
Demonstrating Intelligent Crawling
and Archiving of Web Applications

Muhammad Faheem
Institut Mines–Télécom

Télécom ParisTech; CNRS LTCI
Paris, France

muhammad.faheem@telecom.paristech.fr

Pierre Senellart
Télécom ParisTech

& The University of Hong Kong
Hong Kong

pierre.senellart@telecom.paristech.fr

ABSTRACT
We demonstrate here a new approach to Web archival crawl-
ing, based on an application-aware helper that drives crawls
of Web applications according to their types (especially, ac-
cording to their content management systems). By adapting
the crawling strategy to the Web application type, one is
able to crawl a given Web application (say, a given forum
or blog) with fewer requests than traditional crawling tech-
niques. Additionally, the application-aware helper is able to
extract semantic content from the Web pages crawled, which
results in a Web archive of richer value to an archive user.
In our demonstration scenario, we invite a user to compare
application-aware crawling to regular Web crawling on the
Web site of their choice, both in terms of efficiency and of
experience in browsing and searching the archive.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services; H.3.7 [Information
Storage and Retrieval]: Digital Libraries—Collection;
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia

Keywords
content management system, crawling, Web application, Web
archiving

1. INTRODUCTION
The advent of the Web 2.0 in the past decade has had

significant impact on the number of Web pages and the
amount of user-generated content on the Web: Web users
are now billions [9], Web search engine robots such as Google
have discovered more than a trillion unique URLs [1], and
one of the most popular content-management system for
blogs, WordPress, is powering dozens of millions of Web
sites [14].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CIKM2013 San Francisco Airport Marriott Waterfront, Burlingame, CA, USA
ACM 978-1-4503-2263-8/13/10.
http://dx.doi.org/10.1145/2505515.2508197.

On the other hand, only a small fraction of this Web
content can be captured by today’s Web crawlers, due to
limited bandwidth, extreme ephemerality of some of the
content, storage, indexing, or processing costs, or simply
the need for selecting high-quality content. This is true for
Web search engines: the number of pages indexed by Google
in February 2013 is estimated to be around 40 billions [3],
to be contrasted to the trillion URLs or so in the frontier.
This is all the truer for Web archiving institutions such as
Internet Archive1 and Internet Memory2 whose mission is
to preserve Web content for future generations. Because of
limited resources, and of the need of indexing content over
time, these can at best host collections with billions of URLs.
A large part of the content on the Web comes from Web

sites powered by content management systems (CMSs) in-
corporating content in a fixed template [6]. This includes
in particular a number of Web 2.0 and social Web appli-
cations such as blogs, forums, wikis. As we argue in [5],
content published on this range of Web applications does
not only include the ramblings of common Web users but
also pieces of information that are newsworthy today or will
be valuable to tomorrow’s historians. Blogs are used by
politicians more and more, both to advertise their political
platforms and to listen to citizens’ feedback [2]; Web forums
have become a common way for political dissidents to dis-
cuss their agenda [10]; initiatives like the Polymath Project3

transform blogs into collaborative research whiteboards [11];
user-contributed wikis such as Wikipedia contain quality
information to the level of traditional reference materials [7].
Despite the need for durable archiving of this precious con-

tent and limited crawling resources of archiving institutions,
current-day archival crawlers crawl the Web in a conceptu-
ally very simple manner, irrespectively of the nature of the
Web application crawled or the content management system
used. This results in redundant Web pages in the archive
(as the same logical content is often accessible through dif-
ferent paths in a content-management system), in archives
where the template of a page is not distinguished from its
content, and in indexing of utility Web pages (user account
management, print view of a page, social network widgets)
that are not in the scope of the archival task. All together,
this forms a considerable waste of crawling resources that
could be used to capture other interesting information.
We demonstrate here a new approach to Web archiving

that carries out optimized crawling for extraction of the main

1http://www.archive.org/
2http://internetmemory.org/
3http://polymathprojects.org/

http://www.archive.org/
http://internetmemory.org/
http://polymathprojects.org/

content of Web applications. We rely on an application-aware
helper (AAH) that assists the crawling process by identifying
crawled Web application types and providing appropriate
crawling actions (links to follow, content to extract) accord-
ingly. For supported Web sites, this approach directly targets
useful content-rich areas, avoids archive redundancy, and en-
riches the archive with semantic description of the content.
The AAH makes use of a knowledge base of known Web
application types, together with algorithms for flexible and
adaptive matching of Web applications to these types.
Next, in Section 2, we present the main features and

architecture of the application-aware helper. We then present
in detail in Section 3 the demonstration scenario that will
be proposed to conference attendees.
A companion video for this demonstration paper is avail-

able at http://dbweb.enst.fr/aah. We refer to our related
publication [5] for a detailed presentation of the AAH algo-
rithms, system, and performance.

