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Nous nous intéressons dans cet article à l’exploration d’un graphe tel celui du Web ou
d’un réseau social dans un contexte où les nœuds (et les arêtes qui en sont issues) sont
découverts un à un, et où le nombre total de nœuds que l’on peut explorer est contraint.
Le but est d’optimiser un score global du sous-graphe découvert, fonction monotone
de scores élémentaires sur chaque nœud. Ce problème se pose en particulier quand on
souhaite collecter les pages du Web correspondant à un sujet donné ou quand on utilise
l’API du site d’un réseau social tel Twitter pour constituer un jeu de données centré
sur d’un thème. Nous présentons une abstraction de ce problème faisant appel à deux
composants principaux : une stratégie d’exploration et un estimateur du score des nœuds
de la frontière du graphe. Nous montrons qu’une stratégie gloutonne est suffisante en
pratique, et qu’il est possible de s’adapter aux caractéristiques de différents graphes en
utilisant des estimateurs qui apprennent automatiquement les caractéristiques prédisant
le mieux les scores des nœuds. Ces techniques sont appliquées à des des graphes réels
issus de Wikipedia ou de Twitter.

1 Introduction

Focused crawling consists in crawling resources that are considered as relevant from a specific point
of view. Those resources can be the blog posts related to the 2013 Bulgarian parliamentary election,
for an archivist from the National Library of the Republic of Bulgaria, or the tweets talking about
music in a social network.

To have good focused crawling systems is important and is difficult. It is important because the
volume of the resources we can access is booming, whether it is Web pages, data from Web services,
or data from any digital media (e.g., TV, radio). Data access is also generally becoming easier,
thanks to bigger bandwidth and better hardware. However, access to resources is still not free
and some of them are still very expensive, for instance with limitations on Web service APIs (e.g.,
Twitter only allows a fixed number of requests in a 15-minute period on its various APIs [26]).

It is also difficult as it consists in expanding a subset of resources with an estimation as good as
possible of the quality of the new resources crawled. This estimation is often very difficult to make
given the quality and quantity of information provided.
In this work, we propose a simple and convenient abstraction for focused crawling, and then

propose observations and systems adaptable to various use cases.
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We start with a wide formalization of the problem in Section 2 that, unlike the other works on
focused crawling so far, can fit various settings, such as a web page crawl as well as a social network
crawl through API accesses.

In Section 3, we introduce the main high-level algorithm for focused crawling and its separation
of concerns. In the next section, Section 4, we discuss the crawler steering in a scenario where we
would know the frontier. In Section 5, we study how to estimate the quality of the nodes at the
frontier. We then investigate how we can combine a steering strategy and an estimator in order to
achieve the most performing crawler. Just before concluding, we detail the related works.

2 Model and Problem Definition

In this section, we present an abstraction of the focused crawling problem in the general setting of
node- and edge-weighted graphs. We start with some formal definitions, then move to the problem
definition before introducing some use cases that go beyond Web crawling.

2.1 Formal Definitions

Our general setting is that of a directed graph 𝐺 = (𝑉,𝐸) where 𝑉 is the set of vertices and 𝐸 ⊆ 𝑉 2

the set of edges, with nonnegative weights on both edges and nodes. Nodes of the graph 𝐺 stand
for resources that we want to crawl (e.g., Web pages), edges for hyperlinks between resources (e.g.,
Web links), node weights for scores of relevance of resources (e.g., how much the Web page is in the
scope of the current focused crawl), and edge weights for a priori indications of the relevance of the
target node (e.g., how much the hyperlink occurs in a context that is in the scope of the current
focused crawl).
We will need the notion of frontier of a graph, given a subset of its vertices:

Definition 1. Let 𝐺 = (𝑉,𝐸) be a graph and 𝑉 ′ a subset of 𝑉 . The frontier of 𝐺 induced by 𝑉 ′,
denoted Frontier𝐺 (𝑉 ′), is the subset of 𝑉 defined by:

Frontier𝐺
(︀
𝑉 ′)︀ = {︀

𝑣 ∈ 𝑉 ∖ 𝑉 ′ | ∃𝑣′ ∈ 𝑉 ′, (𝑣′, 𝑣) ∈ 𝐸
}︀
.

The notion of frontier is used to describe what constitutes a valid crawl sequence:

Definition 2. Let 𝐺 = (𝑉,𝐸) be a graph and 𝑉0 a non-empty subset of 𝑉 . A crawl sequence
starting from 𝑉0 in 𝐺 is a non-empty sequence (𝑣1 . . . 𝑣𝑛) ∈ 𝑉 𝑛 of vertices such that for all 1 6 𝑖 6 𝑛,
𝑣𝑖 ∈ Frontier𝐺 (𝑉0 ∪ {𝑣1 . . . 𝑣𝑖−1}).

A crawl sequence describes how we progressively construct a crawled subgraph by adding nodes
from the frontier, one at a time.
We now explain what we mean by edge weights:

Definition 3. Given a graph 𝐺 = (𝑉,𝐸), an edge scoring function on G is a function 𝛼 : 𝐸 → Q+.
It assigns a score (or weight) to every edge in the graph.

For node weights, instead of a function that maps nodes to scores, we provide more generally a
function that maps node sets to scores:

Definition 4. Given a graph 𝐺 = (𝑉,𝐸), a subset scoring function is a function 𝛽 : 2𝑉 → R+. It
assigns a score to a subset of 𝑉 . For convenience, ∀𝑣 ∈ 𝑉, 𝛽({𝑣}) — abusively noted 𝛽(𝑣) — is
called the weight of the node.

If one is given a node scoring function, it is easy to construct a relevant subset scoring function –
for example, take the subset weights to be the sum of node weights of the subset, or the count of
nodes with a positive weights. These two example exhibit a monotonicity property that is critical in
the subset scoring functions we consider, allowing incremental computation of scores of subgraphs.
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Definition 5. A subset scoring function 𝛽 is monotonically increasing if and only if:

∀(𝑉 ′, 𝑉 ′′) ∈ (2𝑉 )2, 𝑉 ′ ⊆ 𝑉 ′′ =⇒ 𝛽(𝑉 ′) 6 𝛽(𝑉 ′′).

