Updating Probabilistic XML

Evgeny Kharlamov, ${ }^{1,3}$ Werner Nutt,' Pierre Senellart ${ }^{2}$

${ }^{1}$ Free University of Bozen-Bolzano
${ }^{2}$ Télécom ParisTech
${ }^{3}$ INRIA Saclay - Île-de-France

Updates in XML, Lausanne, March 2010

Outline

I. Probabilistic data
2. Problem of updates
3. Updating desecrate PXML
4. Updating continuous PXML

Applications of Probabilistic Data

- Approximate query processing: ranking, linkage
- Information extraction: approximate search for entities (e.g. names) in text
- Sensor data: imprecise or missing readings
- ...

Probabilistic Database

Probabilistic DB:

Probabilistic Database

Probabilistic DB:

Probabilistic Database

Probabilistic DB:

Answer: ($\mathrm{a}, 0.8$)

Probabilistic Database

Probabilistic DB:
Representation of Prob DB:

Answer: (a, 0.8)

Probabilistic Database

Probabilistic DB:

Representation of Prob DB:

Answer: $\quad(\mathrm{a}, 0.8)$

Q

(a, 0.8)

Probabilistic Database

Probabilistic DB:

Representation of Prob DB:

Answer: ($\mathrm{a}, 0.8$)

(a, 0.8)

PXML with Events and Distributional Nodes

Semantics: a world d

- $\mathrm{c}=$ true (current data)
- MUX: 4
- $\operatorname{Pr}(\mathrm{d})=0.4 \times 0.1$

Discrete Probabilistic XML Documents

- Probabilistic XML document D
- represents (exponentially) many documents d
- each with probability $\operatorname{Pr}(\mathrm{d})$
- It is achieved by
- Events formulas on edges: over Bool. random vars. Capture long-distance correlations
- Distributional nodes: Mux, Det.

Capture local (hierarchical) dependancies.

Discrete Probabilistic XML Documents

- Probabilistic XML document D
- represents (exponentially) many documents d
- each with probability $\operatorname{Pr}(\mathrm{d})$
- It is achieved by
- Events formulas on edges: over Bool. random vars.

Capture long-d Special case of event formulas

- Distributional nodes: Mux, Det.

Capture local (hierarchical) dependancies.

Outline

I. Probabilistic data
2. Problem of updates
3. Updating desecrate PXML
4. Updating continuous PXML

Update Operations

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all $E U$ projects with a duration of X years, that her team is involved in
\Rightarrow We want to insert (delete) data in PXML. We want to do it conditionally.

Update Operations

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
\Rightarrow We want to insert (delete) data in PXML. We want to do it conditionally.

Structure of Updates

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

Update operation (q, n, t): $q^{\mathrm{n}, \mathrm{t}}$
q - condition query (formally will be defined later)
n - locator of the update
t - the actual new data (tree) to be inserted

Structure of Updates

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all $E U$ projects with a duration of X years, that her team is involved in

Update operation (q), n, t): $\mathrm{q}^{\mathrm{n}, \mathrm{t}}$
q -condition query (formally will be defined later)
n - locator of the update
t - the actual new data (tree) to be inserted

Structure of Updates

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all $E U$ projects with a duration of X years, that her team is involved in

Update operation (q, $\mathrm{n}, \mathrm{t}): \mathrm{q}^{\mathrm{n}, \mathrm{t}}$
q - condition query (formally will be defined later)
n - locator of the update
t - the actual new data (tree) to be inserted

Structure of Updates

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert abonus of Xfor all $E U$ projects with a duration of X years, that her team is involved in

Update operation (q, $n, t): q^{n, t}$
q - condition query (formally will be defined later)
n - locator of the update
t - the actual new data (tree) to be inserted

Structure of Updates

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

Update operation (q, n, t): $q^{\mathrm{n}, \mathrm{t}}$
q - condition query (formally will be defined later)
n - locator of the update
t - the actual new data (tree) to be inserted

Structure of Updates

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all $E U$ projects with a duration of X years, that her team is involved in

Update operation ($\mathrm{q}, \mathrm{n}, \mathrm{t}$): $\mathrm{q}^{\mathrm{n}, \mathrm{t}}$
Inspired by 2 update languages for XML

- XUpdate, based on XPath
- XQuery Update Facility, based on XQuery

Types of Updates

a. (Restricted) Single-Path updates $-(\mathrm{R})$ SP
b. Tree-Pattern updates -TP
c. Tree-Pattern updates with Joins -TPJ
a.

