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This chapter deals with data mining in uncertain XML data models, this uncertainty
typically coming from imprecise automatic processes. We first review the literature
on modeling uncertain data, starting with well-studied relational models and moving
then to their semistructured counterparts. We focus on a specific probabilistic XML
model, that allows representing arbitrary finite distributions of XML documents,
and has been extended to also allow continuous distributions of data values. We
summarize previous work on querying this uncertain data model and show how to
apply the corresponding techniques to several data mining tasks, exemplified through
use cases on two running examples.

1 Introduction

Though traditional database applications, for instance, bank account management, have no room
for uncertainty, more recent applications, such as information extraction from the Web, automatic
schema matching in information integration, or information gathering from sensor networks are
inherently imprecise. This uncertainty is sometimes represented as the probability that the data
is correct, as with conditional random fields in information extraction (Lafferty, McCallum, &
Pereira, 2001), or uncertain schema mappings in information integration (Dong, Halevy, & Yu,
2009). In other cases, only confidence in the information is provided by the system, which can be
seen after renormalization as an approximation of the probability. More rarely, some applications
do not provide any form of preference among possible uncertain choices (think, for example,
of missing data in a data recovery application), or only some unweighted preferences (like the
core solution in data exchange (Fagin, Kolaitis, & Popa, 2005) or a minimal repair in managing
inconsistent databases (Chomicki & Libkin, 2000; Lopatenko & Bertossi, 2007)).

Usually, data uncertainty is not formally taken into account: only the most likely interpretation
is kept for future processing, or all probable choices above a threshold are maintained. We
claim this is not sufficient. There is a need for managing the imprecision in this data more
rigorously. The need is even stronger when the uncertain data is manipulated by other systems,
potentially uncertain themselves. A good example of that is data mining. Consider a scenario
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where some dataset (say, a list of emails) was acquired, cleaned, and enriched, by a variety
of systems (information extraction, deduplication, data integration, natural language analysis,
sentiment analysis, etc.). We now want to mine this dataset, for instance to construct from it a
list of popular keywords, or to build a social network of individuals, where the friendship links
between two persons is derived from their recorded interactions. An application that would make
use of the inherent uncertainty in the dataset would be able to discover much more knowledge
than one that would ignore it altogether. Besides, in the mining task the confidence annotation in
the data could also be used to derive the confidence of the resulting (mined) data.

A number of models and systems for managing uncertain data have been proposed in the
literature and a high-level picture of some of them is presented in this chapter. We focus, however,
on the particular case of XML data, adapted in the cases where the information is either not
strictly constrained by a schema (e.g., Web data), or inherently tree-like (mailing lists, parse
trees of natural language sentences, etc.). We also mostly discuss probabilistic models, which
have the advantage, in addition to being suited to a number of tasks that provide probability or
probability-like confidence scores, of allowing extensive mathematical manipulations (more so
than models based on fuzzy logic (Galindo, Urrutia, & Piattini, 2005), that are not discussed in
this chapter).

The objective of our chapter is thus to bridge the studies on uncertain XML and data mining.
On the one hand, we want to introduce different models of uncertain data to the data mining
community. On the other hand, we want to study different data mining tasks for probabilistic
XML. Recent studies of probabilistic XML (Abiteboul, Kimelfeld, Sagiv, & Senellart, 2009;
Kimelfeld, Kosharovsky, & Sagiv, 2009; Kharlamov, Nutt, & Senellart, 2010) focus on query
answering and updates, but mining, that has been studied in the context of relational probabilistic
data (Aggarwal, 2009; Bernecker, Kriegel, Renz, Verhein, & Züfle, 2009), has not received
attention in the semistructured case. Note that the change of representation format from tables to
trees also makes data mining tasks different (Nayak, 2005). In this chapter we propose methods
for mining probabilistic XML data (frequent items, correlations, summaries of data values,
etc.) that rely on the existing literature on probabilistic XML querying (Kimelfeld et al., 2009;
Abiteboul, Chan, Kharlamov, Nutt, & Senellart, 2010).

In the following part of this chapter we discuss several main approaches to uncertainty modeling.
We start with uncertain relational databases and present examples and intuitions of incomplete
and probabilistic tables. We discuss how these approaches were adapted to the semistructured
setting and illustrate incomplete XML trees and two probabilistic XML models: with local and
global probabilistic relationships. The next section is devoted to a formal presentation of these
probabilistic XML models; we present the syntax and semantics of discrete and continuous
probabilistic XML. We then summarize known results about probabilistic XML querying, both
for Boolean and aggregate queries, that are at the basis of the data mining approaches we present
in a subsequent section, where we give examples and develop computation techniques for mining
frequent, co-occurring, or popular items, or for summarizing continuous distributions.
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2 Models of Uncertainty

In this section, we discuss how to formally model the uncertainty that arises in applications.
Unsurprisingly, there is a trade-off between expressiveness and succinctness of the model on one
hand and its simplicity and the ability to efficiently use it for query processing on the other hand.
We first discuss relational data then see how these relational uncertain data models can be adapted
to XML, which we will focus on in the rest of this chapter. Historically, uncertain relational
data models precede semistructured ones and these heavily rely on the ideas developed for the
relational setting. Moreover, translating probabilistic XML into relations is a way to manage it, as
shall be discussed further. Due to this historical and practical importance of relational uncertain
models, we present them in detail.

2.1 Relational Models of Uncertain Data

The relational model, proposed by Codd (1970) is the most commonly used data representation
model today. The need for modeling uncertainty in relational tables has been felt as early as the
mid-1970s (Codd, 1975) and has led to the notion of null values implemented in System R, one
of the first relational DBMS, a few years afterwards (Date, 1981). We first present this way of
representing uncertain data and look next to more expressive models.

Codd tables. The first works mentioning the problem of incompleteness in relational models
are by Codd (1975, 1979). Codd proposed to augment relational tables with special constants,
called nulls and usually denoted @, assumed to be different from all other data values. A null is
meant to be a syntactic substitute for a missing or uncertain value. Relational tables with tuples
that may contain @ are called Codd tables or naïve tables (Abiteboul, Hull, & Vianu, 1995). For
example, one can use @ as a value for the unknown telephone number of Mary in the following
Codd table Tex:

id name tel_nr

1 Mary @
Codd proposed a semantics for query evaluation over tables with nulls based on three-valued

logics. According to this semantics, logical expressions involving nulls are evaluated using
“true”, “false” and “unknown”, e.g., (@ > 5) is unknown, (@ > 5)∧ (5 < 3) is false while
(@ > 5)∨ (3 < 5) is true. Codd’s semantics for nulls is the current standard in SQL (ISO/IEC,
2008) and implemented in the main relational DBMSs. However, it can produce counterintuitive
results, as noted by Grant (1977): evaluating a query

SELECT * FROM Tex WHERE tel_nr = ’333 111’ OR tel_nr <> ’333 111’

over Tex returns no answers, while one might expect the tuple about Mary.
An alternative semantics of Codd tables, that will be helpful for other uncertain data models as

well, is given by sets of possible worlds (Abiteboul et al., 1995). From the incomplete data about
Mary in our example we can only guess what her missing phone number is. Each guess gives
one completion of the data, that is, one complete database, and all the possible guesses give a
set of data completions and, consequently, a set of corresponding databases, or worlds. When
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the domain (the set of legal values) for a given attribute is infinite, there can be infinitely many
such worlds. The actual database is assumed to be one of these possible worlds. In the following
we use the term incomplete database to refer to such a set of possible worlds, denoted as D .
Formalisms to represent sets of possible databases, such as Codd tables, are called representation
systems.