2. ARCHITECTURE
We now present the main components of the AAH for

intelligent and adaptive crawling of known and adaptable
Web applications. We refer to Figure 1 as an illustration of
the architecture of the system, with items of the following
enumeration referring to the numbers in the figure.

Archivist
Interface

Web application
detection module

Indexing
module

Crawling module

Web applications
to crawl

Web application
adaptation

Module

Content extraction
and annotation

module

Crawled Web
pages with
annotated
Contents

3 2 1

5
6

8

9

12

4

RDF
store

Stored
WARC
files

7

11

10

XML
knowledge

base

Figure 1: Architecture of the AAH

1. The AAH relies on a knowledge base of Web application
types which describes how to crawl a Web site in an
intelligent manner. The knowledge specifies precisely
how to detect a specific Web application type (CMS)
and which crawling actions should be executed to crawl
it. The knowledge base also describes the different
levels under a Web application type and then, based on
this, different crawling actions that should be executed
against this specific page level. The knowledge base is
described in a custom XML format, well-adapted to the
tree structure of a hierarchy of Web applications and
page levels. The Web application detection patterns
and crawling actions are written in an XPath fragment
language.

2. The system loads the Web application type detection
patterns from the knowledge base and executes them
against a given Web application. If the Web application
type is detected, the system runs all possible Web
application level detection patterns until a match is

found. The number of detection patterns for detecting
Web application type and level will grow with the
addition of knowledge about new Web applications. To
optimize this detection, we maintain an index of these
patterns, that uses a version of the YFilter [4] NFA-
based filtering system for XPath expressions adapted
to our purposes.

3. Once the system receives a crawling request, it first
makes a lookup on the YFilter index to detect the Web
application type and level.

4. If the Web application type is not detected, the AAH
applies an adaptation strategy to find a relaxed match:
we look for approximate matches of detection patterns,
thereby handling different versions of a CMS.

5. When the Web application is successfully detected, the
AAH loads the corresponding crawling strategy from
the knowledge base and crawls the Web application
accordingly. This module also implements the basic
queue management and resource fetching components.

6. If the system fails to crawl the Web application be-
cause of structural changes with respect to the knowl-
edge base, it tries determining the changes and then
adapt failed crawling actions. The AAH deals with two
different cases of adaptation: first, when (part of) a
Web application has been crawled before the template
change and a recrawl is carried out after that (a com-
mon situation in real-world crawl campaigns); second,
when crawling a new Web application that matches
the Web application type detection patterns but for
which (some of) the actions are inapplicable. See [5]
for details.

7. A Web application that has been crawled before but
cannot be recrawled with the same crawling actions
is relearned for adaptation by searching for already
crawled contents (URLs corresponding to navigation
actions, Web objects, etc., stored in an RDF store).

8. In the process of adaptation, the system also automat-
ically maintains the knowledge base with the newly
discovered patterns and actions.

9. The crawled Web pages are stored in the form of
WARC [8] files, the standard preservation format for
Web archiving.

10. Structured content (individual Web objects with their
semantic metadata) is extracted from each crawled
page, as described in the knowledge base.

11. Structure content is stored in an RDF store, that can
be queried by an archive user through SPARQL queries.

12. Crawled Web pages with annotated content are dis-
played to the archivist through a GUI that we describe
in more detail in Section 3.

The Java implementation of the AAH is available in open
source from http://perso.telecom-paristech.fr/~faheem/
aah.html. In addition to being usable in a standalone
mode for testing and demonstration purposes, the AAH has
also been integrated, in the framework of the ARCOMEM
project4, in the crawl processing chain of both Internet
Archive’s Heritrix crawler [13] (modified for our purposes)
and Internet Memory’s5 proprietary crawler.

4http://www.arcomem.eu/
5http://internetmemory.org/

http://dbweb.enst.fr/aah
http://perso.telecom-paristech.fr/~faheem/aah.html
http://perso.telecom-paristech.fr/~faheem/aah.html
http://www.arcomem.eu/
http://internetmemory.org/

3. DEMONSTRATION SCENARIO
We now describe a specific use case where the AAH helps

building richer archives with less resource wasted. This is a
real-world case where the AAH has been used.
The German broadcasting company SWR is a partner each

year of the Rock am Ring music festival. SWR archivists are
interested in building archives of both official information
and public perception of this music festival as displayed on
the Web. Many Web sites are in the scope of this archival
campaign, however, crawling, storage, analysis resources
are limited, and timely archival matters, which requires to
limit crawling requests to those that will effectively bring
meaningful content to the archive. The AAH has been
designed to meet these challenges and ensures that duplicates
and templates are avoided, and all useful information has
crawled.
In our demonstration scenario, conference attendees will

have the possibility of either focusing on this specific Rock
am Ring use case, or choosing a Web site of their own to
crawl.
We now present in detail our demonstration scenario. See

the accompanying video for a peek at the GUI.
1. The user enters in the crawling panel the URL of a

