Scalable, Generic, and Adaptive Systems for Focused Crawling

Georges Gouriten* - georges@netiru.fr Silviu Maniu ${ }^{\circ}$ Pierre Senellart**

* Télécom Paristech - Institut Mines-Télécom - LTCI CNRS
${ }^{\circ}$ Hong Kong University

What is focused crawling?

A directed graph

Web

Social network

P2P

etc.

Weighted

Let u be a node,

$\beta(u)=$ count of the word Bhutan in all the tweets of u

Even more weighted

Let (u, v) be an edge,

$\alpha(u)=$ count of the word Bhutan in all the tweets of u mentioning v

The total graph

A seed list

The frontier

Crawling one node

A crawl sequence

Let V_{0} be the seed list, a set of nodes, a crawl sequence, starting from $V_{o^{\prime}}$, is
$\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right.$ in frontier $\left.\left(\mathrm{V}_{0} \cup\left\{\mathrm{v}_{0}, \mathrm{v}_{1}, . ., \mathrm{v}_{\mathrm{i}-1}\right\}\right)\right\}$

Goal of a focused crawler

Produce crawl sequences with global scores (sum) as high as possible

A high-level algorithm

Estimate scores at the frontier

Pick a node from the frontier
Crawl the node

Supposing a perfect estimator

Finding an optimal crawl sequence offline: NP-hard

Greedy wins for a crawled graph > 1000 nodes

Refresh rate of 1 is better

Estimation in practice

Different kinds of estimators

bfs

bfs

bfs

ESTIMATOR $1 \quad(\mathrm{bfs}) . \tilde{\beta}(v)=\frac{1}{l(v)+1}$, where $l(v)$ is the distance of v to V_{0}.

nr

navigational rank

score propagation from the ancestors of a node
then to the children of a node

nr

$$
\begin{gathered}
N R_{1}(v)^{t+1}=d \times w(v)+(1-d) \times a v g_{(v, u) \in E^{\prime}} \frac{N R_{1}(u)^{t}}{d_{\mathrm{i}}(u)} \\
N R_{2}(v)^{t+1}=d \times N R_{1}(v)+(1-d) \times \operatorname{avg_{(u,v)\in E^{\prime }}} \frac{N R_{2}(u)^{t}}{d_{\mathrm{o}}(u)} .
\end{gathered}
$$

ESTIMATOR $2(\mathrm{nr}) . \widetilde{\beta}(v)=N R_{2}(v)$.

opic

online page importance computation

~ online pageRank computation

opic

1. the node v with the highest cash is selected, and its history is updated with the current cash value $H(v)=H(v)+C(v)$,
2. for each outgoing node u of v, the cash value is updated $C(u)=C(u)+\frac{C(v)}{d_{o(v)}}$,
3. the cash value of v is reset and the global counter incremented, by $G=G+C(v)$ and $C(v)=0$.

$$
\text { 2. -> } C(u)=C(u)+\frac{C(v)}{\sum_{(v, w) \in E^{\prime}} \alpha(v, w) \times C(w)} \times \alpha(v, u) \times C(u)
$$

ESTIMATOR $3 \quad$ (opic). $\widetilde{\beta}(v)=\frac{H(v)+C(v)}{G+1}$.

Open spaces in the state-of-the-art

nr has a quadratic complexity
opic focus on popularity
the rest is about how to score

First-level neighboorhood

Second-level neighboorhood

Neighborhood-based estimators

ESTIMATOR 4 (fl_n fl_e fl_ne sl_n sl_e sl_ne). $f l_{_} \operatorname{deg}: \widetilde{\beta}(v)=d_{\mathrm{i}}(v)=|P(v)|$
fl_n: $\widetilde{\beta}(v)=\sum_{u \in P(v)} \beta(u)$
fl_e: $\widetilde{\beta}(v)=\sum_{u \in P(v)} \alpha(u, v)$
fl_ne: $\widetilde{\beta}(v)=\sum_{u \in P(v)} \beta(u) \alpha(u, v)$
sl_n: $\widetilde{\beta}(v)=\sum_{u \in P(v)} \sum_{\substack{w \in V^{\prime} \\ u \in P(w)}} \beta(w)$
sl_e $: \widetilde{\beta}(v)=\sum_{u \in P(v)} \sum_{\substack{w \in V^{\prime} \\ u \in P(w)}} \alpha(u, w)$
sl_ne : $\widetilde{\beta}(v)=\sum_{u \in P(v)} \sum_{\substack{w \in V^{\prime} \\ u \in P(w)}} \beta(w) \alpha(u, w)$

deg, e, n, ne

deg: number of neighbors
e: sum of incoming edges
n : sum of incoming nodes
ne: sum of incoming (node*edge)s