From the point of view of possible-world semantics, nulls are treated as variables, and different
occurrences of a null value correspond to different variables. The semantics of a Codd table T is
the set of all databases rep(T ) (where rep stands for represents) obtained from it by substituting
every occurrence of @ with a data value from the corresponding domain. Looking back to the
example of Mary,

rep(Tex) = {{1,Mary,111 333} ,{1,Mary,333 444} . . .} .

Codd tables have serious limitations in representing incomplete databases, in particular when
one wants to model additional knowledge about the unknown data values (Imieliński & Lipski,
1984). Consider the following incomplete database: Mary and John, spouses, have the same
unknown telephone number, which might be different from the unknown telephone number of
a third person Bob. In addition we may have constraints on the unknown values, for instance,
that Mary’s age is between 30 and 35 and that she is younger than John and older than Bob. This
incomplete database cannot be represented as a Codd table, since we need the ability to have
coreferences across null values, and to express constraints on unknown values. To overcome
these limitations, Imieliński & Lipski (1984) introduced the representation system of c-tables (“c”
stands for “conditional”).

C-tables. In c-tables, nulls are labeled with subscripts such that two nulls with the same label
always denote the same value. C-tables are also equipped with an extra column to store (local)
boolean conditions of the form @1 < c or @1 < @2 on labeled nulls and constants. Here is an
example of a c-table representing the incomplete database discussed in the previous paragraph:

id name tel_nr age cond

1 Mary @1 @3 @3 ∈ (30,35)
2 John @1 @4 @3 < @4
3 Bob @2 @5 @5 < @3

Note that a c-table where every labeled null occurs only once and with an empty condition
column is a Codd table. The possible-world semantics of c-tables is similar to that of Codd tables,
with the difference that one substitutes all occurrences of the same labeled null with the same
constant, and afterwards deletes from the resulting table each tuple whose attributes do not satisfy
the conditions associated to the tuple.

Evaluation of a query Q over an incomplete database D is defined point-wise: one queries all
the databases in D separately and then considers the set of query results, which is an incomplete
database, as the output Q(D), that is, Q(D) = {Q(d) | d ∈D}. An important question studied
for different representation systems is to understand under which query languages they are closed,
i.e., given a representation T and a query Q, whether it is possible to represent Q(rep(T )) in the
same formalism as T (Sarma, Benjelloun, Halevy, & Widom, 2006). It was shown (Imieliński
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& Lipski, 1984) that Codd tables are closed under the project-union fragment of the relational
algebra, but are not closed under select or join. In contrast, c-tables are closed under the whole
relational algebra, i.e., selection, projection, join, difference, union, and (attribute) renaming.
Interestingly, these closure results also give polynomial-time algorithms for directly constructing a
representation of Q(rep(T )) by evaluating Q over T , treating nulls as constants, and (for c-tables)
combining the conditions with Boolean operators that depend on the operation performed over
the corresponding tuples. Details can be found in (Imieliński & Lipski, 1984).

Probabilistic models. Modeling uncertainty by incomplete databases is not enough: it is
often useful to have some indication of the likelihood of possible worlds, or of the confidence
we have in a piece of information. This can be done by adding probabilities to incomplete
database models. A probabilistic database is a probabilistic distribution over a set of possible
worlds. As for incomplete databases, we are interested in compact representation systems for such
probabilistic distributions. We are thus looking for probabilistic counterparts to the incomplete
database representation systems described earlier.

A first model, inspired by Codd tables, is that of p-Codd tables (Lakshmanan, Leone, Ross,
& Subrahmanian, 1997). They assume that each attribute inside each tuple has a separate finite
distribution of values. Consider a tuple whose value of the name attribute is either “Mary” with
probability p = 0.3 or “John” with p = 0.7; the phone number is either “111 333” with p = 0.2,
or “333 444” with p = 0.8. The corresponding p-Codd table can be represented as follows:

id name tel_nr

1
Mary (p = 0.3) 111 333 (p = 0.2)
John (p = 0.7) 333 444 (p = 0.8)

Every world of a p-Codd table has an associated probability that is equal to the product of the
probabilities of every choice taken to obtain that world. For example, the probability of the world
{(1,Mary,111 333)} is 0.3×0.2 = 0.06.

Another early probabilistic model has been independently introduced by Fuhr & Rölleke (1997)
and Zimányi (1997). A so-called tuple-independent database is a probabilistic database where
the probability of each tuple is given, and where the existence of a tuple is independent of the
existence of the other tuples. The model was further extended by Ré, Dalvi, & Suciu (2006) to the
so-called block-independent databases or BID, by regrouping tuples of a relation into independent
blocks, with mutually exclusive tuples inside a given block, as in the following example:

id name age prob.

1 Mary
30 0.3
32 0.5
35 0.2

2 John
37 0.5
40 0.5

The semantics of BIDs chooses at most one tuple in each block, and choices across blocks
are independent. In this example, the tuple (1,Mary,30) can be kept with probability 0.3, the
tuple (1,Mary,32) with 0.5, and (1,Mary,35) with 0.2, and these tuples are mutually exclusive.
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Independently from this choice, one of the two tuples (2,John,37) or (2,John,40) can be chosen
with uniform probability.

Both p-Codd tables and BIDs assume that occurrences of attribute values or tuples in a given
world are independent from each other. Due to this assumption the models cannot capture
complex probabilistic dependencies across data items. This limitation is similar to the limitations
of Codd tables with respect to c-tables. A very general probabilistic model is thus an extension
of c-tables to probabilistic c-tables (Green & Tannen, 2006), where every variable in a table is
treated as a random variable.

Recently a number of systems to support probabilistic relational databases were developed,
they include Trio at Stanford (Widom, 2005), MYSTIQ at U. Washington (Boulos et al., 2005),
MayBMS at Cornell and U. Oxford (Huang, Antova, Koch, & Olteanu, 2009), and PrDB at
U. Maryland (Sen, Deshpande, & Getoor, 2009). The Trio system implements probabilistic
variants of or-sets (Imieliński, Naqvi, & Vadaparty, 1991; Libkin & Wong, 1996), and ?-sets
(Sarma et al., 2006), which can be seen as c-tables with correlations within tuples only. In
addition, Trio supports data provenance in order to trace the origin of query results. MYSTIQ
implements BIDs. MayBMS is an extension of PostgreSQL and implements so called world-
set decompositions (Antova, Koch, & Olteanu, 2007), that are probabilistic c-tables where the
domains of labeled nulls are finite and dependencies (conditions) on variables and data items are
of a limited form. The dependencies are encoded using the cross product of probabilistic tables.
PrDB is based on graphical models to capture uncertain data, which are a well known probabilistic
modeling technique coming from the statistics and machine learning community. PrDB captures
both tuple and attribute uncertainty together with complex probabilistic correlations among tuples
and attributes, encoded as factored join distributions.

For further reading on probabilistic databases we refer the reader to (Green & Tannen, 2006;
Sarma et al., 2006), where there is a nice overview of some probabilistic models.

2.2 Semistructured Models of Uncertain Data

Semistructured models of uncertain data have been much less studied than relational ones. As
we shall see, the models proposed so far are, unsurprisingly, semistructured counterparts of the
relational models discussed above. However, they are still worthwhile to study on their own, since
they are used to represent different kinds of uncertain data and that typical query languages over
trees have different expressive power from that over relations (tree-pattern queries vs conjunctive
queries, XPath vs SQL).

