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Résumé. Cet article traite de la corroboration d’informations, dans le contexte de vues
exprimant des opinions sur des faits de façon éventuellement contradictoire. Il s’agit de
prédire si un fait est vrai ou faux. Des méthodes d’agrégation simples comme le vote
donnent déjà de bons résultats, mais nous présentons dans cet article des algorithmes qui
tiennent compte de la confiance dans les vues pour améliorer les prédictions. Les trois
algorithmes proposés sont des algorithmes de point fixe correspondant à différents niveaux
de complexité du modèle probabiliste sous-jacent. Ils estiment à la fois la valeur de vérité
des faits et la confiance dans les vues. Cet article présente une étude expérimentale sur
des données synthétiques et réelles. Ces expériences montrent dans quelle mesure et
dans quel contexte nos algorithmes peuvent améliorer les résultats par rapport au vote.
La corroboration apparâıt naturellement dans un grand nombre d’applications, comme
la sélection de sources dans le Web sémantique, les tests de qualité de données ou le
nettoyage d’annotations sémantiques dans les réseaux sociaux. Ce travail pose donc les
bases de techniques plus complexes pour traiter les problèmes précédents.
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espérance-maximisation

1 Introduction
The Web provides an interface to access a wide variety of information and viewpoints
from individual Web sources that have different degree of trustworthiness based on their
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origin or bias. The most daunting problem when trying to answer a question seems not
to be where to find an answer, but which answer to trust among the ones reported by
different Web sources. This happens not only when no true answer exists, because of
some opinion or context differences, but also when one or more true answers are expected.
Such conflicting answers can arise from disagreement, outdated information, or simple
errors.

Simple questions often yield disagreeing answers from different sources. As an example,
the birth date of Napoleon Bonaparte, a contentious topic of importance to historians as it
determines whether Napoleon was born French or Italian, is reported as August 15, 1769
or as January 7, 1768 depending on the sources. A more familiar everyday example is a
simple professional contact information search: contact information is time-dependent;
yet because of the nature of Web sources, many sources will continue to list outdated
information if a person has switched jobs. For instance, as of the writing of this paper, a
Google search for “Mor Naaman” lists three possible affiliations in the first ten results:
Stanford University, Yahoo! Research Berkeley, and SCILS, Rutgers University. The
correct current affiliation, SCILS, does not appear in first position. In addition, sources
may identify the object incorrectly; in the case of a contact search this can happen in
the presence of homonyms (the first page of Google results for “Mor Naaman Facebook”
returns two separate Facebook profiles), misspellings or name changes.

We consider each Web source as a separate view over the data. To accurately answer
a question in the presence of conflicting information, a natural approach is to simply
count the number of occurrences of each answer, i.e., the number of views reporting
each answer. This simple voting strategy performs well in many scenarios but is easily
misguided in a Web environment where many sources can either malignantly collude to
propagate false information, or naively replicate outdated or wrong data. The quality of
the views should then be taken into account when corroborating answers to identify the
best answer to a query. Without a priori knowledge on the quality, or trustworthiness, of
views, or on the correctness of answers, we are left with a recursive definition: a correct
answer is returned by many trusted views and a trustworthy view returns many correct
answers. In this paper, we propose fixpoint computation techniques that derive estimates
of the truth value of facts reported by a set of views, as well as estimates of the quality
of the views.

We believe that data corroboration can improve data quality in a wide range of domains,
including source selection in the semantic Web [14], semantic annotation cleaning in
social networks, and information extraction. For instance, information extraction tools [5]
typically return one or more answers to an information extraction task; using several
different tools might lead to different answers. By corroborating answers from different
tools over a set of tasks, we can not only identify the most likely answer, but also assess
the quality (trust) of each extraction tool. Our corroborative approach can also be
useful for collaborative tagging systems in social networks [8]. In such systems many
independent users assign tags to objects; the tags are aggregated to create a description,
or categorization, of the object. By including not only frequency information but also
user trustworthiness or expertise in the aggregation process, we can improve the quality
of the collaborative filtering system.
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We first introduce a probabilistic data model for corroboration that takes into account
the uncertainty associated to facts reported by the views, as well as the limited coverage
of the views. Our main contribution consists in three algorithms, namely Cosine,
2-Estimates and 3-Estimates, that estimate the truth values of facts and the trust
in sources. They all refine these estimates iteratively until a fixpoint is reached. Their
particularities are as follows:

• Cosine is based on the cosine similarity measure that is popular in Information
Retrieval [12].

• 2-Estimates uses two estimators for the truth of facts and the error of views that
are proved to be perfect in some statistical sense.

• 3-Estimates refines 2-Estimates by also estimating how hard each fact is, i.e.
the propensity of sources to be wrong on this fact.

We present an experimental evaluation of the algorithms with respect to two baseline
algorithms, Voting and Counting, over both synthetic and real-world data. Our
results show that our three algorithms are able to predict correct truth values better
than the baseline algorithms in cases where views have various degrees of trustworthiness.
Furthermore, we show that in general, 3-Estimates provides better estimates than the
other two, which demonstrates the interest of taking into account the hardness of facts.