Linear regressions

ESTIMATOR 5 (lr_fl lr_sl).
$l r_{-} f l: \widetilde{\beta}(v)=$ trained linear combination of the $f l_{-}$estimators.
$l r_{-} s l: \widetilde{\beta}(v)=$ trained linear combination of the $f l_{-}$and $s l_{-}$ estimators.

Multi-armed bandits (1)

Multi-armed bandits (2)

Budget n , how to maximize the reward?

Balance exploration and exploitation

Applied to focused crawling

Slot machines: estimators

Reward: score of the top node

mab ε

probability 1- ε : slot machine with the highest average reward

probability ε : random slot machine

ESTIMATOR $6 \quad\left(\mathrm{mab} _\varepsilon\right) . \widetilde{\beta}(v)=$ output of an epsilon-greedy strategy.

mab_ ε-first

steps $\left[0, \varepsilon \times N_{J}\right]: \quad$ random slot machine
steps $\left[{ }_{\ell} \varepsilon \times N_{\lrcorner}+1, N\right]$: slot machine with the highest average reward

ESTIMATOR 7 (mab_ ε-first). $\widetilde{\beta}(v)=$ output of an epsilonfirst strategy.

mab_var

Succession of ε-first strategies, with a reset every r steps, r varying with the context

ESTIMATOR 8 (mab_var). $\widetilde{\beta}(v)=$ output of an epsilon-first with variable reset strategy.

Their running times

Expected running times

Twitter API for one week:

- 3s
- 200,000 nodes

One domain website for one week:

- 1s
- 600,000 nodes

Experimental framework (1)

Dataset	Nodes (million)	Non-zero nodes $(\%)$	Edges (million)	Non-zero edges $(\%)$
BRETAGNE	2.2	2.0	35.6	0.5
FRANCE	$\prime \prime$	19.2	$\prime \prime$	6.8
HAPPY	16.9	11.0	78.0	2.4
JAZZ	$\prime \prime$	0.6	$\prime \prime$	0.1
WEIRD	$\prime \prime$	3.2	$\prime \prime$	0.4

Experimental framework (2)

- Graph score

10 seed graphs
1 seed graph:
50 seeds picked randomly among non-zero β
Arithmetic average of the crawl scores (sum)

- Global score

Normalization with a baseline -- relative score
Geometric average among the five graphs

Datasets and code are online

http://netiru.fr/research/14fc

To measure the running times

Same crawl sequence: the oracle Storage in RAM (20G)
3.6 GHz

The running times (ms)

Dataset	Evaluator	100	1,000	10,000	100,000
FRANCE	nr	$2,832.1$	$19,720.5$	N/A	N/A
	opic	1.9	2.5	4.6	4.7
	ne_fl	0.2	0.1	0.1	0.1
	lr_fl	0.2	0.2	0.1	0.1
	mab_var_fl	0.6	0.3	0.2	0.2
	ne_sl	8.5	27.1	2.0	6.1
	lr_sl	8.5	27.2	2.0	6.1
HAPPY	nr	$45,965.7$	$105,209.3$	N/A	N/A
	opic	1.8	1.6	1.9	2.5
	ne_fl	0.3	0.1	0.2	2.1
	lr_fl	0.5	0.1	0.2	2.1
	mab_var_fl	1.1	0.3	0.5	3.9
	ne_sl	111.1	24.5	63.3	240.5
	lr_sl	111.4	24.5	63.3	241.0

nr

$$
\begin{gathered}
N R_{1}(v)^{t+1}=d \times w(v)+(1-d) \times a v g_{(v, u) \in E^{\prime}} \frac{N R_{1}(u)^{t}}{d_{\mathrm{i}}(u)} \\
N R_{2}(v)^{t+1}=d \times N R_{1}(v)+(1-d) \times \operatorname{avg_{(u,v)\in E^{\prime }}} \frac{N R_{2}(u)^{t}}{d_{\mathrm{o}}(u)} .
\end{gathered}
$$

ESTIMATOR $2(\mathrm{nr}) . \widetilde{\beta}(v)=N R_{2}(v)$.