In a graph with a (monotonically increasing) subset scoring function, our objective is simply to
find an optimal crawling sequence of a given length, in the following sense:

Definition 6. Given 𝐺 = (𝑉,𝐸), 𝛽 a monotonically increasing subset scoring function on 𝐺,
𝑉0 ⊆ 𝑉 , and 𝑛 a positive integer called the crawl budget, we define the optimal crawl sequences of
length 𝑛 starting from 𝑉0 as:

argmax
(𝑣1...𝑣𝑛)

crawl sequence from 𝑉0

𝛽 (𝑉0 ∪ {𝑣1 . . . 𝑣𝑛})

The unique 𝛽 value of all the optimal crawl sequences is the optimal score.

Note that 𝛼, the edge scoring function, does not appear in this definition. Though edge weights
take no part in our problem definition, they will be used as proxies for unknown node weights in
the crawling algorithms we present further on.

The crawl budget is typically implied by rate limitations on the number of crawling steps we are
able to perform, together with a total time allowed for the full crawl. To be more precise, assume
that we are allowed 𝑘 requests for each period of duration 𝑑 (on some of Twitter APIs [26], for
instance, 𝑘 = 300 and 𝑑 is a 15-minute period), and a total crawling time of 𝑇 (e.g., one day or one
week). Then 𝑛 can be computed as 𝑘𝑇

𝑑 .
In practice, we will see that finding an optimal crawling sequence is impractical for the following

reasons:
1. In concrete scenarios, we do not have full knowledge of the whole graph, but we discover it as

we crawl, online.
2. Even assuming full knowledge, determining an optimal sequence (or, even more simply,

determining the optimal score) is intractable (see Section 4.3).
3. An algorithm for determining a crawling sequence has to respect crawling rate limitations:

every period of duration 𝑑, it should provide 𝑘 next nodes to crawl, in order to make maximal
use of the rate limitation.

Consequently, we will aim at finding a crawl sequence with as high a score as possible, rather than
an optimal one, and that conforms to the rate limitations.

2.2 General Use Cases

We now explain how, for a variety of problems, 𝑉 , 𝐸, 𝛼, 𝛽, 𝑉0, and 𝑛 can be instantiated. The goal
is to show that our abstract model covers different use cases, beyond classical focused Web crawling.
To simplify, in this section we define 𝛽 on individual nodes and assume that some monotone function
(e.g., sum) is used to obtain a subset scoring function.

Focused Web crawling [7]. This is the classical focused crawling scenario: find, while crawling,
Web pages matching as best as possible a keyword query.

𝑉 is the set of Web pages;
𝐸 is the set of hyperlinks;
𝛼 is the relevance of the anchor text of the hyperlinks to the focusing keywords;
𝛽 is the relevance of pages with respect to the focusing keywords (e.g., as mesured by tf–idf);
𝑉0 is an initial seed list of Web pages, e.g., manually designed;
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𝑛 is the number of HTTP requests our bandwidth allows for (e.g., 𝑘 = 1,000 requests per 𝑑 of
1 second, spread over the thousand processing queues of the crawler; if 𝑇 is one week,
𝑛 ≈ 600,000,000).

Topic-centered Twitter user crawl [16]. Here, the goal is to find the Twitter users that are the
most relevant with respect to a keyword query, i.e., whose tweets are collectively the most
relevant.

𝑉 is the set of Twitter users;
𝐸 is the tweet mentioning relation: (𝑢, 𝑣) ∈ 𝐸 if a tweet of user 𝑢 mentions one of user 𝑣;
𝛼 is the relevance of tweets in the communication history of the users;
𝛽 is the relevance of a user’s tweets with respect to the focusing keywords;
𝑉0 is an inital seed list of users, e.g., obtained using the Twitter Search API for this given

query;
𝑛 is the number of statuses/user timeline requests Twitter’s API allows us to perform –

accounting for a rate limitation of 𝑘 = 300 requests per 𝑑 of 15 minutes [26], and 𝑇 being
one week of crawl, it means for instance 𝑛 ≈ 200,000.

Deep Web siphoning [3] through a keyword search interface. The goal is to siphon an entire deep
Web database, accessible beyond an HTML form, using keyword queries through the form,
discovering new keywords in response pages in the query.

𝑉 is the set of keywords;
𝐸 is such that (𝑢, 𝑣) ∈ 𝐸 if the keyword 𝑣 appears in the response page obtained by submitting

the form with keyword 𝑢;
𝛼 is the number of occurrences of the keyword 𝑣 in result pages for keyword 𝑢;
𝛽 is the number of records returned for keyword 𝑎;
𝑉0 is an initial small dictionary of keywords;
𝑛 is the number of HTTP requests crawler politeness constraints allow (say, 600,000 for a

week of crawling if one second between requests in an acceptable delay).

Beyond these classical crawling examples where the crawling entity is centralized, there are also
cases where the crawling process is distributed:

Gossiping peer-to-peer search [2] in, say, a file sharing application. One peer issues a query and
this query is propagated through gossiping to neighboring peers.

𝑉 is the set of peers;
𝐸 is the peer-to-peer overlay network;
𝛼 is the relevance of the cached information about a remote peer to the query;
𝛽 is the relevance of a peer’s data to the query;
𝑉0 is the peer issuing the query;
𝑛 is the total number of propagation steps allowed as prevention against flooding over the

network (e.g., one tenth of the total number of nodes of the network, say 𝑛 = 10,000).

Using a real-world social network to answer a query [25, 13]. This is a classical sociological ex-
periment where an individual is asked to use its direct social network to, e.g., forward a
message to another person of the network that he is not directly connected to.