The paper is organized as follows. The probabilistic data model is described in
Section 2. Our three algorithms as well as the base algorithms are presented in Section 3.
Experiments are discussed in Section 4. We discuss some related work and conclude in
Section 5.

2 Model
The opinion of sources can be seen as views over the real world W . Views report beliefs
that are of positive or negative statements. Based on these beliefs, the problem is to
“guess” what the real world actually is.

Let F be a set {f1 . . . fn} of facts. A view (over F) is a (partial) mapping from F to the
set {T, F} (T stands for true, and F for false). We have a set of views V = {V1 . . . Vm}
and from them we try to estimate the real world W , a total mapping from F to the set
{T, F}. From a mathematical viewpoint, based on some probabilistic model, we want to
estimate the most likely W given the views.

For instance, W may state that the fact “Paris is the capital city of France” holds.
Some views may agree with W on this fact while other views may believe that “Lyon is
the capital city of France”. A particular case is when views only believe in positive facts,
as is often the case on the Web. Nevertheless, negative facts can still be introduced by
functional dependencies. Suppose we know that France has exactly one capital city. If a
source states “Paris is the capital city of France”, then it also states implicitly that it
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does not believe “Lyon is the capital city of France”. We explain the relationship between
functional dependencies and negative statements in more detail further.

The underlying probabilistic model we assume is described by Equation (1):
P(Vi(fj) is undefined) = ϕ(Vi)ϕ(fj)
P(Vi(fj) = ¬W (fj)) = (1− ϕ(Vi)ϕ(fj))ε(Vi)ε(fj)
P(Vi(fj) = W (fj)) = (1− ϕ(Vi)ϕ(fj))(1− ε(Vi)ε(fj))

(1)

In this model, views ignore some facts and make errors. First, with some probability
ϕ(Vi)ϕ(fj), view Vi ignores fact fj, i.e., Vi(fj) is undefined. Now, when Vi(fj) is defined,
Vi makes an error on fj (with respect to W ) with probability ε(Vi)ε(fj). The functions
ϕ, ε define the ignorance and error factors respectively. Besides estimating W , we are
interested in estimating these factors as well. Note that while ε(Vi) and ε(fj) represent
the error factors for views and facts, they cannot be interpreted as probabilities without
normalization, although their product is a probability (and similarly for ϕ(Vi) and ϕ(fj)).

In most scenarios, views only make positive statements, typically giving, for some
query, the answer they have the most confidence in, but not giving the list of all possible
false answers (which can be of unbounded size). For instance, it is unlikely that a view
would return a list of all cities of France (or of the world) that are not the correct answer
to the query “what is the capital city of France?” Nevertheless, we focus on the situation
where we have both positive and negative statements and use functional dependency
information, if available, to infer possibly omitted negative facts. In particular, we
consider functional dependencies of the form “there is one and only one true answer to
this question”. More formally, we define a set of queries Q and each fact is associated
with a reference query ref (fj) ∈ Q. Then for each query q ∈ Q, we impose the following
functional dependency constraints:∃fj ∈ F , ref (fj) = q ∧W (fj) = T

∀f ∈ F − {fj}, ref (f) = q ⇒ W (f) = F
(2)

These constraints express that each query has exactly one answer. We show in Section 3
how we use Equation (2) to transform a problem with functional dependencies into a
related problem with positive and negative statements.

3 Algorithms
This section presents three algorithms to estimate the real world W and error factors ε(fj)
and ε(Vi). In the model previously presented, the ignorance factors ϕ(fj) and ϕ(Vi) are
independent of these parameters and their estimation is relatively straightforward given
the structure of the views, S = {(Vi, fj) ∈ V × F |Vi(fj) is defined}. In the following,
Θ(·) denotes the estimates (given by each algorithm) of the different parameters (notably,
error factors and truth values).
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Baseline Algorithms. We will compare our algorithm to the following Voting baseline:

Θ(W (fj)) =

T if |{Vi : Vi(fj) = T}|
|{Vi : (Vi, fj) ∈ S}|

> 0.5

F otherwise

This algorithm corresponds to choosing the assessment of the majority about the fact.
Note that the estimated truth of a fact only depends on the views stating something
about it. A straightforward estimate of the error factor of each view would then make
use of the estimated truth value for each fact (say, by assigning as error factor of view
i the percentage of estimated true assertions of this view). It is natural to use in turn
this estimated error factor to improve the precision of the estimated truth values of facts.
This corroboration process is the basis of the 2-Estimates method presented further.

In some cases, we have no mapping to F , for example because the views only give pos-
itive statements, in a context where no functional dependencies are assumed. Obviously,
the Voting baseline maps all facts to T in this particular case, which is not helpful.
Another baseline is more adapted to this case, namely Counting. The method ignores
the negative links. More precisely,

Θ(W (fj)) =

T if |{Vi : Vi(fj) = T}|
maxf |{Vi : Vi(f) = T}|

> η

F otherwise

where η is a fixed threshold. It is typically difficult to set such a threshold that should
depend on the data distribution. In our experiments, we fix it to 0.5. This basically
consists in assigning T to popular facts, in other words facts that are often asserted.