Types of Updates

a. (Restricted) Single-Path updates $-(\mathrm{R})$ SP
b. Tree-Pattern updates -TP
c. Tree-Pattern updates with Joins -TPJ

Types of Updates

a. (Restricted) Single-Path updates $-(\mathrm{R})$ SP
b. Tree-Pattern updates -TP
c. Tree-Pattern updates with Joins -TPJ

Types of Updates

a. (Restricted) Single-Path updates $-(\mathrm{R})$ SP
b. Tree-Pattern updates -TP
c. Tree-Pattern updates with Joins -TPJ

Semantics of Insertions

- For every professor, insert a bonus of 5 only if her team is in some EU project
- Only-if semantics: Inserts at most one bonus per professor
- For every professor, insert a bonus of X for all $E U$ projects with a duration of X years, that her team is involved in
- For-all semantics: Inserts possibly many bonuses for professors

Semantics of Updates for XML Documents

- Only-if semantics: For every match of n, if there is a match of q, then insert t under n
- For-all semantics:

For every match of n, for all k matches of q, insert t under n k -times

Semantics of Updates for XML Documents

- Only-if semantics: For every match of n, if there is a match of q, then insert t under n
- For-all semantics:

For every match of n, for all k matches of q, insert t under n k -times

Semantics of Updates for XML Documents

- Only-if semantics: For every match of n, if there is a match of q, then insert t under n
- For-all semantics:

For every match of n, for all k matches of q, insert t under n k -times

Semantics of Updates for XML Documents

- Only-if semantics: For every match of n, if there is a match of q, then insert t under n
- For-all semantics:

For every match of n, for all k matches of q, insert t under n k -times

Semantics of Updates for XML Documents

- Only-if semantics: For every match of n, if there is a match of q, then insert t under n
- For-all semantics:

For every match of n, for all k matches of q, insert t under n k -times

Deletions

Deletion operation: (q, n)

- Fire a professor if her team is in a EU project
- For every match of n, if there is a match of q, then delete n and all its descendants
- There is only one semantics for deletions, that is similar to Only-if semantics

Deletions

Deletion operation: (q, n)

- Fire a professor if her team is in a EU project
- For every match of n, if there is a match of q, then delete n and all its descendants
- There is only one semantics for deletions, that is similar to Only-if semantics

Deletions

Deletion operation: (q, n)

- Fire a professor if her team is in a EU project
- For every match of n, if there is a match of q, then delete n and all its descendants
- There is only one semantics
 for deletions, that is similar to Only-if semantics

Deletions

Deletion operation: (q, n)

- Fire a professor if her team is in a EU project
- For every match of n, if there is a match of q, then delete n and all its descendants
- There is only one semantics for deletions, that is similar to Only-if semantics

Updating PXML Documents

D: PXML doc

Updating PXML Documents

Probability space of docs

D: PXML doc

Updating PXML Documents

Probability space of docs
 D: PXML doc

Updated prob. space of docs

Updating PXML Documents

Probability space of docs
 D: PXML doc

Problems to Investigate

- We want to study computation of representations of updates
- Given a p-document D and update operation $q^{n, t}$
- Is it possible to compute a p-document D that represents the update?
- How hard is the computation?

Outline

I. Probabilistic data
2. Problem of updates
3. Updating desecrate PXML
4. Updating continuous PXML

Querying PXML with Tree-Pattern Queries

Queries	Distr. nodes ${ }^{*}$	Event conjunct.*.	Event formulas
TP	P	\#P-complete	
TPJ	\#P-complete		

[Kimelfed\&al:2007], [Senellart\&al:2007]
\#P functions - counting counterparts of NP problems.
E.g: counting sat.-assignments for prop. CNF formulas. Believed to be harder than NP.

