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Motivating Example

What are the capital cities of European countries?
France Italy Poland Romania Hungary

Alice Paris Rome Warsaw Bucharest Budapest
Bob ? Rome Warsaw Bucharest Budapest
Charlie Paris Rome Katowice Bucharest Budapest
David Paris Rome Bratislava Budapest Sofia
Eve Paris Florence Warsaw Budapest Sofia
Fred Rome ? ? Budapest Sofia
George Rome ? ? ? Sofia
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Voting

Information: redundance
France Italy Poland Romania Hungary

Alice Paris Rome Warsaw Bucharest Budapest
Bob ? Rome Warsaw Bucharest Budapest
Charlie Paris Rome Katowice Bucharest Budapest
David Paris Rome Bratislava Budapest Sofia
Eve Paris Florence Warsaw Budapest Sofia
Fred Rome ? ? Budapest Sofia
George Rome ? ? ? Sofia

Frequence P. 0.67 R. 0.80 W. 0.60 Buch. 0.50 Bud. 0.43
R. 0.33 F. 0.20 K. 0.20 Bud. 0.50 S. 0.57

B. 0.20
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Evaluating Trustworthiness of Sources

Information: redundance, trustworthiness of sources (= average
frequence of predicted correctness)

Decision Paris Rome Warsaw Bucharest Budapest
France Italy Poland Romania Hungary Trust

Alice Paris Rome Warsaw Bucharest Budapest 0.60
Bob ? Rome Warsaw Bucharest Budapest 0.58
Charlie Paris Rome Katowice Bucharest Budapest 0.52
David Paris Rome Bratislava Budapest Sofia 0.55
Eve Paris Florence Warsaw Budapest Sofia 0.51
Fred Rome ? ? Budapest Sofia 0.47
George Rome ? ? ? Sofia 0.45

Frequence P. 0.70 R. 0.82 W. 0.61 Buch. 0.53 Bud. 0.46
weighted R. 0.30 F. 0.18 K. 0.19 Bud. 0.47 S. 0.54
by trust B 0.20
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Iterative Fixpoint Computation

Information: redundance, trustworthiness of sources with iterative
fixpoint computation

France Italy Poland Romania Hungary Trust

Alice Paris Rome Warsaw Bucharest Budapest 0.65
Bob ? Rome Warsaw Bucharest Budapest 0.63
Charlie Paris Rome Katowice Bucharest Budapest 0.57
David Paris Rome Bratislava Budapest Sofia 0.54
Eve Paris Florence Warsaw Budapest Sofia 0.49
Fred Rome ? ? Budapest Sofia 0.39
George Rome ? ? ? Sofia 0.37

Frequence P. 0.75 R. 0.83 W. 0.62 Buch. 0.57 Bud. 0.51
weighted R. 0.25 F. 0.17 K. 0.20 Bud. 0.43 S. 0.49
by trust B 0.19
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Context and problem

• Context:
• Set of sources stating facts
• (Possible) functional dependencies between facts
• Fully unsupervised setting: we do not assume any information

on the truth values of facts or the inherent trust of sources
• Problem: determine which facts are true and which facts are

false
• Real world applications: query answering, source selection,

data quality assessment on the web, making good use of the
wisdom of crowds

Corroboration A. Galland BDA 2009 Introduction 6/28



Outline

Introduction

Model

Algorithms

Experiments

Conclusion

Corroboration A. Galland BDA 2009 Introduction 7/28



Outline

Introduction

Model

Algorithms

Experiments

Conclusion

Corroboration A. Galland BDA 2009 Model 8/28



General Model

• Set of facts F = ff1:::fng
• Examples: “Paris is capital of France”, “Rome is capital of

France”, “Rome is capital of Italy”
• Set of views (= sources) V = fV1:::Vmg, where a view is a

partial mapping from F to {T, F}
• Example:
: “Paris is capital of France” ^ “Rome is capital of France”

• Objective: find the most likely real world W given V where
the real world is a total mapping from F to {T, F}

• Example:
“Paris is capital of France” ^ : “Rome is capital of France” ^

“Rome is capital of Italy” ^ ...
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Generative Probabilistic Model

Vi , fj

?