Remark. This popularity notion is reminiscent of the PageRank [4] popularity score
for pages of the World Wide Web or, more generally, for nodes in a graph. This suggests
using PageRank on the positive votes. PageRank is actually (up to the addition of
random jumps, that mostly serve to guarantee the convergence of the algorithm) the
equilibrium measure of the random walk in the graph. Observe that, when there is no
mapping to F , V can be seen as a bipartite undirected graph G between views and
facts: there is an edge between view Vi and fact fj if Vi(fj) = T . Importance scores for
views and facts can then be computed as the PageRank scores in the view-view and
fact-fact graphs obtained by considering all paths of length 2 in G. However, since these
two graphs are undirected (G itself is an undirected graph), it can be shown that the
equilibrium measure of the random walk is proportional to the degree of the nodes in
the graph [9]. Let us restate this result: in the case of an undirected graph, such as
those we obtain by considering views that assert the same facts, or facts asserted by
the same views, PageRank amounts to the same as our Counting baseline. This is
actually only true if the damping factor is close to 1, that is, if the probability of random
jumps is small. At the limit where a random jump is done at each step of the PageRank
computation, the equilibrium measure is obviously uniform and therefore uncorrelated
with the degree. We experimented with a typical value for the damping factor (0.85,
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i.e., 15% probability of performing a random jump) and obtained results very similar to
Counting.

There is no obvious extension to PageRank with negative links. Our fixpoint methods
can be seen as an extension of the random walk interpretation of PageRank to a case
with positive and negative links. We also considered an extension based on the cash
flow interpretation of PageRank developed in [1] and the algorithm it suggests. We
obtained improvements over the baseline methods. However, we chose not to present
that algorithm because our other techniques outperform it.

Estimation of Two Series of Parameters. We present in this section two different
algorithms that aim to estimate two series of parameters: the truth of facts, and the
trustworthiness of views.

Algorithm 1 Cosine
Require: F ,V ,S
Ensure: an estimate of ε(Vi) for each view, an estimate of W (fi) for each fact

for all Vi ∈ V do {Initialization}
Θ(ε(Vi))← |{fj |Vi(fj)=T}|−|{fj |Vi(fj)=F}|

|{fj |Vi(fj)∈S}|
end for
for all fj ∈ F do

Θ(W (fj))← 1
end for
repeat {Core of the algorithm}

for all Vi ∈ V do {η is a constant (e.g., η = 0.2)}
posFacts← ∑ fj∈F

Vi(fj)=T
Θ(W (fj))

negFacts← ∑ fj∈F
Vi(fj)=F

Θ(W (fj))

norm←
√
|{fj ∈ F |Vi(fj) ∈ S}| ×

∑
fj∈F
Vi(fj)∈S

Θ(W (fj))2

Θ(ε(Vi))← (1− η)×Θ(ε(Vi)) + η × posFacts−negFacts
norm

end for
for all fj ∈ F do
posV iews← ∑ Vi∈V

Vi(fj)=T
Θ(ε(Vi))3

negV iews← ∑ Vi∈V
Vi(fj)=F

Θ(ε(Vi))3

norm← ∑ Vi∈V
Vi(fj)∈S

Θ(ε(Vi))3

Θ(W (fj))←
posV iews− negV iews

norm
end for

until convergence
return Θ.

We first present a heuristic approach for estimating the truth values of facts and
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the trustworthiness of views. It is based on the classical cosine similarity measure
that is popular in information retrieval [12], hence the name Cosine for this method.
We use an alternative representation where these variables have values -1 (false facts,
systematically wrong views), 0 (indeterminate facts, views with random statements) or
1 (true facts, perfect views). The idea is then to compute, for each view Vi, given a
set of truth values for facts, the similarity between the statements of Vi, viewed as a
set of ±1 statements on facts, and the predicted real world. The technique is precisely
described in Algorithm 1. Observe that to improve the stability of the method, we set
the new value of the estimation to be a linear combination of the old value and the
predicted cosine similarity. As for the estimate of the truth value of facts given the
trustworthiness of views, we use a simple averaging, except that we give more weight
to predictable views, that is views with high Θ(ε(Vi))2 (consistently often correct, or
consistently often wrong). We also experimented with a weighting of |Θ(ε(Vi))|, with
similar results. In the initialization phase, estimates are set as if all facts were true. The
alternative representation (trustworthiness and truth values between -1 and 1) can easily
be mapped to that of Section 2: trustworthiness of the views are estimated as Θ(ε(Vi))+1

2
and facts are predicted true when Θ(W (Vi)) > 0.