𝑉 is the set of individuals;
𝐸 is the friendship/acquaintance network;
𝛼 is the assessment of an individual of her acquaintance’s expertise on a query;
𝛽 is the self-assessment of an individual of her expertise on a query;
𝑉0 is the user the query starts from;
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𝑛 is the collective effort, in terms of requests made from an individual to another, that we allow
for a given query (say, we stop the experiment when 1,000 individuals have contributed).

These examples are from very different settings: resources can be Web pages, users, machines; in
some cases, a centralized entity governs the crawl, in others the crawl is distributed; the budget can
be set for prevention of flooding or as a consequence of a time limit; etc. Yet, all can be seen as
instances of our general problem of finding optimal (or good enough) valid crawl sequences starting
from a given set of nodes.

We claim that our general framework, and the algorithms we present in the next few sections, can
accordingly be used in a wide range of scenarios and are a basis for building efficient systems that
deal with one of the cases above. Obviously, specific settings may also require specific adjustments;
in particular, we won’t mention further the problem of managing distributed crawls.

2.3 Experimental Use Cases

We focus in this paper on the first two use cases above (focused Web crawling and topic-centered
Twitter user crawl), experimenting over five different datasets with different characteristics in the
goal of testing the robustness of different approaches to budget-constrained graph exploration. All
datasets are available upon request.

Instead of raw occurrence scores for nodes and edges, we use a logarithm smoothening, defined by

the function: 𝑓 : 𝑥 ↦→

{︃
1 + log(𝑥) if 𝑥 > 0

0 otherwise
; the use of 𝑓 is detailed further. We also experimented

with variations of the scoring mechanism with little impact on the results.

Wikipedia datasets To simulate a Web crawling scenario, we build two different datasets from
the content of the French Wikipedia1. The nodes are Wikipedia pages, the edges links across pages
(hence, the obtained graph is an induced subgraph of the Web graph). Node and edge scores depend
on a keyword query (we use bretagne in one dataset, to obtain a relatively small and focused set of
nodes with positive score, france in the other). More precisely, if 𝑥 is the number of occurrences
of the keyword in a page 𝑢, 𝛽(𝑥) = 𝑓(𝑥); if 𝑦 is the number of occurrences of the keyword in a
100-character window around a hyperlink from 𝑢 to 𝑣, 𝛼(𝑢, 𝑣) = 𝑓(𝑦).

Twitter datasets We build three graph exploration datasets out of the SNAP Twitter data [27]2,
which contains an estimated 20–30% of all tweets published between June and December 2009,
around 476 million tweets for 17 million users, with 93 million mentioning links across tweets
(mentions include tweets that reply to a user, retweets, and other cases where a user cite another
one in her tweet). Our Twitter datasets are also based on a keyword query (respectively, happy,
jazz, weird). Nodes correspond to users, edges to mentions between tweets of this user. Again, if 𝑥
is the number of occurrence of a keyword in the tweets of a given user 𝑢, 𝛽(𝑥) = 𝑓(𝑥); if 𝑦 is the
number of occurrences of the keyword in the tweets of user 𝑢 mentioning user 𝑣, 𝛼(𝑦) = 𝑓(𝑦).

For both datasets, we experiment with various ways of combining node scoring function into node
subset scoring functions, but mostly use sum, unless otherwise specified.
Statistics of all five datasets are detailed in Table 1. In particular we mention the number of

nodes and edges with non-zero score. Observe the diversity of sparsity in the different datasets:
jazz or bretagne have a very small portion of non-zero nodes among those of the original graph,
while france and happy cover a much more significant amount of nodes, with weird somewhere in
between.
1February 2013 dump downloaded from http://dumps.wikimedia.org/backup-index.html
2This dataset was formerly available at http://snap.stanford.edu/data/twitter7.html. As per Twitter’s request,
it is no longer publicly available.
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Table 1: Dataset statistics

Origin Keyword Non-zero nodes Non-zero edges

Wikipedia bretagne 42,923 163,017
france 2,162,969 2,410,783

happy 1,860,131 1,898,015
Twitter jazz 105,240 50,629

weird 541,937 342,153

3 High-Level Algorithm

We present a high-level view of a generic algorithm for determining a crawl sequence that aims to
be as close as possible to the optimal one; this algorithm depends on two main components: an
estimator that computes an estimated score for all nodes of the frontier and a strategy that, given
this estimated score, picks the next node(s) to crawl. Let us first see these two components as
black boxes. Potential strategies and estimators will be discussed and compared in, respectively,
Sections 4 and 5.

Algorithm 1 describes this algorithm, it takes as input an initial seed graph 𝐺0 (i.e., the subgraph
of the full graph induced by a set of seed nodes 𝑉0), a budget 𝑛, and a refresh rate 𝑟. It returns a
crawl sequence 𝑉 whose score is chosen as close as possible to the optimal one.

The need for a refresh rate comes from situations where estimations can take a long time compared
to other steps. We might then want to refresh our estimation not at each step but every 𝑟 steps, 𝑟
is the refresh rate.

Algorithm 1: Main crawling algorithm whose behavior depends on two black boxes: strategy
and estimator
input : a seed graph 𝐺0, a budget 𝑛, a batch size 𝑘
output : a crawl sequence 𝑉

1 𝑉 ← ();
2 𝐺′ ← 𝐺0;
3 for 𝑖← 1 to 𝑛

𝑟 do
4 frontier← extractFrontier(𝐺′);
5 scoredFrontier← estimator.scoreFrontier(𝐺′, frontier);
6 NodeSequence← strategy.getNextNodes(scoredFrontier, 𝑟);
7 𝑉 ← (𝑉,NodeSequence);
8 for 𝑢 in NodeSequence do
9 𝐺′ ← 𝐺′ ∪ crawlNode(𝑢);

10 return 𝑉

The algorithm maintains a crawled subgraph 𝐺′, initialized to 𝐺0 (line 2) and updated as more
nodes are crawled (lines 8–9). The main loop of the crawl (lines 3–9) iterates over 𝑛