Quadratic complexity, with large constant factors

Their precision

The precision

Same crawl sequence: the oracle
Precision: distance of the top node to the actual top node

Arithmetically averaged over a window of 1000 steps

For bretagne

Their ability to lead crawls

Leading the crawl

Different crawl sequences:

defined by the top estimated nodes

Average graph scores for France

The multi armed-bandits

Type	100	1,000	10,000	100,000
ε	0.450	0.481	0.477	0.495
$\varepsilon-$ first	0.409	0.501	0.484	0.490
var-0.1-1000	0.383	0.439	0.420	0.494
var-0.2-200	0.427	0.413	0.461	0.458

All the estimators

Estimator	100	1,000	10,000	100,000
bfs	0.147	0.132	0.130	0.207
opic	0.283	0.184	0.205	0.287
n	0.358	0.280	0.362	0.467
e	0.594	0.560	0.457	0.377
ne	0.583	0.570	0.466	0.378
lr_fl	0.325	0.382	0.466	0.504
mab_var-0.2-200	0.427	0.413	0.461	0.458

Conclusion

What we learnt

Generic model

NP-hardness offline

Refresh rate of 1
Greedy

Neighborhood features
Linear regressions
Multi-armed bandit strategy

Future work

Approximation of the optimal score

Distributed crawl

Recrawling nodes

Further multi-armed bandits comparisons

Thank you.

georges@netiru.fr

Finding the optimal crawl sequences in a known graph

PTime many-one reduction from the LST-Graph problem

Problem remains hard if nodes, not edges, are weighted

A subtree rooted at r is seen as a crawl sequence starting from r

Free edges are added to the graph to allow free crawls from he seed to any potential root of a subtree

Rich friends will make you richer

The greedy strategy

Node picked $=\operatorname{argmax}(\beta(\mathrm{v})), \mathrm{v}$ in frontier

Is not always optimal

The altered greedy strategy

Node picked =

probability $\mathrm{q}: \quad \operatorname{argmax}(\beta(\mathrm{v}))$
probability 1-q: random v so that, $\max (\beta(u))-\beta(v)<=\zeta x \max (\beta(u))$

Altered greedy vs greedy for jazz

The refresh rate disadvantage

When estimation takes too long

```
    input : seed subgraph \(G_{0}\), budget \(n\)
    output :crawl sequence \(V\) with a score as high as possible
\(1 V \leftarrow()\);
\(2 G^{\prime} \leftarrow G_{0}\);
3 budgetLeft \(\leftarrow n\);
4 while budgetLeft \(>0\) do
        frontier \(\leftarrow\) extractFrontier \(\left(G^{\prime}\right)\);
        scoredFrontier \(\leftarrow\)
        estimator.scoreFrontier( \(G^{\prime}\), frontier);
        \(r \leftarrow\) getRefreshRate();
        NodeSequence \(\leftarrow\)
        strategy.getNextNodes(scoredFrontier, \(r\) );
        \(V \leftarrow(V\), NodeSequence);
        for \(u\) in NodeSequence do
            \(G^{\prime} \leftarrow G^{\prime} \cup\) crawlNode \((u)\);
        budgetLeft \(=\) budgetLeft \(-r\)
    return \(V\)
```


The score degradation (\%) at different steps

Refresh rate	100	1,000	10,000	100,000
2	0.4	2.2	3.9	6.4
8	1.3	6.5	12.8	18.3
32	6.6	6.5	17.5	24.3
128	38.8	10.7	19.9	29.5
1024	38.8	74.3	25.8	35.9