Incomplete XML. Barceló, Libkin, Poggi, & Sirangelo (2009) proposed a model of incom-
plete XML that is inspired by c-tables and tree-pattern queries. In the spirit of c-tables, their model
allows representing unknown labels, using variables. Besides that, their model also supports
structural uncertainty, which is not possible in c-tables, but is common when data is queried
through tree-patterns queries. It is thus possible to model uncertainty along horizontal (sibling)
and vertical (descendant, child) navigational axes. To illustrate, consider the uncertain XML
document about people in a company of Figure 1. The first person is a manager with name Mary
and unknown phone number, denoted x. The second person is John, his position is unknown,
denoted as the variable Y , and his telephone is unknown but the same as of Mary. The third person
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manager Y

name tel_nr name tel_nr name
“Mary” x “John” x “Bob”

*

Figure 1: An incomplete XML document

has name Bob. It is also known that (the node storing) Mary’s phone number is the following
sibling of (the node storing) her name and (the node storing) Bob’s name is a descendant of the
root. No further structural information is known.

Problems over uncertain XML documents studied in (Barceló et al., 2009) are consistency
of partial descriptions (i.e., whether there is an XML document satisfying a given description),
representability of complete documents by incomplete ones, and query answering. They also show
how schema information, the presence of node identifiers, and missing structural information
affect the complexity of these main computational problems, and they identify tractable query
classes over incomplete XML descriptions.

Probabilistic XML. Similarly as in the relational setting, a probabilistic semistructured
database is a probability distribution over regular XML documents. A number of models (Nierman
& Jagadish, 2002; Hung, Getoor, & Subrahmanian, 2003a, 2003b; Keulen, Keijzer, & Alink,
2005; Abiteboul & Senellart, 2006) have been proposed for compact representation of probabilis-
tic XML databases. The model we focus here is called PrXML. It was introduced in (Kimelfeld,
Kosharovski, & Sagiv, 2008; Abiteboul et al., 2009) and it uses p-documents as representations.
Practically all probabilistic XML models proposed in the literature can be defined by means of
p-documents.

P-documents are trees with two types of nodes: ordinary and distributional. A p-document can
be thought of as a probabilistic process that generates a random XML document in a conceptually
simple way, namely, each distributional node chooses a subset of its children (see next section).
Therefore, each distributional node of a p-document should specify the probability distribution
of choosing a subset of its children in the above random process. There are several types of
distributional nodes that differ from one another in how they specify probabilities. An example
of a p-document is presented in Figure 2. This p-document, denoted P̂MBOX-L, represents a
mailbox organized in threads. It contains one (uncertain) thread with two (uncertain) messages.
The possible worlds of this probabilistic XML document follow the DTD of Figure 3 (left). The
following fragments of data are uncertain in P̂MBOX-L: the recipient of the first message, the
sender of the second, and a part of the content of the second message. We will come back to this
example in the next section and explain it in more detail.

We consider four types of distributional nodes:
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PrXML
mux, det�PMBOX-L ∈

[2] thread

[20] John

[10] from [13] message

[3] message [4] subject

[14] greetings

mux [33] content

[1] mailbox

[12] content

[24] Hi.

[43] John

[32] to

[25] How [26] are

[46] Finemux

[44] Hi.
0.9

[45] High.
0.1

[73][21] John

[11] to

[70]mux

0.65

[30] from

[41] Mary

0.35

[42] Bob

0.8

[72]

[31] from

0.2 

[22] Mary

det

[23] Bob

[71]

[4] id

[14] 123

Figure 2: PrXMLmux,det p-document P̂MBOX-L: Mailbox organized in threads

det for deterministic (every child is chosen with probability 1);

ind for independent (every child can be chosen independently from another, according to the
corresponding assigned probability);

mux for mutually exclusive (at most one child can be chosen);

cie for conjunction of independent events (each child is chosen according to a conjunction
of probabilistically independent events, which can be used globally throughout the p-
document).

It may seem that using det nodes is redundant, but actually they increase expressive power when
used in conjunction with some of the other types.

We define different families of p-documents in terms of the types of distributional nodes that are
allowed. PrXMLC, where C ⊆ {mux, ind,det,cie}, denotes the family of p-documents that use
the types appearing in the subset C. We ignore here the exp distributional nodes from (Abiteboul
et al., 2009) that are a generalization of mux nodes with less practical interest.
PrXMLmux,ind is a local probabilistic model, that is, it allows for dependencies between

siblings only, or, in other words, for hierarchical dependencies. In this respect PrXMLmux,ind is
a semistructured counterpart of BIDs. It is easy to see that any PrXMLmux,ind p-document can
actually be transformed into an equivalent and as succinct PrXMLmux,det p-document. Therefore,
we shall ignore in the following ind distributional nodes. On the other hand, PrXMLcie is global
since it allows for complicated probabilistic relationships between data items. Thus, PrXMLcie is
a semistructured counterpart of probabilistic c-tables.

The PrXML data model has been extended to represent continuous distributions of data values
(Abiteboul et al., 2010), and to capture infinite probability spaces of documents where the depth or
the width of the possible worlds is unbounded (Benedikt, Kharlamov, Olteanu, & Senellart, 2010).
We focus in this chapter on the standard PrXML model together with continuous distributions,
that we formally introduce in the next section.

An alternative probabilistic XML representation system is that of Cohen, Kimelfeld, & Sagiv
(2008). The idea is to add, on top of a simple PrXML description, external constraints (defined by
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Mailbox DTD

mailbox: (thread)∗

thread: (message, id, subject)
message: (from, to,content,message∗)

from: #PCDATA
to: #PCDATA

content: #PCDATA
subject: #PCDATA

Electricity Consumption DTD

electr-cons: (room1, room2)
room1: (measurement)∗

room2: (measurement)∗

measurement: (date, value)
date: #PCDATA

value: #PCDATA

Figure 3: On the left: Mailbox DTD; on the right: Electricity Consumption DTD

aggregate tree-pattern queries) restricting the validity of possible worlds. For instance, constraints
may only allow possible worlds where at least n nodes of a given type are present. This is related
to the coupling of probabilistic XML documents with schema validation, discussed in (Cohen,
Kimelfeld, & Sagiv, 2009).

3 Probabilistic XML

In this section, we present more formally the syntax and semantics of the PrXML model. We first
focus on a discrete model (to represent discrete probability distributions) and then extend it to
allow continuous data values.

3.1 Discrete Probabilistic XML

We model XML documents as unranked, unordered, labeled trees. Not taking into account the
order between sibling nodes in an XML document is a common but non-crucial assumption.
The same modeling can be done for ordered trees, without much change to the theory. A finite
probability space over documents, px-space for short, is a pair (D ,Pr), where D is a finite set of
documents and Pr maps each document to a probability Pr(d) such that

∑{Pr(d) | d ∈D}= 1.

p-Documents: Syntax. The PrXML model from (Kimelfeld et al., 2009; Abiteboul et al.,
2009) uses p-documents to represent px-spaces in a compact way. As already discussed, a p-
document is similar to a document, with the difference that it has two types of nodes: ordinary and
distributional. Distributional nodes are used for defining the probabilistic process that generates
random documents but they do not actually occur in these. Ordinary nodes have labels and they
may appear in random documents. We require the leaves and the root to be ordinary nodes.