𝑘 batches of
size 𝑘. First, the frontier is extracted from the crawled graph (line 4) – in reality, the frontier is
maintained from one iteration to another to improve efficiency. Our first black box, the estimator,
is then used to score the frontier: assign a predicted score to all nodes of the frontier. For that
purpose, the estimator has access to the whole crawled graph that can serve as a training set. Some
of the estimators we present in Section 5 indeed make use of such a training. The next line calls the
strategy black box to get the next 𝑘 nodes to crawl according to the scored frontier – as we explain
in Section 4 we can in practice be greedy and take the 𝑘 nodes with the highest score. The node
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sequence is updated accordingly (line 7).
Again, the pseudo-code is a simplified view of our algorithm that does not include any of the

optimizations we use to avoid, e.g., retraining the estimator at each step on the whole crawled
graph. We briefly discuss our implementation in Section 6.1.

With this generic crawling algorithm in mind, we now only need to specify which crawling strategy
to use (Section 4) and which estimators yield best results (Section 5). In Section 4 we also investigate
the impact of 𝑘 on the performance of the algorithm. We finally put everything together and test
the full system in Section 6.

4 Strategies: Steering the Crawler

This section gives us some intuition on the strategy black box, i.e., on how to steer the crawler in
the graph. To perfectly decouple the analysis of the strategy and of the estimator used, we suppose
in this section we have access to an oracle estimator that is be able to perfectly estimate nodes of
the frontier. In the following section, we will see how we can build estimator to approximate this
oracle.
We first investigate the performance of the greedy strategy, then investigate the impact of the

refresh rate, and we conclude by investigating whether an optimal strategy is possible.

4.1 Rich Friends Will Make You Richer

Should we always pick the best node? Interesting parts of the graph could be missed because of
too systematically greedy a strategy. A node bridging to a rich subgraph could have a low score
and thus be missed. In order to have some intuition on the importance of this risk, we compared
the greedy strategy, i.e., always selecting the next best node, with altered greedy strategies that
introduce some randomness.

Definition 7. The greedy strategy consist in crawling at each step

argmax
𝑣∈Frontier𝐺(𝑉 ′)

𝛽(𝑣).

Definition 8. The altered greedy strategy consist in setting two parameters, 𝑞 ∈ [0, 1] and 𝜁 ∈ Q+,
then crawling at each step, with a probability 𝑞,

argmax
𝑣∈Frontier𝐺(𝑉 ′)

𝛽(𝑣)

and with a probability 1− 𝑞, a node uniformly at random among those in{︁
𝑣 ∈ Frontier𝐺

(︀
𝑉 ′)︀ | max

𝑢
(𝛽(𝑢))− 𝛽(𝑣) 6 𝜁max

𝑢
(𝛽(𝑢))

}︁
.

Experiments We evaluated a crawl sequence of 5,000 steps on the datasets presented in Section 2.3.
We compared the greedy strategy and different altered greedy defined by their (𝑞, 𝜁) . The results
were averaged over 10 seed subgraphs of size 1,000, whose nodes were picked randomly among nodes
with a score over 1.5.

The results for the bretagne and jazz datasets are presented in Figure 1. The x-axis shows the
crawling budget, the y-axis the relative score achieved with respect to greedy. The scenario visible
on these two graphs is the same for every graph, introducing some randomness does not hurt much
until about 1,000 steps (it sometimes even beat greedy in other scenarios); however, in the long run,
greedy is the winning strategy.
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Figure 1: Greedy versus altered greedy for bretagne and jazz

Figure 2: Influence of refresh rate on greedy for bretagne and jazz

This can be explained by the fact that the size of the frontier is relatively small at the beginning,
thus some rich part of the graph can hide behind small score nodes. However, past 1,000 steps, the
randomness introduced does not bring as much and slows down the crawl. We can see the good
performances of greedy as a “rich friends will make you richer” property. As this holds in all five
datasets, we will consider the greedy strategy as a given in the rest of our study.

4.2 The refresh rate advantage

We ran some experiments to see the impact of the refresh rate defined in Section 2 on the crawl
performance. The setting is the same as for the previous experience, with 100,000 steps instead of
5,000.
As we can see in Figure 2, a higher refresh rate has a significant long-term negative effect on

the crawling performance. A refresh rate of 2 degrades the performances by ≈ 5%, one of 500 by
≈ 20−−50%. This is the refresh rate advantage.
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4.3 A baseline hard to find

One would like to compare the crawl sequence resulting of an online focused crawl with the optimal
crawl sequences as defined in Section 2. Unfortunately, even in an offline setting with full knowledge
(i.e., where it is possible to access the whole graph), even determining the optimal cost is NP-hard,
even if the subset scoring function is the sum of individual node scores.

Proposition 1. Given a graph 𝐺, a PTIME-computable subset scoring function 𝛽, a subset of
vertices 𝑉0, and a budget 𝑛, determining if there is a crawl sequence of score greater than or equal to
a given rational 𝑟 is an NP-complete problem. NP-hardness holds even if 𝛽 is obtained by summing
up individual node scores, if 𝑉0 is a singleton, and if 𝑟 is an integer.

Proof. Membership in NP is straightforward: guess a node sequence of size 𝑛, checks that it is a
valid crawl sequence (easily done in PTIME), compute its score (feasible in PTIME by hypothesis)
and compare it to 𝑟.
For the NP-hardness, we exhibit a PTIME many-one reduction from the LST-Graph problem

described in [18]. The edge-uniform LST-Graph problem is defined as follows: given two integers 𝐿
and 𝑊 , and a directed graph 𝐺 = (𝑉,𝐸) where each edge (𝑢, 𝑣) is annotated with a nonnegative
integer weight 𝑤(𝑢, 𝑣), does there exist a subtree 𝑇 of 𝐺 such that the number of edges in 𝑇 is less
than or equal to 𝐿 and that the sum of edge weights is greater than or equal to 𝑊? Theorem 5
of [18] shows this problem is NP-hard, by reduction from Set-Cover.