Algorithm 2 2-Estimates
Require: F ,V ,S
Ensure: an estimate of ε(Vi) for each view, an estimate of W (fi) for each fact

for all Vi do {Initialization}
Θ(ε(Vi))← 0

end for
repeat {Core of the algorithm}

for all fj ∈ F do
posV iews← ∑ Vi∈V

Vi(fj)=T
1−Θ(ε(Vi))

negV iews← ∑ Vi∈V
Vi(fj)=F

Θ(ε(Vi))

nbV iews← |{Vi ∈ V | (Vi, fj) ∈ S}|
Θ(W (fj))←

posV iews+ negV iew

nbV iews
end for
for all Vi ∈ V do
posFacts← ∑ fj∈F

Vi(fj)=T
1−Θ(W (fj))

negFacts← ∑ fj∈F
Vi(fj)=F

Θ(W (fj))

nbFacts← |{fj ∈ F | (Vi, fj) ∈ S}|
Θ(ε(Vi))←

posFacts+ negFacts

nbFacts
end for

until convergence
return Θ.
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Our second algorithm is more closely related to our probabilistic model. As with
Cosine, it focuses on the estimation of W (fj) (or, more precisely, the probability that
W (fj) = T ) for each fact fj, and ε(Vi) for each view Vi. To simplify, we assume, for
this algorithm, that error factors are independent of facts, that is, ε(fj) = 1 for all fj.
The idea is to iteratively find a good estimate of the ε(Vi) given P(W (fj) = T ), and
conversely, using a fixpoint computation. As described in Algorithm 2, we first initialize
the parameters as if all the views where true about W , then successively estimate one
set of parameters given the other one and the views, until convergence. We proved that
the estimates that are used in 2-Estimates are valid when S is given, in the sense that
the expectation of Θ(W (fj)) given the correct set of ε(Vi)’s and the views, is indeed the
expectation of P(W (fj) = T ); similarly for Θ(ε(Vi)) given the correct set of W (fj)’s and
the views. Due to space limitations, this proof is omitted.

Although based on valid estimates, the whole algorithm needs to be tuned to avoid
convergence on local optima. Actually, it is relatively easy to see that one of the local
optima is a solution where ∀fj ∈ F , Θ(W (fj)) = 0.5, which means that the truth values
of the facts are undetermined, and where ∀Vi ∈ F , Θ(W (Vi)) = 0.5, which means that
the views decide randomly. To avoid it, we normalize Θ(W (fi)) to the closest value in
{0, 1}, which constrains W to map each fact to either T or F , and Θ(ε(Vi)) to the whole
range [0, 1]. This is still not satisfactory because the estimation becomes then quite
unstable. We fixed the problem using a linear combination between the non-normalized
value and the normalized value, as described in Algorithm 3 for the truth values of
facts (a similar normalization is applied to the trustworthiness of views). We use a
weight λ progressively (and linearly) decreasing from 1 to 0. Experiments show that this
technique brings to a good solution in a stable manner. Lastly, a remaining issue with
2-Estimates is that, for one set of views, a given distribution of estimates is always
as likely its dual one, where W is replaced by its negation and each error factor ε(Vi) is
replaced by 1− ε(Vi). We decided to keep the optimistic model, where the average of
error factors is assumed to be less than 0.5.

Algorithm 3 NormalizeWFacts
Require: F ,Θ, λ
Ensure: a normalized value of Θ
maxW ← maxfj∈F Θ(W (fj))
minW ← minfj∈F Θ(W (fj))
for all fj ∈ F do
value1 ← Θ(W (fj))−minW

maxW−minW
value2 ← round(Θ(W (fj)))
Θ(W (fj))← λ× value1 + (1− λ)× value2

end for
return Θ.

Though Cosine is a heuristic algorithm that cannot easily be linked to our probabilistic
data model, we will show in Section 4 that it is usually more precise and stable than
2-Estimates. In order to overcome the limitations of 2-Estimates, we introduce next
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an algorithm with an additional series of parameters, namely, the error factor of facts.

Estimation of Three Series of Parameters. Our third algorithm, 3-Estimates, is
founded on the full data model described by Equation (1) in Section 2. The algorithm
estimates W (fj) (fj ∈ F), ε(fj) (fj ∈ F) and ε(Vi) (Vi ∈ V). We present 3-Estimates
in Algorithm 4. As an initialization, we assume that the errors of the views are null and
that all the facts are easy to guess. Then we successively estimate one parameter given
the other two (and the views). We iterate until convergence with a fixpoint computation
very similar to 2-Estimates. Here again, Θ(W (fj)) is more precisely given a numerical
value that is an estimation of P(W (fj) = T ). Again, as for 2-Estimates, we proved
that the three estimators used in 3-Estimates are valid given the other correct sets of
parameters.

As was the case with 2-Estimates, we need to apply additionally a normalization
procedure for ε(fj), similar to those already presented in the previous section. With the
ensured condition maxfj∈F ε(fj) = 1, it can be shown that the ε(Vi)’s and ε(fj)’s are
uniquely identified from the set of all products ε(Vi)ε(fj).