More precisely, we assume given a set X of independent Boolean random variables with
some specified probability distribution ∆ over them. A p-document, denoted by P̂ , is an
unranked, unordered, labeled tree. Each node has a unique identifier u and a label µ(u) in
L ∪{cie(E)}E ∪{mux(Pr)}Pr∪{det} where L are labels of ordinary nodes, and the others are
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PrXML
cie

Pr (x)  = 0.15

Pr (z)  = 0.2

�PMBOX-G ∈
[2] thread

[20] John

[10] from [13] message

[3] message [5] subject

[15] greetings

cie [33] content

[1] mailbox

[12] content

[24] Hi.

[43] John

[32] to

[25] How [26] are

[46] Finecie

[44] Hi.
¬ x

[45] High.
x

[73][21] John

[11] to

[70]

[22] Mary

cie

[23] Bob
¬ x ∧ ¬ z ¬ z 

[30] from

[41] Mary

 z

[42] Bob

¬ z

[72]

[31] from

z 

[4] id

[14] 123

Figure 4: PrXMLcie p-document P̂MBOX-G: Mailbox organized in threads

labels of distributional nodes. We consider three kinds of the latter labels: cie(E) (for conjunction
of independent events), mux(Pr) (for mutually exclusive), and det (for deterministic). If a node u
is labeled with cie(E), then E is a function that assigns to each child of u a conjunction e1∧·· ·∧ek
of literals (x or ¬x, for x ∈X ). If u is labeled with mux(Pr), then Pr assigns to each child of u a
probability with the sum across children at most 1.

Example 1 Two p-documents are shown in Figures 2 and 4.
The first one belongs to PrXMLmux,det since it has only mux and det distributional nodes. The

p-document stores one thread with two messages and the subject “greetings”. The first message
is sent by John and addressed to either himself or to both Mary and Bob. The reason why we
may have this uncertainty in the recipient is that we try to identify the persons’ name using email
addresses. We know that John sent a message to two email addresses that either both belong
to John himself with the probability Pr(n21) = 0.35, or to Mary and Bob with the probability
Pr(n71) = 0.65. This probabilistic ambiguity is modeled with the mux distributional node n70,
since the two options are represented as sub-documents rooted at this node. Note that the det
distributional node n71 is needed to account for both Mary and Bob as the second probabilistic
option for the recipient. Another kind of uncertainty is in the content of the second message.
This message contains a voice record for which automatic speech recognition is ambiguous. In
P̂MBOX-G under the node n73 we have two possible interpretations of a word from a voice record:

“Hi” and “High”. In our example the interpretation “Hi” has a higher probability, i.e., 0.85.
The second p-document, P̂MBOX-G, belongs to PrXMLcie since it has only cie distributional

nodes. For example, node n70 has the label cie(E) and three children n21, n22 and n23, such that
the event formulas labeling the nodes are, respectively, E(n21) = z, E(n22) = ¬z and E(n23) =
¬x∧¬z. The probabilities of the event variables are Pr(x) = 0.15 and Pr(z) = 0.2.

p-Documents: Semantics. The semantics of a p-document P̂ , denoted by JP̂K, is a px-
space over documents, where the documents are obtained from P̂ following a randomized
three-step process (Abiteboul et al., 2009).
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1. We choose a valuation ν of the variables in X . The probability of this choice, according
to the distribution ∆, is

pν = ∏
x∈X

ν(x)=true

∆(x) · ∏
x∈X

ν(x)=false

(1−∆(x)).

2. For each cie node labeled cie(E), we delete its children u where ν(E(u)) is false, and their
descendants. Then, independently for each mux node u labeled mux(Pr), we select one
of its children u′ according to the corresponding probability distribution Pr and delete the
other children and their descendants, the probability of the choice is Pr(u′). We do not
delete any of the children of det nodes.

3. We then remove in turn each distributional node, connecting each ordinary child u of a
deleted distributional node with its lowest ordinary ancestor u′.

The result of this third step is a random document P . The probability of a random generation
is defined by the probabilities of the choices done during the generation and it is the product
of pν , the probability of the variable assignment we chose in the first step, with all Pr(u′), the
probabilities of the choices made in the second step for the mux nodes. The probability Pr(P) is
the sum of the probabilities across all possible random generations that yield P .

Example 2 One can obtain the document dMBOX in Figure 5 by applying the randomized process
to either of the p-documents P̂MBOX-L and P̂MBOX-G.

For P̂MBOX-L in Figure 2 this can be done by making three choices, namely, (i) the right branch
of the node n70 with probability 0.65, (ii) the right branch of n72 with probability 0.8, and finally
(iii) the left branch of the node n73 with probability 0.9. Then the probability of dMBOX is the
product of the probabilities of the choices Pr(d) = 0.65×0.8×0.9 = 0.468.

For P̂MBOX-G in Figure 4 this can be done by assigning ν = {x/false,z/false}. According to ν

the nodes n21, n30, and n45, that are children of cie distributional nodes, are to be deleted from
P̂MBOX-G and do not occur in the resulting document, since the edges incoming to these nodes
are labeled with formulas evaluated by ν to false. The other children of the cie distributional
nodes remain in the resulting document, since the edges incoming to these nodes are labeled
with formulas evaluated by ν to true. This is the only valuation leading to the result document
dMBOX, thus the probability of dMBOX is the product of the probabilities of the assignments for each
variable, that is, of Pr(¬x) = 0.85 and Pr(¬z) = 0.8, and it is equal to Pr(d) = 0.85×0.8 = 0.68.

PrXMLcie vs PrXMLmux,det. PrXMLcie and PrXMLmux,det are both capable of representing
any discrete px-space. However, they correspond to different trade-offs between succinctness
and query efficiency. As shown in (Abiteboul et al., 2009), PrXMLcie is an exponentially more
compact representation system than PrXMLmux,det, which itself is as compact as PrXMLmux,ind.
On the other hand, Kimelfeld et al. (2008, 2009) have shown that there existed a polynomial-time
algorithm (in data complexity) for computing the probability of all tree-pattern queries over
PrXMLmux,det, while all non-trivial queries are #P-complete over PrXMLcie.
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XMLdMBOX ∈
[2] thread

[20] John

[10] from [13] message

[3] message [5] subject

[15] greetings

[33] content

[1] mailbox

[12] content

[24] Hi.

[43] John

[32] to

[25] How [26] are

[46] Fine[44] Hi.

[11] to

[42] Bob

[31] from
[22] Mary [23] Bob

[4] id

[14] 123

Figure 5: XML document dMBOX: Mailbox organized in threads

3.2 Continuous Probabilistic XML

We generalize p-documents to documents whose leaves are labeled with (representations of)
probability distributions over the reals, instead of single values. We give semantics to such
documents in terms of continuous distributions over documents with real numbers on their leaves.

In the discrete case, a p-document defines a finite set of trees and probabilities assigned to them.
In the continuous case, a p-document defines an uncountably infinite set of trees with a continuous
distribution, which assigns probabilities to (typically infinite) sets of trees, the possible events. In
order to support such a model we now consider only documents whose leaves are labeled with
real numbers. Let D be the set of all documents where the values of the leaves range over the
reals. Then, a continuous px-space is a continuous distribution over D . We refer to a textbook on
measure and probability theory such as (Ash & Doléans-Dade, 2000) for the definitions of the
concepts used in this section.

To support (possibly continuous) distributions on leaves, we extend the syntax of p-documents
by an additional type of distributional nodes, the cont nodes. A cont node has the form cont(D),
where D is a representation of a probability distribution over the real numbers. In contrast to the
distribution nodes introduced earlier, a cont node can only appear as a leaf.