Let (𝐿,𝑊, 𝑉,𝐸,𝑤) be an instance of LST-Graph. Without loss of generality, we can assume 𝐿 to
be at most |𝐸| (otherwise, just set 𝐿 to |𝐸|, the problem will have the same answer). Let 𝐺′ be the
graph obtained from 𝐺 = (𝑉,𝐸) by adding:
∙ an additional node 𝑟;
∙ for each node 𝑢 of 𝐺, 𝐿+ 1 new nodes 𝑢1, . . . , 𝑢𝐿+1;
∙ for each node 𝑢 of 𝐺, a chain of 𝐿+ 2 edges (𝑟, 𝑢1), (𝑢1, 𝑢2), . . . (𝑢𝐿+1, 𝑢).

Since 𝐿 is at most |𝐸|, this construction is in 𝑂(|𝑉 | × |𝐸|). We set 𝛽(𝑋) =
∑︀

𝑢∈𝑉 ∩𝑋 𝑤(𝑢) (in other
words, the score of a node is the sum of scores of all nodes of the old graph, new nodes having score
0).

We claim that edge-uniform LST-Graph(𝐿,𝑊,𝐺,𝑤) has a solution if and only if (𝐺′, 𝛽, {𝑟}, 2𝐿+1)
admits a crawling sequence of score greater than or equal to 𝑊 . This reduction is obviously
polynomial-time. We shall prove both directions of the equivalence.
First, assume (𝐿,𝑊,𝐺,𝑤) is a “yes” instance of edge-uniform LST-Graph. Let 𝑇 be a subtree

of 𝐺 of total weight at least 𝑊 and of length 𝑙 at most 𝐿. Let (𝑣1 . . . 𝑣𝑚) be a topological sort of
tree 𝑇 (i.e., an ordering such that 𝑣𝑗 descendant of 𝑣𝑖 implies 𝑖 6 𝑗). We consider the sequence
(𝑣11, . . . , 𝑣

1
𝐿+1, 𝑣

1, . . . , 𝑣𝑚) of length 𝐿+ 1 + 𝑙 6 2𝐿+ 1; this is a valid crawl sequence starting from
{𝑟}. We complete this crawl sequence into a crawl sequence 𝑆 of length exactly 2𝐿+ 1 by adding
𝐿− 𝑙 additional nodes 𝑢1, 𝑢2, . . . , 𝑢𝐿−𝑙 for an arbitrary node 𝑢 ∈ 𝑉 distinct of 𝑣1. The score of 𝑆 is
exactly the summed weight of 𝑇 , and is thus 6 𝑊 .

Conversely, assume (𝐺′, 𝛽, {𝑟}, 2𝐿+1) admits a crawling sequence 𝑆 of score greater than or equal
to 𝑊 . This crawling sequence 𝑆, together with 𝑟, naturally defines a tree 𝑇 ′ in 𝐺′: the root of this
tree is 𝑟; for every node 𝑣 in 𝑆 there is an edge from the first node 𝑢 in 𝑟, 𝑆 such that (𝑢, 𝑣) ∈ 𝐺′ to
𝑣. Consider the forest 𝐹 = 𝑇 ∩ 𝑉 . 𝐹 is a forest of 𝐺 of length at most 𝐿 (because if 𝐹 is not empty,
𝑇 must include at least one chain 𝑣1, . . . , 𝑣𝐿+1, 𝑣) and of summed weight greater than or equal to 𝑊
(because new nodes do not contribute to weight). We just have to show that 𝐹 is connected. Since
𝑇 is connected, 𝐹 is disconnected only if there are two chains 𝑢1, . . . , 𝑢𝐿+1, 𝑢 and 𝑣1, . . . , 𝑣𝐿+1, 𝑣 in
𝑇 with 𝑢 ̸= 𝑣. But the length of these two chains combined is 2𝐿+ 2 > 2𝐿+ 1, which is impossible
to fit inside 𝑇 .

This result means there is no practical way to determine whether a heuristic strategy is close
enough to the optimal. In particular, the greedy heuristic cannot be optimal in the general case. As
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in [18], we leave as an open problem the possibility of approximating the optimal score or of finding
an crawling sequence with score a factor of that of the optimal one.
Note that if we do not use the sum of individual node weights but the count of nodes having

non-zero weight as subset scoring function, a greedy solution does work as long as there are some
non-zero nodes in the frontier: adding one non-zero node always adds one to the total score, which
is the best that can be done at any given point.

5 Estimating Frontier Nodes

For any crawling campaign, its objective is to retrieve the most relevant nodes (by their 𝛽 value).
As shown in Section 4, a greedy approach can be used, in which at each step one chooses the
node having the highest estimation of its 𝛽 value. It becomes thus crucial to be able to have good
estimators of node weights. We present below the estimators covered by our study.

In this section, we will use the following notation. We define 𝑉 ′ as a crawled set of nodes, 𝐸′ the
known edges – including Frontier𝐺 (𝑉 ′) –, 𝑑𝑜 : 𝑉 → N (or 𝑑𝑖) the number of known outgoing (or,
respectively, incoming) edges 𝑒 ∈ 𝐸′ of a node, and ̃︀𝛽 : Frontier𝐺 (𝑉 ′)→ Q+ the weight estimation
function.

5.1 Baseline Estimators

The simplest baseline estimator simply chooses a random node in the frontier:

Estimator 1. Random The random (R) estimator is defined by ̃︀𝛽(𝑣) = 𝑟𝑎𝑛𝑑𝑜𝑚(Q+).

In practice, this gives very poor performance. A slightly better baseline estimator is based on the
classical crawler behavior, visiting the nodes in breath-first manner:

Estimator 2. Breadth-First The breadth-first (BF) estimator is defined by ̃︀𝛽(𝑣) = 1
𝑙(𝑣)+1 , where

𝑙(𝑣) is the distance of a node 𝑣 ∈ 𝑉 ′ to 𝑉0.