Dealing with Functional Dependencies. We explained in Section 2 how a model with
both positive and negative assertions is relevant when only positive statements are
made, in the presence of functional dependencies. Specifically, given a set of views
V = {V1, . . . , Vm} with no negative statements, and a set of queries Q verifying the
constraints of Equation (2), we apply the algorithms described in the previous sections
to a modified set of views V ′ = {V ′1 , . . . , V ′m}, obtained as follows:

∀fj ∈ F , Vi(fj) = T ⇒ V ′i (fj) = T

∀fj ∈ F , (Vi(fj) undefined ∧ ∃f ∈ F ,
(ref (f) = ref (fj) ∧ V ′i (f) = T ))⇒ V ′i (fj) = F

In other words, positive statements are kept, and negative statements are added for every
unstated facts that refer to a query for which a positive statement has been made. When
a view contradicts a functional dependency using more than one positive statement for
the same query, we keep all its positive statements, even if they are inconsistent in such
a case.

In the presence of functional dependencies, an optional post-filtering step that can be
used is to impose that no two facts referring to the same query are predicted true, since
we know that such a constraint holds in the real world. In this case, we redefine the
estimates of the truth values of facts, after all computations are performed, as:

Θ(W (fj))← min(0.49, E(W (fj))) if some other f
with ref (f) = ref (fj) has a better estimate Θ(W (f))

Θ(W (fj))← max(0.51, E(W (fj))) otherwise

Only one fact per query can then be estimated true (except when two facts have exactly
the same score), and the new estimate of the confidence is corrected to be at least slightly
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Algorithm 4 3-Estimates
Require: F ,V ,S
Ensure: an estimate of ε for each view and fact, an estimate of W (fi) for each fact

for all Vi do {Initialization}
Θ(ε(Vi))← 0

end for
for all fj do

Θ(ε(fj))← 0.1
end for
repeat {Core of the algorithm}

for all fj ∈ F do
posV iews← ∑ Vi∈V

Vi(fj)=T
1−Θ(ε(Vi))Θ(ε(fj))

negV iews← ∑ Vi∈V
Vi(fj)=F

Θ(ε(Vi))Θ(ε(fj))

nbV iews← |{Vi ∈ V | (Vi, fj) ∈ S}|
Θ(W (fj))←

posV iews+ negV iew

nbV iews
end for
for all fj ∈ F do
posV iews← ∑ Vi∈V

Vi(fj)=T,Θ(ε(Vi)) 6=0

1−Θ(W (fj))
Θ(ε(Vi))

negV iews← ∑ Vi∈V
Vi(fj)=F,Θ(ε(Vi)) 6=0

Θ(W (fj))
Θ(ε(Vi))

nbV iews← |{Vi ∈ V | (Vi, fj) ∈ S, Θ(ε(Vi)) 6= 0}|
Θ(ε(fj))←

posV iews+ negV iews

nbV iews
end for
for all Vi ∈ V do
posFacts← ∑ fj∈F

Vi(fj)=T,Θ(ε(fj)) 6=0

1−Θ(W (fj))
Θ(ε(fj))

negFacts← ∑ fj∈F
Vi(fj)=F,Θ(ε(fj)) 6=0

Θ(W (fj))
Θ(ε(fj))

nbFacts← |{fj ∈ F | (Vi, fj) ∈ S, Θ(ε(fj)) 6= 0}|
Θ(ε(Vi))←

posFacts+ negFacts

nbFacts
end for

until convergence
return Θ.
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positive for the best fact and at least slightly negative for the other facts. Note that we
assume that the views contain the correct answer for each query; this is not always the
case in practice. We discuss this issue further in Section 5.

Remark. Even though 2-Estimates and 3-Estimates are based on valid estimates,
we do not know whether the fixpoint computation is guaranteed to converge to the best
(in mathematical terms) estimates of the dataset and the errors. In a more classical
manner, we have been collaborating intensively with a team of statisticians, to study an
Expectation-Maximization (EM) algorithm [6] to the corroboration problem. From our
current understanding, the situation is as follows. EM or refinements like ECM suffer
from an exponential blowup. The reasons are the discreteness of the decision (true/false)
and the non-linearity of the model. A linear model is not well adapted to the situations of
interest. We have carried out the formal computation of the expectation of truth values of
facts and trustworthiness of sources, with respect to the observations of the model. Our
conclusion were that for the system of equations we obtained, classical gradient-like or
simulated annealing methods are not really adapted, especially because of the discreteness
of the parameters. The best hope would be to use probabilistic estimations based on
biased Monte Carlo techniques. A main issue that we found is that of choosing the right
bias avoiding the standard risk of overfitting. This work is on-going. In any case, these
techniques would probably be more costly that the algorithms we presented and that
already produce good results.

4 Experiments
We conducted experiments to test the precision of the algorithms for corroboration
presented in the previous section on two kinds of datasets: different instances of a highly
configurable synthetic dataset, and a variety of real-world datasets. This variety of
datasets demonstrates the improvements we obtain over the Voting and Counting
baselines when using our fixpoint algorithms, and in which context these improvements
occur.

The algorithms presented in Section 3 and the synthetic data generator discussed
in Section 4 have been implemented in Java. All datasets used in this paper, as
well as the implementation of the various methods, are freely available from http:
//datacorrob.gforge.inria.fr/.