Example 3 Consider the probabilistic XML document P̂CONS in Figure 6 that belongs to
PrXMLcont,mux, since it has two types of distributional nodes, namely, cont and mux. Doc-
uments represented by this p-document follow the DTD in Figure 3 on the right.

The p-document collects results of electricity-consumption monitoring by sensors installed in
two rooms: room 1 and room 2. The data in the first room is measured during September 3 and 4.
The consumption on September 3 is reported to be 15 units. This measurement is imprecise,
but we know (from the sensor’s manufacturer) that the error is normally distributed around
the reported value with variance 3. We represent this fact by a continuous node n25 labeled
cont(N(15,3)). On September 4 there is a communication problem with this sensor and the
reported consumption is either 50 units with probability 0.1, or 52 units with probability 0.9.
Moreover when the consumption is higher than 30 the variance of the measurement imprecision is
getting higher and equal to 5. This data is represented using the mux distributional node n27 with
two children that are labeled with continuous distributions cont(N(50,5)) and cont(N(52,5)).
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[1] electr-cons

[4] measurement [5] measurement

[2] room1 [3] room2

mux

[31] N(50,5)

0.1

[33] N(52,5)

[13] date

[26] Sept 4

0.9

PrXML
cont, mux

[11] date [12] value

[23] Sept 3 [25] N(15, 3)

[14] value

[27] 

[7] measurement

mux

[35] Jan 1 

0.7

[36] Jan 2

[17] date

[29] N(200,8)

0.3

[18] value

[28] 

�PCONS ∈

Figure 6: PrXMLmux,cont p-document P̂CONS: Electricity consumption

In the second room we have uncertainty on the date when the measurement stored in the node n29
was collected.

Any finitely representable distribution can appear in a cont node: uniform distributions,
piecewise polynomials, Poisson distributions, etc. We consider in more detail the example of
normal or Gaussian distributions, that were used in the example above.

The probability density function of a Gaussian distribution N(µ,σ2) of mean µ and variance
σ2 is:

f (x) =
1√

2πσ2
e−(x−µ)2/(2σ2).

The density function has a shape of a bell centered in the mean value µ with variance σ2. The
Gaussian distribution is often used to describe, at least approximately, measurements that tends
to cluster around the mean. For example, if a sensor indicates a temperature of 30, then the real
value might be slightly different from 30, but not too much. The further the value is from 30, the
lower the chance that this is the actual temperature. This behavior can be nicely captured by a
Gaussian distribution with mean of 30 and a small variance.

We define the semantics JP̂K of continuous p-documents of PrXMLcont,cie,mux,det as a continu-
ous px-space described by a probability distribution function Pr

P̂
. More precisely, the semantics

is defined in two steps (Abiteboul et al., 2010).
1. Let P̂ ∈ PrXMLcont,cie,mux,det and P̂ ′ ∈ PrXMLcie,mux,det be the p-document obtained

from P̂ by replacing every continuous node with an arbitrary value, say, 0. JP̂ ′K is
a (discrete) px-space ({(d1, p1) . . .(dn, pn)}) with ∑ pi = 1. For a given 1 ≤ i ≤ n, we
consider the document P̂i of PrXMLcont obtained by putting back in di the continuous
nodes of P̂ , where the corresponding leaves still exist.

2. Let Di1 . . .Dik be the k probability distributions over the real numbers represented in the
cont nodes of P̂i. We define then a continuous probability distribution Pri over Rk as the
product distribution (Ash & Doléans-Dade, 2000) of the Di j’s, i.e., the unique distribution
such that Pri(X1×·· ·×Xk) = Di1(X1)×·· ·×Dik(Xk). Let Di ⊆D be all the documents
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mailbox

thread

toid

x

electr-cons

value

x

[n]

[n]

QRecpts

countd
∈TP

countd
QElCon

sum
∈SP

sum

t

countd(n) sum(n)

Figure 7: Two types of queries: TP query Qcountd
Recpts and SP query Qsum

ElCon

that have the same structure as di, that is, that may differ from di on the values of the leaves
only. Then, the probability of every subset D ′ ⊆D defined by Pr

P̂
is

Pr
P̂
(D ′) :=

n

∑
i=1

pi ·Pri(D
′∩Di).

4 Querying Probabilistic XML

We explain here how p-documents can be queried, and what the complexity of this operation
is, depending on the query language considered. Most of the results from this section are
from (Kimelfeld et al., 2009; Abiteboul et al., 2010). They will be useful in understanding the
kind of mining tasks that are tractable, as detailed in the next section. We start by introducing
standard tree-pattern queries, before moving to aggregate queries, which are of special interest
in mining tasks that involve data values. We first define how these queries apply to regular
documents, and then explain how to query probabilistic documents.

Tree-pattern queries. A tree pattern, denoted Q, is a tree with two types of edges: child
edges and descendant edges. The nodes of the tree are labeled by a labeling function with either
labels or variables (e.g., x, y, z), such that no variable occurs more than once, that is, join variables
are not allowed.

A tree-pattern query has the form Q[n̄], where Q is a tree pattern and n̄ is a tuple of nodes
of Q (defining its output). We sometimes identify the query with the pattern and simply write Q
instead of Q[n̄] if the tuple n̄ is not important or clear from the context. If n̄ is the empty tuple,
we say that the query is Boolean. If the set of edges of a query is a linear order, the query is
called a single-path query. We denote the set of all tree-pattern queries as TP, and the subclass of
single-path queries as SP.

Example 4 Consider the two queries in Figure 7, ignoring for now the aggregate functions
countd and sum. The left query is over the mailbox DTD and the right one over the electricity

14



consumption DTD, both can be found in Figure 3. Descendant edges are marked with double
lines.

The left query is a TP query since it has branching. It asks for people that received messages
inside a given thread t. The right query is in SP since it has no branching. It returns all electricity
consumption values recorded in the document.

A valuation maps query nodes to document nodes. A document satisfies a query if there exists
a satisfying valuation, which maps query nodes to the document nodes in a way that is consistent
with the edge types and the labeling. That is,

1. nodes connected by child/descendant edges are mapped to nodes that are children/descendants
of each other;

2. query nodes with label a are mapped to document nodes with label a.
We define that applying a query Q[n̄] to a document d returns a set of tuples of nodes:

Q(d) := {ν(n̄) | ν satisfying valuation for Q} .

Aggregate Functions. An aggregate function maps a finite bag of values (e.g., rationals)
into some domain (possibly the same or different). In particular, we assume that any aggregate
function is defined on the empty bag. We consider here standard aggregate functions: sum, count,
min, countd (count distinct), and avg (average) under their usual semantics. Our results easily
extend to max and topk .

Aggregate functions can be naturally extended to work on documents d: the result α(d) is
α(B) where

B = {|l1, . . . , ln|}
is the bag of the labels of all leaves in d. This makes the assumption that all leaves are of the type
required by the aggregate function, e.g., rational numbers for sum. Again to simplify, we ignore
this issue here and assume they all have the proper type. It is straightforward to extend this model
and the corresponding results with a more refined treatment of typing.

A class of aggregate functions that play an important role in our investigation are monoid ones
(Cohen, Nutt, & Sagiv, 2006), because they can be handled by a divide-and-conquer strategy. It
turns out that sum, count, min, max, and topk are monoid aggregate functions. For example, sum
can be handled as

sum({|l1, . . . , ln|}) = sum({|l1|})+ · · ·+ sum({|ln|}) = l1 + · · ·+ ln.