Web site to crawl with the possibility to limit the number of
HTTP requests. The user will be offered to choose any URL
she wants; obviously, interesting results will be produced only
for Web application types supported by the AAH (currently,
various versions of WordPress, phpBB, and vBulletin, with
a robustness to template change thanks to the adaptation
module). A few Web sites will be pre-crawled locally to
simulate their crawl without having to rely on network delays
(especially an issue since the crawler respects per-server
crawling delays as per crawling ethics). The user is also
given the choice of the specific crawler to run the job: either
the AAH crawler, or a baseline non-intelligent crawler, or
both. Selecting both allows comparing their performance.
2. Once the crawl is completed (a few seconds when run

from a local cache of the Web site, arbitrarily longer for
a remote crawl), the system shows the number of HTTP
requests made by both crawlers, as well as the number of
broken links found. For instance, on one specific crawl
of the blog http://www.rockamring-blog.de/, the AAH
has made only 1,705 HTTP requests to crawl the whole
given Web application, compared to 5,000 for the baseline
crawler with no certainty that all useful content has been
retrieved. Comparatively, the AAH also encounters fewer
broken links than the baseline crawler. We additionally
provide the number of failed and adapted crawling actions.
The crawl effectiveness panel (watch video) compares crawl
performance on a plot of Web site coverage (measured as a
number of distinct k-grams [5]) vs number of requests.
3. The system provides the data view of the crawled Web

pages with the AAH. The AAH crawls the Web pages in
an intelligent manner and extracts useful information. For
instance, depending on the Web application, we may show
a list of blog posts with crawled content and Web objects,
identifying semantic components such as post body, publica-
tion date, author, and post comments with their publication
date and author. Similar views exist for Web forum content.
4. The data view of the crawled Web pages with the

baseline crawler is rather very simple (direct HTML display),
as Web pages are crawled blindly, without avoiding spider
traps and noisy links.

5. The AAH does not only crawl the Web application in
an intelligent manner but also extracts Web objects (e.g.,
timestamp, comments, author). Crawled Web pages and
objects are stored in a large-scale RDF store [12] in the
form of RDF triples. The user can run semantic queries on
the triple store. For instance, she can look for the posts or
comments posted by specific users by specifying their names.
The interface also allows searching post bodies or comments
with respect to a given keyword.

6. The result of the query are shown in the form of a data
view, where, for instance, the list of posts or comments with
the given user name are shown.

4. ACKNOWLEDGMENTS
This work was funded by the European Union’s Seventh

Framework Program (FP7/2007–2013) under grant agree-
ment 270239 (ARCOMEM).

5. REFERENCES
[1] J. Alpert and N. Hajaj. We knew the web was big...

http://googleblog.blogspot.co.uk/2008/07/
we-knew-web-was-big.html, 2008.

[2] S. Coleman. Blogs and the new politics of listening.
The Political Quarterly, 76(2), 2008.

[3] M. de Kunder. The indexed Web.
http://www.worldwidewebsize.com/, 2013.

[4] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path sharing and predicate evaluation for
high-performance XML filtering. ACM TODS, 2003.

[5] M. Faheem and P. Senellart. Intelligent and adaptive
crawling of Web applications for Web archiving. In
ICWE, 2013.

[6] D. Gibson, K. Punera, and A. Tomkins. The volume
and evolution of Web page templates. In WWW, 2005.

[7] J. Giles. Internet encyclopaedias go head to head.
Nature, 438, 2005.

[8] ISO. ISO 28500:2009, Information and documentation –
WARC file format.

[9] J. Lynn. Internet users to exceed 2 billion this year.
http://www.reuters.com/article/2010/10/19/
us-telecoms-internet-idUSTRE69I24720101019,
2010.

[10] J. C. Mulvenon and M. Chase. You’ve Got Dissent!
Chinese Dissident Use of the Internet and Beijing’s
Counter Strategies. Rand Publishing, 2002.

[11] M. A. Nielsen. Reinventing Discovery: The New Era of
Networked Science. Princeton University Press, 2011.

[12] N. Papailiou, I. Konstantinou, D. Tsoumakos, and
N. Koziris. H2RDF: adaptive query processing on RDF
data in the cloud. In WWW, 2012.

[13] K. Sigurðsson. Incremental crawling with Heritrix. In
IWAW, 2005.

[14] WordPress Foundation. Stats.
http://en.wordpress.com/stats/, 2013.

http://www.rockamring-blog.de/
http://googleblog.blogspot.co.uk/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.co.uk/2008/07/we-knew-web-was-big.html
http://www.worldwidewebsize.com/
http://www.reuters.com/article/2010/10/19/us-telecoms-internet-idUSTRE69I24720101019
http://www.reuters.com/article/2010/10/19/us-telecoms-internet-idUSTRE69I24720101019
http://en.wordpress.com/stats/

	Introduction
	Architecture
	Demonstration Scenario
	Acknowledgments
	References