Only-if Insertions: Data Complexity

Only-if	Distr. nodes	Event conjunct	Event formulas
RSP	Linear		
SP	P^{*}		
\#P-hard	Linear		
TP	$?$		
TPJ	\#P-hard		

* only for queries without descendent edges
- The same table holds for deletions

Only-if Insertions: Data Complexity

Only-if	Distr. nodes	Event conjunct	Event formulas
RSP	Linear		
SP	P*	\#P-hard	Linear
TP	?		P
TPJ	\#P-hard		

* only for queries without descendent edges
- The same table holds for deletions

Only-if Insertions: Data Complexity

Only-if	Distr. nodes	Event conjunct	Event formulas
RSP	Linear		
SP	P^{*}		
\#P-hard	Linear		
TP	$?$		
TPJ	\#P-hard		

* only for queries without descendent edges
- The same table holds for deletions

Updating PXML: Example

- Only-if semantics:

For every match of n, if there is a match of q, then insert t under n

- in this case only-if and for-all semantics coincide

Updating PXML: Example

- Only-if semantics:

For every match of n,
if there is a match of q, then insert t under n

- in this case only-if and for-all semantics coincide

Updating PXML: Example

- Only-if semantics:

For every match of n,
if there is a match of (q) then insert t under n

- in this case only-if and for-all semantics coincide

Updating PXML: Example

- Only-if semantics:

For every match of n,
if there is a match of (q) then insert t under n

- in this case only-if and for-all semantics coincide

Updating PXML: Example

- Only-if semantics:

For every match of n,
if there is a match of $(9$. then insert t under n

- in this case only-if and for-all semantics coincide

Updating PXML: Example

- Only-if semantics:

For every match of n, if there is a match of q, then insert t under n

- in this case only-if and for-all semantics coincide

Updating PXML: Example

- Only-if semantics:

For every match of n, if there is a match of q, then insert t under n

- in this case only-if and for-all semantics coincide

Updating PXML: Example

- Only-if semantics:

For every match of n, if there is a match of q, then insert t under n

- in this case only-if and for-all semantics coincide

For-all Insertions: Data Complexity

For-all	Distributional nodes	Event conj	Event formulas
RSP	Linear/P †		
SP	not in PTIME		
TP	not in PTIME	Linear/P †	
TPJ	not in PTIME, \#P-hard	P^{*}	P

${ }^{\dagger}$ Linear/P: Linear for queries w/o descendent edges, Polynomial otherwise the computation is not in PSPACE, from [Abiteboul\&al.:2009]

Outline

I. Probabilistic data
2. Problem of updates
3. Updating desecrate PXML
4. Updating continuous PXML

Continuous PXML

$N(30,4)$ - Normal distribution

- Probabilistic p-documents with continuous distributions stored on the leaves
- Semantics defined in terms of continuous sets of XML documents

Problems with Updates

- Insert an alerter "increases" for a sensor only-if the second measurement is greater than the first one

- probability of the insertion (event) is I/2
- the update is not representable with event formulas and distributions on leaves: we need correlations between distributions

Conclusion

- Comprehensive picture of updates' complexity:
- Discrete PXML models with distributional nodes and event formulas
- RSP, SP, TP and TPJ update operations
- Polynomial algorithm for SP update operations without descendent edges
- Results can be generalized to other PXML models and probabilistic updates
- Continuous PXML: problems are highlighted

- Thank you

References

- [Kimelfeld\&al:2007] - Benny Kimelfeld, Yehoshua Sagiv: Matching Twigs in Probabilistic XML.VLDB 2007: 27-38
- [Senellart\&al:2007] -Pierre Senellart, Serge Abiteboul: On the complexity of managing probabilistic XML data. PODS 2007: 283-292