On the other hand, it is easy to check that neither avg nor countd are monoid aggregate functions
and, as we see further, in general it is more difficult to handle them.

Aggregate Queries over Documents. An aggregate TP-query has the form Q[α(n)], where
Q is a tree pattern, n is a node of Q, and α is an aggregate function. The semantics of such an
aggregate query Q[α(n)] is given by this three-step evaluation:

1. Evaluate the non-aggregate query Q′ := Q[n] over d and obtain a set of nodes Q′(d).
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2. Compute the bag B of labels of Q′(d), that is

B := {|θ(n) | n ∈ Q′(d)|},
where θ is the labeling function of d.

3. Finally, apply α to B.
We denote the value resulting from evaluating an aggregate query Q over d as Q(d).

If Q[n] is a non-aggregate query and α an aggregate function, we use the shorthand Qα to
denote the aggregate query Q[α(n)]. More generally, we denote the set of aggregate queries
obtained from queries in SP, TP and some function α , as SPα , TPα , respectively.

Example 5 Consider the two aggregate queries in Figure 7, where the aggregation nodes are
marked with [n]. The query Qcountd

Recpts ∈ TPcountd asks for the number of different persons receiving
messages inside a given thread t. The evaluation of this query over the document dMBOX from
Figure 5 with t = 123 returns the value 3, since there are three distinct persons concerned, namely,
Mary, Bob and John. The query Qsum

ElCon ∈ SPsum returns the total electricity consumption across
all rooms.

The syntax and semantics above can be generalized in a straightforward fashion to aggregate
queries with an SQL-like GROUP BY operator.

Queries over Probabilistic Documents. We have defined the semantics of queries over
regular documents. We now define their semantics over a p-document P̂ using the possible-world
semantics of p-documents.

First, consider a Boolean query Q. The semantics of Q over P̂ , denoted Q(P̂) is defined as
the probability that Q evaluates to true in the possible-world semantics of P̂:

Q(P̂) = Pr(Q(d) | d ∈ JP̂K).

Similarly, since an aggregate query Qα maps elements of the probability space JP̂K to values
in the range of α , we can see Qα(P̂) as a random variable. We therefore define the result of
applying Qα to P̂ as the distribution of this random variable,

(Qα(P̂))(c) = Pr(Qα(d) = c | d ∈ JP̂K),

for c in the range of α . Note that if the non-aggregate part Q does not match a document d, then
we define Qα(d) depending on the type of α . If α is a monoid function, we define Qα(d) as the
neutral element corresponding to α , e.g., 0 for sum, −∞ for max. If α is countd or avg, we set
Qα(d) = 0.

Observe that for the case of continuous p-documents the probability defining (Qα(P̂))(c) is
equal to zero, unless there are Dirac functions labeling the leaves of P̂ . A more appropriate
definition for continuous p-documents would be on an interval, rather than a single point, that is,

(Qα(P̂))(c1,c2) = Pr(Qα(d) ∈ (c1,c2) | d ∈ JP̂K),

for c1 and c2 in the range of α .
We use the notation Q(P) or Qα(P) to denote the random variable corresponding to the

application of query Q or Qα over the random document P associated to a p-document P̂ .
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Example 6 The evaluation of the query Qcountd
Recpts over the mux-det p-document P̂MBOX-L gives

the distribution:
Qcountd

Recpts (P̂MBOX-L) = {(1,0.35), (3,0.65)} .

Indeed, P̂MBOX-L has three mux distributional nodes n70, n72 and n73 with two children each,
therefore, there are eight possible worlds for this p-document. It is easy to see that in this
example all generations yield different documents. Observe that the document dMBOX can be
generated by choosing the right branch of n70, the right branch of n72, and the left branch
of n73. Considering these distributional nodes as the vector (n70,n72,n73), the eight possible
worlds are w1 = (l, l, l), w2 = (r, l, l), w3 = (l,r, l), w4 = (l, l,r), w5 = (r,r, l), w6 = (r, l,r),
w7 = (l, l,r), w8 = (r,r,r), where l (resp. r) stands for the choice of the left (resp. right) child of
the corresponding mux node. Note that only the choice in node n70 has an influence over the
result of the aggregate query Qcountd

Recpts . One can see that the probabilities of the worlds are, for
example, Pr(w1) = 0.35×0.2×0.9 and Pr(w8) = 0.65×0.8×0.1.

The probability that there are three distinct recipients is:

Pr(Qcountd
Recpts (PMBOX-L) = 3) = Pr(w2)+Pr(w5)+Pr(w6)+Pr(w8) = 0.65,

and otherwise, there is only one recipient (John).
Similarly, one can check that the evaluation of the query Qcountd

Recpts over the PrXMLcie p-document

P̂MBOX-G gives the distribution:

Qcountd
Recpts (P̂MBOX-G) = {(1,0.2), (2,0.12), (3,0.68)}

by considering all possible valuations of the variables x and z.

Complexity of Querying and Aggregating p-Documents We now summarize complexity
results for both querying and aggregating probabilistic XML, from (Kimelfeld et al., 2009;
Abiteboul et al., 2010). We are interested in data complexity (Vardi, 1982), i.e., the complexity
is measured with respect to the size of the input document, the query being fixed. To simplify,
we do not consider continuous distributions here, see (Abiteboul et al., 2010) for details. We are
interested in three computational problems.

The first problem is the computation of the probability

Pr(P |= Q)

that a given Boolean query Q matches a random document P of a given probabilistic docu-
ment P̂ . The second problem is the computation of the probability

Pr(Qα(P) = c)

that the value of a given aggregate query Qα over a random document P of a given probabilistic
document P̂ is equal to a given value c. The third problem is the computation of moments

Ek(Qα(P))
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Table 1: Worst-case data complexity of computation problems for PrXMLmux,det: the probability
of a query match Pr(P |= Q) for a Boolean query Q; the probability of an aggregate
value Pr(Qα(P) = c) and the moment Ek(Qα(P)) of degree k for an aggregate query
Qα where α ∈ {count,sum,min,countd,avg}.

for PrXMLmux,det SP, TP

Pr(P |= Q) PTIME

Pr(Qα(P) = c)
count,min in PTIME

sum,avg,countd FP#P-complete

SP TP

Ek(Qα(P)) in PTIME avg in FP#P

others in PTIME

of degree k for a given aggregate query Qα and a natural number k (moments are useful summaries
of probabilistic distributions, e.g., the moment of degree 1 is the expected value).

For the PrXMLcie model all problems are intractable, namely FP#P-complete (FP#P is a class
of computational problems that are defined using counting counterparts of NP problems) with
the exception of the computation of moments for SPsum and SPcount, which is polynomial-time.

For PrXMLmux,det, the situation is more involved and is described in Table 1. The proba-
bility of a query match can be computed in polynomial time for TP. Note that for relational
databases, computational problems for aggregate queries are usually more difficult than for
non-aggregate queries (Cohen et al., 2006). This situation also holds for PrXMLmux,det when
considering the complexity of a probability of an aggregate value for TPcountd or TPavg queries,
that is, for queries with non-monoid aggregate functions. For TPcount or TPmin the complex-
ity of aggregate value probability computation is the same as for the query match problem.
Moment computation is tractable for SPα with every considered α and even for TPα when
α ∈ {count,sum,min,countd}.