Measures. We use a number of different quality measures to compare the prediction of
the different algorithms. A first measure is the global precision of prediction, i.e., the
ratio of facts wrongly predicted among all facts. Though interesting to get quickly a
general idea of the quality of our methods, this measure does not give a full view of the
nature of the differences between methods.

The estimated truth values of facts by most of our methods is given through a score
Θ(W (fj)), which can be seen as the confidence we have in the prediction that the fact
is true. To show the differences between methods in this respect, we can plot (in the
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case of a synthetic dataset where we have this information) this confidence against the
correctness of the fact, that is, 1− ε(fj)× avgVi ε(Vi).

Similarly, the estimated trustworthiness of views Θ(ε(Vi)) can be compared to the
actual correctness of the view, computed as 1− ε(Vi)× avgfj ε(fj).

Finally, an interesting way to plot the quality of the prediction is through a precision-
recall graph, as done when evaluating search engine results in information retrieval [12].
Specifically, we plot the recall-at-k (ratio of true facts among all true facts in the k facts
with the highest estimated truth value) against the precision-at-k (ratio of true facts
among the k facts with the highest estimated truth value).

Synthetic Dataset. Our initial experiments were carried out on a synthetic dataset, in
order to test our algorithms on a broad scale of situations, with a precise hold on the
parameters. We use the following procedure to generate the synthetic dataset, extending
the probabilistic data model mentioned in Section 2.

We define two sets F = {f1 . . . fn} and V = {V1 . . . Vm} and we fix the following
parameters:

• α, the ratio of true facts among all facts;

• ε : F ∪ V → [0, 1], the error factor for facts and sources;

• ϕ+,F ∪ V → [0, 1] and ϕ− : F ∪ V → [0, 1], the ignorance factors for positive and
negative statements, respectively.

We then randomly select for each fact W (f) = T or W (f) = F with probability α and
(1− α) respectively. The view Vi (ignoring some facts and making errors) is obtained as
follows:

error For each fact fj , we randomly set b(Vi, fj) = W (fj) with probability (1−ε(Vi)ε(fj))
and we make a mistake, i.e., set b(Vi, fj) = ¬W (fj), with probability ε(Vi)ε(fj).

ignorance Then we possibly ignore this information, i.e., we set Vi(fj) to undetermined:
• with probability ϕ+(Vi)ϕ+(fj) if b(Vi, fj) = T .
• with probability ϕ−(Vi)ϕ−(fj) if b(Vi, fj) = F .

Otherwise Vi(fj) is set to b(Vi, fj)

We ran some experiments on some large synthetic dataset (up to 10,000 facts, 10,000
sources, 5,000,000 statements). As expected, our algorithms are roughly linear in the
number of statements. In such conditions, the execution time on a desktop PC is of the
order of seconds. The main limitation comes from memory usage, because the current
version of our program stores the full set of views in memory. It could easily be adapted
to work on disk. Besides, the computations are highly parallelizable. Observe also that,
in general, each estimation of parameters for views or facts uses only a small subset of
the full set of statements.
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Table 1: Global precision on the synthetic dataset

Precision (%) Precision (%)
(typical) (no ignorance)

Voting 84.5 80.2
Counting 84.6 83.3
2-Estimates 88.1 85.1
Cosine 88.2 85.5
3-Estimates 91.5 99.9

We next report on smaller-scale experiments obtained for a synthetic dataset of 1,000
facts and 1,000 sources to analyze the behavior of the algorithms in more details. We
use a distribution (see Figure 1) of the probability of errors for facts and sources in
three groups for facts (easy, medium and hard) and three for sources (expert, medium,
random). Note that the probability of errors for facts is obtained by multiplying the error
factor of a fact by the average error factor of sources, and reciprocally for the probability
of errors for sources. The average probability of ignorance for a source is of 70%; it
ranges between 60 and 80%.
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Figure 1: Distribution of errors on the synthetic dataset

The results are shown in Table 1 and Figures 2 to 4. They are fairly typical of the
results obtained by varying the parameters. The first data column of Table 1 shows
the global precision of the various methods for this dataset. Observe first that the two
baselines already perform quite well, with a precision of 85%. Despite this, we can see
a significant improvement using 2-Estimates and Cosine, and a larger improvement
still with 3-Estimates (observe that the number of errors is divided by two), with a
global precision of 91%. The second data column of Table 1 shows what happens when
the ignorance factor is set to 0, meaning that each source expresses an opinion on each
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fact (all other parameters kept unchanged). Many more relevant items of information
are present, but this also means much more noise. The performance of the methods does
not change much, except for 3-Estimates, which is nearly perfect in this case. In the
following, we only consider the case of a non-zero ignorance factor.
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Figure 2: Confidence that the fact is true (left: false facts, right: true facts) with respect
to correctness, for the synthetic dataset

Figure 2 shows the confidence on the prediction that the fact is true for the facts
according to their correctness on this dataset. For this figure, we randomly sample a
subset of the facts to improve readability of the point cloud. The first graph concerns
false facts, while the second one is about true facts. On the former, every point in the
upper region of the graph corresponds to a prediction error; on the latter, every point in
the lower region does. Thus, the better a method is, the lower the points are in the top
graph, and the higher they are in the bottom one. Baseline methods are not plotted on
these graphs for readability, but their estimations basically lie on the y = x line: their
predictions basically match the correctness, which means that they perform well only if
the probability of error for a given fact is lower than 0.5.

