995

(Creative System Design 2010).

Through advances in query optimization, indexing structures, but obviously also

in hardware, the performance of database management systems has greatly

improved over the years: the number of transactions per second in an update-

oriented benchmark has thus grown thousandfold over the period 1985–2005

(Gray 2005). On the query side, results of the TPC-H benchmark show that in the

past 8 years, the query throughput has been multiplied by 50. It is obviously difficult

to determine the parts of performance increase coming from software and hardware

advances, but an indication that algorithmic and data structure improvements have

had important roles is that the observed price/performance reduction in DBMSs

beats Moore’s law (Gray 2005).

We have insisted throughout this chapter on two facets of database research: on

one hand, models, algorithms, and data structures for the efficiency and effective-

ness of existing database systems, and on the other hand, broadly-scoped, often

theoretical, sometimes even highly-speculative, research about how data can be

modeled, queried, and, more generally, managed. In some cases these lines of work

show no evidence of convergence. We have seen earlier in this chapter the example

of static-analysis–based query optimization. Decades of work in this area have

yielded sophisticated characterizations of query hardness and algorithms for query

decomposition and minimization, but they have not been applied in practice.

Another example is in spatial databases – although database research in general

has had impact in this area, many of the more heavily-researched theories for

data models and query algebras (Paredaens et al. 1994) have not influenced

practitioners.

The timeframe for acceptance of relational database systems was several years,

but perhaps we should be willing to wait many decades to judge subsequent work.

The past has shown numerous cases of database research that was considered

disconnected from applications for long periods, which has ended up being of use

in systems. One of the leading figures in database theory, Moshe Vardi, mentions

the example of integrity constraints (Winslett 2006):

The work on integrity constraints in the late 1970s and early 1980s also received scathing

criticism as not being at all relevant to the practice of database systems, only to reemerge

later as being of central importance. When you do an exciting piece of research, it is very

hard to know whether it will be relevant to the field in the long term. This is true both for

theory and for experimental work. The vast majority of theory research results will likely be

forgotten, as will be the vast majority of experimental work.

There are certainly missed opportunities in both directions: theoretical results not

applied in systems, and practical issues not theoretically modeled and analyzed as

they should be.

But of course, DBR has to be measured also by the influence on other areas of

computer science. Work on indexing has strong connections with research on data
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structures and algorithms (compare, for instance, binary search trees and B+-trees).

Since the work of Codd, database theory has focused on the complexity of evaluating

logics and the expressiveness of logical formalisms: results in this area interact

strongly with research in finite model theory, descriptive complexity, and computa-

tional complexity (Chap. 15.) Work on the foundations of XML has led to a better

understanding of tree automata and tree transducers, a basic subject of study in formal

languages. The capacity ofDBMSs in handling large quantities of data encouraged the

development of techniques to extract patterns and discover knowledge from large

databases, a field closely related to DBR known as data mining. There are many other

examples: The applications of database technology to the management of Web data

led to research at the border of databases, information retrieval, and machine learning;

database design has links with software engineering, while distributed databases raise

numerous questions within networking research.

As for further reading, we have already pointed to a number of references on

specific research topics. We now refer to more general works that can be of use to

pursue the study of database systems and database research in more depth.

A large number of textbooks cover the design of relational database management

systems and review core database research. We mention (Ullman 1988, 1989;

Ramakrishnan and Gehrke 2002; Garcia-Molina et al. 2008; Silberschatz et al.

2010), but there are many other excellent examples.

With the notable exception of Ullman (1989), these textbooks deal with database

systems rather than with database theory. The main reference in database theory is

Abiteboul et al. (1995), which covers foundational aspects of database query

languages and data models. An earlier survey, giving a snapshot of theoretically-

oriented research at the time, is Kanellakis (1990). Database theory is strongly tied

to finite-model theory (Libkin 2004), and the connection between the two is

highlighted in Vianu (1996).

Acknowledgments Wewould like to thank Serge Abiteboul, Georg Gottlob, Evgeny Kharlamov,

Yann Ollivier, as well as the editor of this book, Edward K. Blum, for valuable feedback about the

content of this chapter.

References

Serge Abiteboul and Catriel Beeri. On the power of languages for the manipulation of complex

values. VLDB J., 4:727–794, 1995.
Serge Abiteboul and Paris C. Kanellakis. Object identity as a query language primitive. J. ACM,

45:798–842, 1998.

SergeAbiteboul, RichardHull, andVictor Vianu.Foundations ofDatabases. Addison-Wesley, 1995.

Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, and Pierre

Senellart. Web Data Management. Cambridge University Press, 2012.

Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio

Lenzerini, Mattia Palmieri, and Riccardo Rosati. QuOnto: Querying ontologies. In Proc.
AAAI, 2005.

10 Databases 225



Peter M. G. Apers, Carel A. van den Berg, Jan Flokstra, Paul W. P. J. Grefen, Martin L. Kersten,

and Annita N. Wilschut. PRISMA/DB: A parallel main memory relational DBMS. IEEE
Trans. Knowl. Data Eng., 4(6):541–554, 1992.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-

Schneider, editors. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, 2003.

Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered indices.

Acta Inf., 1:173–189, 1972.
Catriel Beeri, Ronald Fagin, David Maier, Alberto Mendelzon, Jeffrey Ullman, and Mihalis

Yannakakis. Properties of acyclic database schemes. In Proc. STOC, 1981.
Michael Benedikt and Christoph Koch. From XQuery to relational logics. ACM Trans. Database

Syst., 34(4):1–48, 2009.
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