5.2 Neighborhood-based Estimators

The second type of estimators we study are estimators based only on the neighborhood of the nodes.
More precisely, we study estimators which make estimations based on a linear combination of
features of frontier nodes.

The features are based on the immediate neighborhood of the nodes of the frontier, more precisely
the incoming edges and nodes. The incoming information represents the only information we have
of the frontier nodes – their weight and outgoing edges are retrieved only when crawled. Although
one can go “deeper” in the subgraphs, by creating features which takes into account weights of
siblings, ancestors of incoming nodes, etc., we restrict ourselves to first-level features in this study.
The reason is that, during our experimental evaluation, we found that increasing the number of
features in neighborhood-based estimators actually decreases the quality of the estimation.
More precisely, the three features based on incoming links are:

∙ nodes: 𝑓𝑛(𝑣) = ℎ(𝐼𝑛), where 𝐼𝑛 = {𝑤(𝑢) | (𝑢, 𝑣) ∈ 𝐸 },

∙ edges: 𝑓𝑒(𝑣) = ℎ(𝐼𝑒), where 𝐼𝑒 = {𝑤(𝑒) | 𝑒 = (𝑢, 𝑣) ∈ 𝐸 },

∙ nodes-edges: 𝑓𝑛𝑒(𝑣) = ℎ(𝐼𝑛𝑒), where 𝐼𝑛𝑒 = {𝑤(𝑢)× 𝑤(𝑒) | 𝑒 = (𝑢, 𝑣) ∈ 𝐸 },

where ℎ can be any monotone function, such as sum, avg, or max.
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Table 2: Pearson correlation coefficients between node scores and features.

Dataset Type n sum e sum ne sum n max e max ne max

france in 0.118 0.252 0.248 0.357 0.272 0.269
out 0.639 0.827 0.687 0.313 0.344 0.295

bretagne in 0.315 0.238 0.404 0.195 0.309 0.300
out 0.570 0.828 0.641 0.262 0.326 0.322

Table 3: Fit coefficients (𝑅2) for linear models.

Dataset Type sum max

france in 0.121 0.145
out 0.695 0.152

bretagne in 0.191 0.129
out 0.688 0.151

Estimator 3. Linear First-Order The linear first-order neighborhood (LNH) estimator is
defined by ̃︀𝛽(𝑣) = 𝑐𝑛 × 𝑓𝑛(𝑣) + 𝑐𝑒 × 𝑓𝑒(𝑣) + 𝑐𝑛𝑒 × 𝑓𝑛𝑒(𝑣) + 𝑐0, where 𝑐𝑛, 𝑐𝑒, 𝑐𝑛𝑒, 𝑐0 are real-valued
coefficients.

In its simplest form, the first-order estimator will only use one feature , i.e., one and only one of
𝑐𝑛, 𝑐𝑒, 𝑐𝑛𝑒, is non-zero. In this case, the estimation simply becomes a function of a combination
of incoming nodes and edges. For example, when 𝑐𝑛 = 1 and 𝑐𝑒 = 𝑐𝑛𝑒 = 𝑐0 = 0 and ℎ = sum, the
estimator is based solely on the sum of incoming node weights. As our experiments show, this type
of estimator can perform surprisingly well, depending on the type of network. There is, however, no
clear cut best estimator for all the datasets we have studied, making them hard to use in practice,
when information about the network is missing.

An adaptive estimator can be easily designed by considering the already crawled nodes as training
data. At each step (or several steps) a least-squares linear regression is performed on these training
data, thus determining the 𝑐𝑛, 𝑐𝑒, 𝑐𝑛𝑒 and 𝑐0 coefficients. This estimator is quite efficient in practice,
even when using open-source solvers, and can be performed incrementally, without the need of full
retraining when new training data is available.

Correlation

5.3 Subgraph-based estimators

As an alternative to first-order estimators, which only use the information about the nearby nodes,
some related work consider subgraph-based estimators.

Navigational Rank Navigational Rank [15] is a two-step page importance computations specifically
designed for focused crawling. The first step is an iterative propagation from the offspring to the
ancestors, combined with the actual node score:

NR1(𝑣)
𝑡+1 = 𝑑× 𝑤(𝑣) + (1− 𝑑)× 𝑎𝑣𝑔(𝑢,𝑣)∈𝐸

NR1(𝑢)
𝑡

𝑖𝑛𝑑𝑒𝑔(𝑢)

where NR1(𝑢)
𝑡 is the node score at iteration step 𝑡, and 𝑑 is a parameter
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The second propagation step is performed only on frontier nodes, and takes place from ancestor
to offspring, as follows:

NR2(𝑣)
𝑡+1 = 𝑑×NR1(𝑣) + (1− 𝑑)× 𝑎𝑣𝑔(𝑣,𝑢)∈𝐸

NR2(𝑢)
𝑡

𝑜𝑢𝑡𝑑𝑒𝑔(𝑢)
.

If we consider the NR2 scores as the estimation of node values, we obtain the following estimator:

Estimator 4. Navigational Rank The Navigational Rank (NR) estimator is defined by ̃︀𝛽(𝑣) =
NR2(𝑣).

We have tried testing with respect to this particular estimator; however, Navigational Rank proved
much too slow to be compared with respect to any of the other estimators – simply simulating a few
thousand steps of crawls took hours, with respect to seconds for all other ones. Indeed, one step of
Navigational Rank estimation requires two successive iterative computations (with perhaps a few
dozens steps) on the whole crawled graph. Since this needs to be repeated at every crawling step,
this results in an overall quadratic complexity for Navigational Rank estimation during a full crawl.
Consequently, we were not able to provide any experimental comparison between Navigational Rank
and other estimators. Note that the analysis performed in [15] considers graphs – typically graphs
of Web sites – much smaller than those we consider in this work.