We can observe three bags of points from left to right, corresponding respectively to
easy, medium or hard false facts in the first graph, and hard, medium or easy true facts
in the second one. We clearly see different behaviors for our three non-baseline methods.
2-Estimates is limited to predict 1 or 0, because of its partly ad hoc normalization. All
the points are consequently on the topmost and bottommost lines of the graph. All the
errors occur on the hard facts. Cosine and 3-Estimates perform both reasonably well,
but 3-Estimates clearly separates better false facts from true facts. The estimations
indeed follow the correctness, since the easy true facts (right on the second graph) get
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a high probability to be true and the easy false facts (left on the first graph) a low
probability to be true, i.e., a high probability to be false. All the errors are once again
made on the hard facts, but the estimations of the probabilities to be true are close to
0.5, showing that the methods assign a higher uncertainty to these facts.
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Figure 3: Trustworthiness of views with respect to correctness, for the synthetic dataset

Figure 3 shows the estimation of the trustworthiness of views, with respect to their
actual correctness. We recognize three bags of points from left to right : random, medium
and expert views. As expected, the estimations follow the correctness of views, since the
expert views get higher trustworthiness than the random ones, whatever the method.
3-Estimates has here an interesting behavior: The trustworthiness of the best views
(dots on the right) is boosted further than with the other two methods (squares and
crosses), while the trustworthiness of views of low quality (dots on the left) is lowered.
This shows that 3-Estimates better assesses the quality of sources.

Finally, Figure 4 shows precision-recall curves for this dataset. These curves may
be interpreted in two different ways. The first one is to compare individual points on
the curves given a fixed recall/precision ratio, that is, a trade-off between these two
conflicting measures (lines y = αx). On these lines, the higher the point, the better the
method. The other one is to compare the area above the curve: The smaller the area, the
better the method. Given these two aspects, this figure confirms the good performance
of Cosine and especially 3-Estimates with respect to the baselines. The relatively bad
quality of 2-Estimates can be explained by the fact that the estimated truth values
given by this method are restricted to 0 and 1, which prevent correctly ordering the best
facts.
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Figure 4: Precision-recall curve for the synthetic dataset

The previously described experiment is a fairly typical example of the behavior of the
various methods on synthetic data, for a large range of values of the parameters. In the
wide range of experiments we performed, we observed in particular the following features:

• Voting and Counting give quite good results already, with often some advantage
for Counting.

• 2-Estimates generally yields good results (though as said above, it is not good at
ordering facts), but is quite unstable and may perform worse than the baselines.

• Cosine is most of the time significantly better than the baselines.

• 3-Estimates consistently yields better results than Cosine.

We next report the results of our algorithms on real-world datasets.

General Knowledge Quiz. This real-world dataset consists of the results of an online
general knowledge quiz1. This (fairly complicated, and sometimes tricky) quiz is formed
of 17 questions with topics ranging from literature to geography and history. For each
question, there are between 4 and 14 possible answers, for a total number of 95 facts.
There is only one correct answer per question, so we are in the presence of functional
dependencies. This quiz was taken 601 times, which corresponds to 601 views. Some
of these views are different trials of the same person. After applying the technique for

1http://www.madore.org/˜david/quizz/quizz1.html
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dealing with functional dependencies presented in Section 3, we obtain a full set of 601
views with 37,170 statements. 18% of them are positive statements, and there are (only)
1− 37,170

601×95 ≈ 35% ignored facts (participants to the quiz could choose not to answer some
questions).

Table 2: Number of errors on the first real dataset
Number of errors Number of errors
(no post-filtering) (with post-filtering)

Voting 11 6
Counting 12 6
2-Estimates 6 6
Cosine 7 6
3-Estimates 9 0

Table 2 shows the total number of errors obtained by the various methods on this
dataset, without and with the post-filtering step described in Section 3. Without post-
filtering, all errors are false negatives, i.e., true facts predicted false because the confidence
is not high enough. The post-filtering step guarantees that this does not happen. Note
that 6 errors after the post-filtering step means only 3 questions with an erroneous answer,
since both the false positive and the false negative facts are counted as errors for each of
these questions.

Our three proposed methods systematically perform better or as good as the baselines.
Besides, despite the large amount of available information, the baseline methods (as well
as Cosine and 2-Estimates) are not able to determine all true facts correctly, whereas
3-Estimates (with post-filtering, which obviously makes the problem easier) is perfect
on this dataset, which is a notable achievement.