'(Vi )'(fj )
1� '(Vi )'(fj )

:W(fj)

"(Vi )"(fj )

W(fj)

1� "(Vi )"(fj )

• '(Vi)'(fj): probability that Vi “forgets” fj
• "(Vi)"(fj): probability that Vi “makes an error” on fj
• Number of parameters: n + 2(n + m)

• Size of data: '̃nm with '̃ the average forget rate
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Obvious Approach

• Method: use this generative model to find the most likely
parameters given the data

• Inverse the generative model to compute the probability of a
set of parameters given the data

• Not practically applicable:
• Non-linearity of the model and boolean parameter W(fj)
) equations for inversing the generative model very complex

• Large number of parameters (n and m can both be quite large)
) Any exponential technique unpractical

) Heuristic fix-point algorithms
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Baselines

Counting (does not look at negative statements, popularity)
8><
>:

T if jfVi : Vi(fj) = Tgj
maxf jfVi : Vi(f ) = Tgj > �

F otherwise

Voting (adapted only with negative statements)
8><
>:

T if jfVi : Vi(fj) = Tgj
jfVi : Vi(fj) = T _ Vi(fj) = Fgj > 0:5

F otherwise

TruthFinder [YHY07]: heuristic fix-point method from the
literature
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Fix-Point Algorithms

1 Estimate the truth of facts (e.g., with voting)
2 Based on that, estimate the error rates of sources
3 Based on that, refine the estimation for the facts
4 Based on that, refine the estimation for the sources
5 . . .

Iterate until a fix-point is reached (and cross your fingers it
converges!).
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Cosine

• The truth of a fact is what views state weighted by how error
prone they are

• The error of a view is the correlation (= cosine similarity)
between its statement of facts and the predicted truth of
these facts
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2-Estimates

• Assume all the fact have the same difficulty: "(fj) = 1
• Statistical estimation of W(fj) given "(Vi) and observations
• Statistical estimation of "(Vi) given W(fj) and observations
• Quite instable ) tricky normalization
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3-Estimates

• Similar in spirit to 2-Estimates but estimation of 3
parameters:

• truth value of facts
• error rate or trustworthiness of sources
• hardness of facts

• Also needs tricky normalization
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Functional dependencies

• So far, the models and algorithms are about positive and
negative statements, without correlation between facts

• How to deal with functional dependencies (e.g., capital cities)?
pre-filtering: When a view states a value, all other values

governed by this FD are considered stated false.
If I say that Paris is the capital of France, then I
say that neither Rome nor Lyon nor . . . is the
capital of France.

post-filtering: Choose the best answer for a given FD.
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Datasets

• Synthetic dataset: large scale and higly customizable
• Real-world datasets:

• General-knowledge quiz
• Biology 6th-grade test
• Search-engines results
• Hubdub
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General-Knowledge Quiz (1/2)

http://www.madore.org/~david/quizz/quizz1.html

• 17 questions, 4 to 14 answers, 601 participants
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General-Knowledge Quiz (2/2)

Number of errors Number of errors
(no post-filtering) (with post-filtering)

Voting 11 6
Counting 12 6
TruthFinder - -
2-Estimates 6 6
Cosine 7 6
3-Estimates 9 0
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It does not always work!

No magic!
• Does not take into account dependencies between sources
• Example: integration of search engine results
• Usually, when it “does not work”, 3-Estimates gives results

comparable to the baseline, Cosine is not bad, 2-Estimates is
very unstable
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In brief

• One of the first works in truth discovery among disagreeing
sources

• Collection of fix-point methods, one of them (3-Estimates)
performing remarkably and regularly well

• We believe this is an important problem, we do not claim we
have solved it completely

• Cool real-world applications!

All code and datasets available from
http://datacorrob.gforge.inria.fr/
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Merci.

Foundations of Web data management
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Perspectives

• Exploiting dependencies between sources [DBES09]
• Numerical values (1:77m and 1:78m cannot be seen as two

completely contradictory statements for a height)
• No clear functional dependencies, but a limited number of

values for a given object (e.g., phone numbers)
• Pre-existing trust, e.g., in a social network
• Clustering of facts, each source being trustworthy for a given

field
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