OPIC The OPIC [1] system is an online page crawling system designed to maximize the retrieval
of high PageRank pages on the Web.

For this, during the crawl, OPIC maintains two per-node counters: 𝐶(𝑣) - the cash value of of a
node, and 𝐻(𝑣) its cash history. It also maintains a global counter 𝐺 for the entire cash accumulated
in the system.
The estimation is made at crawl time, in a three step approach:

1. a node 𝑣 is chosen for updating, and the history is updated with the current cash value
𝐻(𝑣) = 𝐻(𝑣) + 𝐶(𝑣),

2. for each outgoing node 𝑢 of 𝑣, the cash value is updated 𝐶(𝑢) = 𝐶(𝑢) + 𝐶(𝑣)
𝑜𝑢𝑡𝑓𝑑𝑒𝑔(𝑣) ,

3. the cash value of 𝑣 is reset, and the global counter incremented 𝐺 = 𝐺+ 𝐶(𝑣), 𝐶(𝑣) = 0.

Then, the estimation of a node’s value is simply the estimation of its PageRank value, based on
the three counters above:

Estimator 5. OPIC The OPIC estimator is defined by ̃︀𝛽(𝑣) = 𝐻(𝑣)+𝐶(𝑣)
𝐺+1 .

The main disadvantage of the original computation of the PageRank measure in the OPIC system
is that it takes in account only outlinks of pages, without taking into account the node and edge
scores. To alleviate this disadvantage, in similar vein to the neighborhood based estimator, we
experiment with the following propagation mechanism: along the outlinks the cash is distributed
in a normalized proportion computed based on (i) the sum of edge weight, (ii) the outgoing node
weight and (iii) the multiplication of node and edge weights.

5.4 Comparing Estimators on the Same Crawl

To compare estimators, we measured the difference of actual score of the top node ranked by a given
estimator with respect to the score of top node ranked by an oracle evaluator, i.e., an estimator
guessing the actual node score at each step. We have tracked the differences at each step between
each neighborhood estimator and the oracle estimators, when the crawl follows an oracle estimator.
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Figure 3: Estimator precision for bretagne.

We present the results for the Wikipedia bretagne graph (the other graphs are similar) in Figure 3.
In order to smooth out the results, the rolling average with a window of 1,000 is plotted.

It can be seen that the most noise is encountered at the start of the crawl, and that all evaluators
converge to choosing the best nodes towards the end of the crawl. Moreover, the simple neighborhood-
based estimators seem to perform best at the start, while the linear regression estimator catches up
in the later stages of the crawl. Note however this is in a sense ideal behavior, when all previous
steps have been chosen perfectly according to the oracle. This does show that the estimators – even
simple ones – can be almost perfect estimators when the conditions are ideal. In the next section,
we present more in-depth experiments on full, real-world crawls, which show that the behavior can
vary significantly from this ideal case.

6 Full System Experiments

We now experiment with our complete system, incorporating main crawling algorithm, greedy
strategy, and a variety of estimators as described in the previous section. First, we discuss our
implementation, then our experimental setup, finally our results.

6.1 Implementation

Our system is implemented in C++, using in-memory storage of the graph (thanks to Boost graph
library3) and crawler metadata. Each black box component is an abstract C++ class, with derived
classes for different possible implementations (greedy vs altered greedy, different estimators) that
provide a number of virtual methods, especially scoreFrontier and getNextNodes). For linear
regression, we use the dlib C++ library4 that provides an incremental implementation of the linear
version of the recursive least squares algorithm. Thanks to this incremental feature, we can maintain
the model incrementally without having to retrain on the whole crawled graph at each step.

3http://www.boost.org/libs/graph
4http://dlib.net/
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6.2 Experimental Setup

All experiments are run on a Linux PC with 48 GB RAM. In-memory storage of our datasets
(especially the Twitter graph) does require a large amount of available memory.

For each dataset, we have randomly generated 100 seed graphs containing 50 seed nodes each,
chosen from nodes having non-zero scores. For each such seed list, the initial graph is the subgraph
induced by the 50 nodes. The initial frontier is the list of outgoing nodes of the 50 nodes. Each
crawl is run for a budget of 100,000 steps. Considering that the current (at the time of writing)
Twitter API request limit is 300 per 15 minute window [26], the budget would allow a focused crawl
campaign of 3 days and a half, which is reasonable both in terms of time and freshness of crawled
data. In the experiments, we assume that the computation score is dominated by the time between
requests. For the crawl score, we use the sum and count aggregation functions of node scores.

6.3 Results

We present the results in Figure 4 for the Twitter graphs, and Figure 5 for Wikipedia. The left
column shows the evolution of the score relative to a oracle estimator, which always chooses the node
with the highest weight on the frontier, while the right column shows the evolution of the absolute
score. To preserve legibility, we have chosen to only display a selection of the estimators, as they
were either very similar to other estimators, or were not interesting to our discussion. Moreover, we
have omitted the experimental results for count, since the results – and corresponding discussion –
are equivalent to the sum case.
One can see that, quite surprisingly, the basic neighborhood estimators (NH) behave well in

certain graphs. The estimators using nodes weights (NHn) or the multiplication of node and edge
weights (NHne), behave quite well, but which is the better one is not clearly established. Usually,
the ne variant is better than n, except for the Wikipedia bretagne dataset. In our experiments, the
variant based on edge weights, NHe, (not plotted) was virtually identical to the ne variant.

The linear regression based estimators, LNH, are plotted using two aggregations of their features:
sum (e.g., the sum of incoming node weight) and max (e.g., the maximum value of the incoming
node weights). They exhibit the same behavior, in that they are most times comparable with the
simple neighborhood estimators, with a few exceptions: the Wikipedia france dataset for sum, and
Twitter happy and weird for max. In general, sum is better on Twitter in the long term, in the late
stages of the crawl, while max is better on the Wikipedia datasets.