Other Real-World Datasets. We finally briefly report on experiments conducted on
two other real-world datasets, a sixth-grade biology test, and results from Web search
engines. On the biology test, the results of the algorithms are very close, with or without
functional dependencies. We think that our more complex methods do not perform
better than the baselines because the distribution of the accuracy of students is hard to
estimate, errors are correlated between students, and there are also correlations between
facts. The Web search data aims to illustrate semantic Web applications. The data are
a rough extraction of the summaries on the first-answer page of 13 web search engines
for 50 keywords query. The algorithms again perform similarly to the baselines. An
explanation is that search engines have very similar performance (for this task) and there
is again a lot of correlation on the errors.
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5 Conclusion
Previous works have considered corroborative evidence to improve trust in query results [3,
11, 7, 17, 18] in a variety of scenarios. Several Question Answering systems, such
as [3, 11, 7] consider the frequency of an extracted answer as a measure of answer quality.
However, these techniques rely mostly on redundancy of information and do not consider
the trust associated with each extraction source to score extracted answers. Recent
work has studied the impact of source trust in Web question answering [17, 18]; both
projects provide ad hoc mechanisms to assess the trust associated with Web pages, and
use this trust information to aggregate answer scores. TruthFinder [18] goes one step
further by aiming to identify high-quality sources in addition to true facts. While the
goal of TruthFinder is similar to ours, we use a complete probabilistic model for data
corroboration that can be used for a variety of scenarios.

Several theoretical work have focused on estimating the probability of an event in
the presence of conflicting information. Osherson and Vardi [15] study the problem of
inconsistent outcomes when aggregating logic statements from multiple sources. Their
goal is to produce a logically coherent result. Work in subjective logic and trust manage-
ment [10] consider the issue of trust propagation from one source to another, in a model
where the sources are not independent.

Our work on data corroboration shares some interesting ties with work on uncertainty
and lineage [2]. Lineage information could help improve the corroboration by giving
information on possible correlation between sources. An interesting extension to our
model would be to take into account uncertainty, i.e., the confidence each source itself
has over the data it reports.

We are also interested in exploring the relationship between data corroboration and
data prediction in a model where the true value of future facts is not known. By assigning
trust values to sources based on past behavior we can weight predictions or beliefs given
by the sources. This is tightly connected to work on prediction markets [16].

As previously mentioned, a goal of this paper was to set the bases for a systematic
study of trust-based corroboration of inconsistent views. As we showed, using voting (or
counting) for data corroboration works in general rather well. Our methods undoubtedly
improve the precision of the results. Nevertheless, the previous discussion clearly points
to different directions for further improvements. To conclude this section, we discuss
some directions for future research.

First, when considering trust in a social network folksonomy, we may want to give a
priori more credits to our friends beliefs than to others (but still evaluate how trustworthy
they are). Similarly, one may want to specify beliefs in certain site such as the Nasa
database for space information. It is easy to introduce bias in the trust of some views.
Similarly, one may want to bias the trust we have in some facts. At the limits, we can
take advantage of a database of verified facts. It is relatively straightforward to use it
to bias trust assessment. Indeed, one could even consider using only these facts as a
learning set to fully assess the quality of the sources. Such a standard machine learning
technique would often be inappropriate in a Web setting where even if the database of
known facts is available, it is very small compared to the size of the Web and does not
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cover all its facets. The use of a known database also suggests coupling corroboration
techniques with knowledge bases (e.g., to avoid confusing a birth date with the date of
an election as US president) or an ontology (to corroborate auburn and red hair).

Then, we showed that our technique is very well adapted to find an answer when we
know there is exactly one. This should be improved in two directions. First, we should
adapt it to the case of multiple answers, e.g., phone numbers. In such cases, we could
use some a priori distribution of the number of answers. Also we have to make it robust
when we know the question has an answer but this answer is missing from the dataset.
In some contexts, forcing the dataset to contain a correct answer to a particular question
introduces undesirable effects we would like to avoid.

Our technique is based on assessing the quality of sources in a global manner. However,
in the same way that humans are typically experts in specific domains only, sources are
specialized. It would be interesting to assess the quality of a source (error and ignorance)
in specific domains. This will allow better selecting sources given a specific query. Note
that symmetrically (and less importantly), the same fact may have different truth values
in different domains. For instance, “there are red jaguars” is true in the car domain but
not in biology.

Another aspect of our technique is that it is assuming independence of the facts and
of the sources. This assumption is typically defeated in practice, which may be a cause
of a degradation of the quality of results.

Errors can then come from noisy duplication or delayed updates. An interesting
direction to consider, especially when dealing with numerical values, is to consider
distance between values. For instance, a fact that is stating that the age of a person is 40
is clearly contradicting that the person is 5, but to some extent, corroborating a source
that says she is 39. This should be taken into consideration.

Changes in the real world also bring a challenge to corroboration since many sources may
believe that an outdated information is correct. Since temporal data (e.g., timestamps
of the facts) are rarely available, one could try to analyze the variations of the truth
values in time and select a fact with a positive derivative rather than some contradicting
fact that is apparently “more true” but has a negative derivative. This may also lead
to evaluating a trust in the source that would depend on the time of the fact (if the
fact is an event in time): one source (an encyclopedia) may be excellent historically and
another one, best adapted to timely information (a newspaper).
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