System Issues. Most existing work on probabilistic XML is at the theoretical level. At the
time of this writing, an actual full-fledged system that supports the management of probabilistic
XML is still missing. There are, however, several attempts at meeting this need. A first approach
relies on encoding XML data into relations (Hollander & Keulen, 2010): a probabilistic XML
database thus becomes encoded as a probabilistic relational database, that can then be managed
using a system such as MayBMS, for which efficient query evaluation algorithms have been
developed, both exact and approximate. The downside of the approach is that relational databases
do not exploit the specific characteristics of tree-like data encoded into databases, that for
instance makes tree-pattern queries over local models tractable. Another direction is to natively
process tree-pattern queries over XML data: this is what is done in the implementation of the
EvalDP algorithm (Kimelfeld et al., 2008, 2009) for PrXMLmux,det and this is also the idea
behind ProApproX (Senellart & Souihli, 2010b, 2010a), which implements approximate query
answering using various schemes of sampling methods (Kimelfeld et al., 2009), on top of a native
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XML query processor. Either approach has ignored the specific aspects of indexing and storage
of probabilistic XML. An actual system would need to reduce the number of disk and memory
accesses to data and probabilistic annotations. A first observation is that it is sometimes more
efficient to store the marginal probabilities of nodes in a document rather than the probabilities of
nodes conditioned by the existence of their parent (Li, Shao, & Chen, 2006).

5 Mining Information from Probabilistic XML

In this section we show how techniques developed for query answering over probabilistic XML
can be applied to data mining tasks. We illustrate the techniques on a number of use cases, for
our two example scenarios: a collection of emails (such as the one from P̂MBOX-G or P̂MBOX-L)
and data collected from sensors (e.g., P̂CONS).

Mining Frequent Items. Frequent itemsets play an essential role in many data mining tasks
that look for interesting patterns in databases, such as association rules, correlations, sequences,
episodes, classifiers, clusters. Association rule mining, especially, is one of the most common
data mining task, originally motivated by market basket analysis. This problem assumes that
a number of items, like bread or milk, are bought by customers who fill their market baskets
with (subsets of) these items. The task is to learn which items people usually buy together, this
information being valuable to position items on market shelves and influence the way typical
customers browse stores. Mining frequent itemsets is used as the basis of association rules mining
since they guarantee that the rules are based on sets of items with a high support (Tan, Steinbach,
& Kumar, 2005).

In our mailbox example scenario a traveling agency might want to find cities that are often
mentioned in messages and then use this information for targeted advertisement. The following
request checks for frequent terms in the mailbox repository:

Find a word that with probability higher than θ occurs more than k times in emails
across all the threads.

where θ is the quality of frequent item prediction.
One possible strategy for running this request is to check for each city which is operated by

the agency whether this city is frequently discussed in the mailbox repository. That is, for a
given word w and a p-document P̂ this request could be formulated as the decision problem
Pr(Qcount(P)≥ k)≥ θ for the following SPcount aggregate query written in XPath notation:

Qcount = count(//content/w). (1)

For every p-document P̂ the range of the random variable Qcount(P) (the number of different
values with non-zero probability) is bounded by the number of leaves in P̂ , that is, by the size
|P̂| of P̂ . Therefore, taking into account that the probabilistic events Qcount(P) = n1 and
Qcount(P) = n2, where n1 6= n2, are disjoint, we obtain

Pr(Qcount(P)≥ k) =
|P̂|
∑
n=k

Pr(Qcount(P) = n).
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This sum can be computed in polynomial time as far as the computation of every component is
polynomial. In the previous section we discussed that the tractability of probability computation
Pr(Qcount(P) = n) for a given aggregate value depends on the type of the p-document P̂ . For
P̂ ∈ PrXMLcie the computation is hard, but for P̂ ∈ PrXMLmux,det the computation is indeed
tractable for TPcount.

In the case when Q ∈ TP, the computation of Pr(Qcount(P) = n) can be done using the
techniques of (Cohen et al., 2008) that are based on dynamic programming and boil down to
computing the probability of a query match under aggregation constraints. In the case when
Q ∈ SP, the computation of Pr(Qcount(P) = n) can be done using techniques from (Abiteboul
et al., 2010), which allow to compute the entire distribution Qcount(P̂) in one bottom-up scan of
P̂ , computing thus convex sums and convolutions of distributions.

Example 7 We now compute the probability Pr(Qcount(PMBOX-L) ≥ 2) for the query of (1)
and w = “Hi”. One can see that the probability Pr(Qcount(PMBOX-L) = 1) is the same as the
probability to choose the right child of the node n73, that is, equal to 0.1. The probability
of Pr(Qcount(PMBOX-L) = 2) is equal to the probability of the left-side child, that is, to 0.9.
Moreover, for n > 2, Pr(Qcount(PMBOX-L) = n) = 0. Therefore,

Pr(Qcount(PMBOX-L)≥ 2) = Pr(Qcount(PMBOX-L) = 2) = 0.9

Assuming the required quality of frequent item prediction θ is 0.8, then the word “Hi” is a
frequent item, since it has high frequency has the probability 0.9 > 0.8.

Mining Co-Occurring Items. Another important application of frequent itemset mining is
the extraction of social-network graphs from communication traces. These graphs are used,
for example, in recommender systems or social search applications, when one wants to use the
social network of an individual to personalize recommendations or search results. Mining a
social-network graph in our mailbox setting can be carried out in the following way:

Find all pairs of people that with probability higher than θ are emailing in the same
thread.

Every such pair can be interpreted as an edge of the social network. We could go further and also
require that two persons have exchanged a minimum number of messages to categorize them as
“friends”, for instance, but let us consider this simple request for now.

One possible strategy for running this request is to check for each pair of names (w1,w2)
mentioned in a p-document whether their probability of co-occurrence is high enough. That is,
for a p-document P̂ this request can be formulated as the decision problem Pr(P |= Q)≥ θ for
the Boolean TP query:

Q = //thread[.//from = w1 and .//from = w2]. (2)

The probability of a Boolean query match for TP queries can be computed efficiently over
PrXMLmux,det p-documents using the techniques of (Kimelfeld et al., 2008). On the other hand,
the computation is intractable over PrXMLcie p-documents.
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Example 8 We now compute the probability Pr(P |= Q) ≥ θ for the query of (2), persons
w1 = “John”, w2 = “Mary” and threshold θ = 0.7. The probability Pr(P |= Q) is the same
as the probability to choose the left child of node n72 and thus equal to 0.2, which is less than
the threshold. We conclude that John and Mary are not friends. Besides, if w2 = “Bob”, then
Pr(P |= Q) = 0.8 and since 0.8 > 0.7 we conclude that John and Bob are friends.

Mining Popular Items. In applications such as recommender systems an important task
is to find popular items (Ricci, Rokach, Shapira, & Kantor, 2010). A classic example of a
recommender system is Amazon, where products like books or electronics are recommended
to people. These recommendations are based on both the popularity of items and the purchase
history of individual customers. Popular items are products that either have high users’ ratings or
have been chosen by many customers. In the mailbox example, an item could be a thread and its
popularity could be measured by the number of people that received messages sent within the
thread. An example of a request for popular threads is the following.

Find all threads that with probability higher than θ attract more than k different
recipients.

This request can be formulated as an aggregate query. For a given thread identifier t and a
p-document P̂ , decide whether Pr(Qcountd(P)≥ k)≥ θ holds where Qcountd is the aggregate
query:

Qcountd = countd(//thread[id = t]//to). (3)

As in the case of Qcount(P), the range of the random variable Qcountd(P) is limited by the
number of leaves in P̂ and we can reformulate this query as the sum:

Pr(Qcountd(P)≥ k) =
|P̂|
∑
n=k

Pr(Qcountd(P) = n).