Combining the two types of estimators leads to better results in general. More precisely, we start
with the basic neighborhood estimators for the first step (1,000 in our experiments) and we switch
to the linear neighborhood estimators after. The objective of this type of hybrid estimator is to
allow the linear regression models to get enough training data before using them, as we observed
that starting with few training data would lead to sub-optimal crawling sequences, even in the long
term. Indeed, this type of combination leads to estimators which are always comparable to the best
on any dataset, and sometimes even better than them – see Twitter happy for instance. Moreover,
we noticed that it usually does not matter which starting estimator is chosen – out of the basic
ones – as long as it is reasonable. Even if some of the neighborhood estimators might exhibit better
potential on some datasets and for low budgets, the clear advantage of this estimator is that it is
adaptive to any dataset, and can be safely used for such a constrained exploration.

Finally, breath first exploration and the sub-graph based estimators – such as the plotted OPIC
– are clearly worse overall than the neighborhood estimators, but represent interesting baselines.
In the case of OPIC, the versions which propagate on edges and/or nodes were not better than
the original version. Note that we could not reliably plot the Navigational Rank estimator, as
its computation costs – even for low budgets – were extremely high, compared with all the other
estimators.

14



D
RA
FT

0.2 0.4 0.6 0.8 1

·105

0.3

0.4

0.5

0.6

budget

re
la
ti
ve

sc
or
e

0.2 0.4 0.6 0.8 1

·105

1

2

3

·105

budget

ab
so
lu
te

sc
or
e

(a) Happy

0.2 0.4 0.6 0.8 1

·105

0.1

0.2

0.3

0.4

0.5

budget

re
la
ti
ve

sc
or
e

0.2 0.4 0.6 0.8 1

·105

2

4

6

8

·104

budget

ab
so
lu
te

sc
o
re

(b) Jazz

0.2 0.4 0.6 0.8 1

·105

0.15

0.2

0.25

0.3

0.35

0.4

budget

re
la
ti
ve

sc
or
e

0.2 0.4 0.6 0.8 1

·105

0.5

1

1.5

2

·105

budget

ab
so
lu
te

sc
or
e

(c) Weird

BFS LNHsum LNHmax NHn

NHne NHne+LNH OPIC Oracle

Figure 4: Results on the Twitter datasets
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Figure 5: Results on the Wikipedia datasets
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7 Related Work

7.1 Online problem

The first formulation of the concept of focused crawling is in the context of Web pages crawling
and is given by Menczer [20]. It is then extended in [8, 6], where is described a crawler made of
a classifier, to distinguish relevant pages, and a distiller, to identify pages more likely to point to
other relevant pages.

All works on focused crawling so far have been Web pages centric. They consisted in improving
Web pages and links scoring techniques on one hand, and looking at more generic PageRank-like
ideas on the other.

We looked at the problem from a higher level perspective and used a formalization that allows us
to consider more use cases than Web pages crawling.

Web pages and links scoring Among the first works in this direction are the “first-best” crawlers,
represented by the Fish-search [11] and Shark-search [17] algorithms for scoring pages and links,
based on the tf-idf measure of the textual content of pages. To improve their performance, more
involved classifiers have been proposed based on Naive Bayes [8], neural networks and SVM [21],
Hidden Markov Models [19, 4], and reinforcement learning [23]. The idea of using context graphs to
better score pages and links was also formulated [12].

An experimental study on link context approaches has been performed in [21], and found that a
crawler utilizing both the link context and page score significantly outperforms only link context
approaches. For more details on focused crawling classifiers, we refer the reader to the survey in [22].
In our examples, we use different edge and node scoring functions with different outcomes. It

allows us to study the generic graph problems and develop techniques that can be used in various
cases.

PageRank-like approaches PageRank and related measures are proven to effectively represent
the relative importance of pages on the Web. As a consequence, focused crawling can be also seen
as an effort to retrieve such pages early and with limited resources. The first approach to estimate
the PageRank value for such graphs is the OPIC system [1]. The RankMass crawler presented in [9]
has as objective to maximize the coverage of important pages – defined in terms of rank mass. The
Navigational Rank [15] measure is defined as a two-way page importance propagation, and is shown
to outperform approaches such as context graphs.

We used those works has a baseline and extended them to take into account preexisting weights
on nodes and links.

7.2 Offline problem

In the offline setting, our problem can be reduced to a graph exploration problem where we want
to optimize the aggregated node weight on a size-constrained forest that covers the seed nodes.
By reduction to the problem in [18], we show in Section 4.3 that it is NP-hard to find an optimal
solution.

Note that, in the unconstrained case, when the budget is at least as high as the number of nodes
in a graph, and when the full graph is known, the problem can be reduced to finding an optimum
branching in the graph [10, 14], which admits efficient polynomial solutions [5, 24]. Informally, the
optimum branching can be thought of as the extension of spanning trees to directed graphs.
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8 Conclusions

We started our work modeling our problem as a graph exploration problem. The nodes are the
resources, weighted with their content relevance. The edges are the links between resources, weighted
with their relevance as links. We saw how this can be applied to different use cases. We then
introduced the main algorithms and explained how we can separate concerns into steering and
estimation. We first demonstrated some interesting properties regarding steering, the “rich friends
will make you richer” property, the refresh rate advantage, and the NP-hardness of the offline
problem. Then, we discussed estimation options. We introduced new estimators and adapted
state-of-the-art estimators to our formalization. Combining estimation and steering, we created
performing and adaptable focused crawlers. Eventually, after discussing related works, we claim the
importance of our contributions. Our formalization of focused crawling is new and can be adapted
to various cases; we demonstrated useful properties regarding steering; we covered a wide range of
options for estimators and we managed to build robust focused crawlers.

This work also opens interesting opportunities for further work on focused crawling. How to find
an approximation of the optimal solution to the offline problem? What kind of dynamics for very
short crawl? Can we imagine better option for combining estimators, for instance using multi-armed
bandits? How can we integrate the idea of re-crawling some nodes at different times?
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