We are again in the case where the tractability of the mining task depends on the tractability of
the probability computation Pr(Qcountd(P) = n). This time the aggregate function is countd,
that is, a non-monoid function, and, consequently, the probability computation is intractable in
both models PrXMLcie and PrXMLmux,det, even for SPcountd queries. This means that the only
known way to compute the probability is to construct the whole probability space of p-documents
JP̂K represented by P̂ , then to evaluate the aggregate query Qcountd in each document of JP̂K
separately and, finally, to sum the probabilities of the documents d ∈ JP̂K where Qcountd(d) = n.

Example 9 We compute the probability Pr(Qcountd(PMBOX-G)≥ 3) for the query of (3) and t =
“greetings”. As discussed in Example 6 there are four documents in JP̂MBOX-GK corresponding to
different assignments of the variables x and z. One can see that the only world where there are at
least three different people subscribed to the thread “greetings” is when both x and z are assigned
to false. The three recipient in this case are Mary, Bob, (who received the first message) and
John (who received the second message). The probability of such a world is 0.85×0.8 = 0.68
Therefore,

Pr(Qcountd(PMBOX-G)≥ 3) = 0.68
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Assume that the required quality of popular item prediction θ is again 0.8. Then the thread
“greetings” is not a popular item, since its popularity has lower probability.

Mining Continuous Data. One application that motivated the introduction of a continuous
model for probabilistic data is monitoring in sensor networks (Cheng, Kalashnikov, & Prabhakar,
2003; Abiteboul et al., 2010). A typical example of sensor network is sensors installed in a
river to measure either the temperature, or the level of water, or the concentration of different
chemical components to predict floods of poisoning of the river. Another example is sensors that
measure consumption of, say, electricity or Internet bandwidth. In sensor networks, monitoring
of measurements’ behavior is the main task. One wants to be alerted whenever the level of water
in the river is growing too fast, or when the electricity consumption is higher than expected. In
this case one can make actions to avoid flooding or to repair, substitute the equipment that is
wasting the electricity.

Coming back to the continuous p-document P̂CONS we would like to perform the following
monitoring task:

Find all rooms where the expected value of the total electricity consumption is more
than v units.

For a given room r, p-document P̂ , and an expected electricity consumption of v units this
request cam be reformulated as the decision problem E(Qsum(P))≥ v for the aggregate query:

Qsum = sum(/∗/r/∗/value). (4)

The expected value E(Qsum(P)) can be computed in polynomial time for continuous p-
documents from PrXMLcont,mux,det as long as one is able to compute the expected values of
the continuous distributions stored on the leaves of p-documents (Abiteboul et al., 2010). The
computation proceeds exactly in the same way as for discrete documents.

Example 10 Let us compute the expected value E(Qsum(P)) for the query of (4), room r =
“room1” and threshold v = 150. This can be done by separately computing the expected values of
the sum in the left and in the right child of n27, and then by combining the values as the convex
sum with the corresponding coefficients 0.1 and 0.9, see (Abiteboul et al., 2010) for details. The
expected value of a Gaussian is obviously its mean. The result is

E(Qsum(P)) = 15+(0.1×50+0.9×52) = 66.8.

Since the expected value is below the threshold, we conclude that the electricity consumption in
room 1 is fine.

6 Conclusion and Future Research

Conclusion. As shown in the previous section, a number of data mining tasks are indeed
possible over probabilistic XML data, and it is possible to use probabilistic characterizations
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(probability higher than a threshold, expected value, etc.) to define these tasks. The efficiency of
the proposed methods critically depends on the kind of data model considered (especially, global
vs local models) and on the tractability of querying over these models, for a query language
(Boolean vs aggregate queries, single-path vs tree-pattern) that depends of the task considered.

Future Research. The foundations of probabilistic XML are now quite well established. The
connection between local and global models is well-understood, and the complexity of querying
these models with tree-pattern queries has been investigated in length. Challenges in modeling
and querying lie in more expressive models (such as the recursive Markov chains of (Benedikt et
al., 2010)), more expressive query languages (especially, involving value joins, cf. (Senellart &
Abiteboul, 2007; Abiteboul et al., 2010)), and understanding better how results from the relational
and XML settings relate to each other. An important missing aspect is the building of an actual
system that leverage the knowledge brought by theoretical studies of probabilistic XML. We have
already pointed at several works in that direction.

On the mining side, however, much remains to be done. The approaches for mining probabilistic
XML data proposed in this chapter directly rely on a reformulation of the problem as a query or a
set of queries. In some cases, this might not be the most efficient technique. Consider for instance
the problem of discovering frequent itemsets. Obviously, an approach that would consider all
possible itemsets of a bounded size and evaluate a query for each of these would be impractical
on large data even though this may amount to running a polynomial-time algorithm. It would
make sense, in the spirit of (Bernecker et al., 2009) for relational data, of first evaluating the
frequency of one-item sets, and then use this information as a basis to discover itemsets of larger
cardinality, making use of the probability scores for top-k retrieval. In other words, this chapter
has described how to model probabilistic XML data, query it, and use this query capability as
a general tool for various mining tasks. Further work could elaborate efficient algorithms for a
specific mining task without necessary relying on the existing querying techniques.
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Key Terms and Definitions

P-documents. A p-document is a tree with two types of nodes: ordinary and distributional. A
p-document can be thought of as a probabilistic process that generates a random XML document
in a conceptually simple way, namely, each distributional node chooses a subset of its children.
Therefore, each distributional node of a p-document should specify the probability distribution
of choosing a subset of its children in the above random process. There are several types of
distributional nodes that differ from one another in how they specify probabilities.

Continuous P-documents. Continuous p-documents generalize p-documents to documents
whose leaves are labeled with (representations of) probability distributions over the reals, instead
of single values.

Tree-Pattern Queries. A tree-pattern query is a tree with two types of edges: child edges
and descendant edges, and with a tuple of nodes defining its output. The nodes of the tree are
labeled by a labeling function with either labels or variables, such that no variable occurs more
than once, that is, join variables are not allowed. If the tuple of output nodes is empty tuple, the
query is Boolean. A single-path query is a tree-pattern query whose set of edges is a linear order.

Aggregate Functions. An aggregate function maps a finite bag of values (e.g., rationals) into
some domain (possibly the same or different). Standard aggregate functions are sum, count, min,
countd (count distinct), and avg (average) under their usual semantics.

FP#P Complexity Class. An N-valued function f is in #P if there is a non-deterministic
polynomial-time Turing machine T such that for every input w, the number of accepting runs of T
is the same as f (w). A function is in FP#P if it is computable in polynomial time using an oracle
for some function in #P. A function is FP#P-hard if there is a polynomial-time Turing reduction
(that is, a reduction with access to an oracle to the problem reduced to) from every function in
FP#P to it. Hardness for #P is defined in a standard way using Karp (many-one) reductions. For
example, the function that counts for every propositional 2-DNF formula the number of satisfying
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assignments is in #P and #P-hard, hence #P-complete. Note also that #P-hardness clearly implies
NP-hardness.

Data Complexity. It is usually assumed that databases are large while queries are typically
very small. Therefore, a common approach to measure complexity of query evaluation, called
data complexity, is to assume that the query is fixed and only the database is given as input.
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