
Online Influence Maximization

Siyu Lei
University of Hong Kong

Pokfulam Road, Hong Kong
sylei@cs.hku.hk

Silviu Maniu
Noah’s Ark Lab, Huawei

Science Park, Hong Kong
silviu.maniu@huawei.com

Luyi Mo
University of Hong Kong

Pokfulam Road, Hong Kong
lymo@cs.hku.hk

Reynold Cheng
University of Hong Kong

Pokfulam Road, Hong Kong
ckcheng@cs.hku.hk

Pierre Senellart
Télécom ParisTech; CNRS LTCI

& NUS; CNRS IPAL
pierre@senellart.com

ABSTRACT
Social networks are commonly used for marketing purposes. For
example, free samples of a product can be given to a few influential
social network users (or seed nodes), with the hope that they will
convince their friends to buy it. One way to formalize this objective
is through the problem of influence maximization (or IM), whose
goal is to find the best seed nodes to activate under a fixed budget,
so that the number of people who get influenced in the end is maxi-
mized. Solutions to IM rely on the influence probability that a user
influences another one. However, this probability information may
be unavailable or incomplete.

In this paper, we study IM in the absence of complete information
on influence probability. We call this problem Online Influence
Maximization (OIM), since we learn influence probabilities at the
same time we run influence campaigns. To solve OIM, we propose
a multiple-trial approach, where (1) some seed nodes are selected
based on existing influence information; (2) an influence campaign is
started with these seed nodes; and (3) user feedback is used to update
influence information. We adopt Explore–Exploit strategies, which
can select seed nodes using either the current influence probability
estimation (exploit), or the confidence bound on the estimation
(explore). Any existing IM algorithm can be used in this framework.
We also develop an incremental algorithm that can significantly
reduce the overhead of handling user feedback information. Our
experiments show that our solution is more effective than traditional
IM methods on the partial information.

1. INTRODUCTION
In recent years, there has been a lot of interest about how social

network users can affect or influence others (via the so-called word-
of-mouth effect). This phenomenon has been found to be useful for
marketing purposes. For example, many companies have advertised
their products or brands on social networks by launching influence
campaigns, giving free products to a few influential individuals (seed
nodes), with the hope that they can promote the products to their
friends [20]. The objective is to identify a set of most influential

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783271.

Feedback

1

42

3

Uncertain Influence Graph

Selection Phase

Heuristic

Explore‐Exploit (EE)

Choose Seeds

Update Graph

1

42

3

0.5

0.1 0.9

0.5
0.2

Real World

Seed
Nodes

PDF

X

Action Phase

follow

follow follow

followfollow

Figure 1: The OIM framework.

people, in order to attain the best marketing effect. This problem of
influence maximization (IM) has attracted a lot of research interest [6,
7, 9, 10, 23].

Given a promotion budget, the goal of IM is to select the best seed
nodes from an influence graph. An influence graph is essentially a
graph with influence probabilities among nodes representing social
network users. In the independent cascade model, for example, a
graph edge e from user a to b with influence probability p implies
that a has a chance p to affect the behavior of b (e.g., a convinces b
to buy a movie ticket) [16]. Given an influence graph, IM aims
to find k seed nodes, whose expected number of influenced nodes,
or influence spread, is maximized. Marketing efforts can then be
focused on the k nodes (or persons). In the IM literature, these seed
nodes are said to be activated [6, 7, 9, 10, 23].

While existing IM algorithms effectively obtain the most influ-
ential seed nodes, they assume that the influence probability value
between each pair of nodes is known. However, this assumption
may not hold. Consider a marketing firm starting in a new city with
some knowledge of the social network of the users in the city. The
company, however, does not know how influence propagates among
these users. Unless the influence probability information is known,
the marketing firm cannot run an IM algorithm and decide the target
users. To obtain these values, action logs, which record the social
network user’s past activities, can be used [11]. This information
may not be readily available.

Is it possible to perform IM on a social network, even if the
information about influence probabilities is absent or incomplete?
We call this problem Online Influence Maximization (OIM), as we
aim at discovering influence probabilities at the same time we are
performing influence campaigns. (We say that an IM algorithm is
offline, if it assumes that the influence probability between every
node pair is known in advance.) In the absence of complete influence
probability information, making the best marketing effort out of a
limited promotion budget can be challenging. To tackle this problem,
we propose a solution based on influencing seed nodes in multiple

rounds. In each round, we select some seed nodes to activate (e.g.,
advertising a product to a few selected users). The feedback of these
users is then used to decide the seed nodes to be activated in the next
round. The information about influence probabilities in the social
network is learnt and refined during these campaigns.

Figure 1 illustrates our OIM framework. It contains multiple
successive influence campaigns, or trials. A trial should fulfill one
of two objectives: (1) to advertise to promising nodes; and (2)
to improve the knowledge about influence probabilities. A trial
consists of two phases: selection and action. In the selection phase,
an uncertain influence graph is maintained. This graph models the
uncertainty of influence probabilities among social network users, in
terms of a probability distribution. A seed selection strategy, based
on an existing IM solution, is then executed on this graph to produce
up to k seed nodes. In the action phase, the selected seed nodes are
activated in the real world (e.g., sending the advertisement message
to chosen users). The actions of these users, or feedback (e.g.,
whether the message is further spread), is then used to update the
uncertain influence graph. The iteration goes on, until the marketing
budget is exhausted. In this paper, we focus on the two crucial
components of the selection phase: (1) seed selection strategy; and
(2) techniques for updating the uncertain influence graph.
1. Seed selection strategy. To choose seed nodes in a trial, a
simple way is to make use of existing IM algorithms. Due to the
lack of knowledge about influence probabilities, this approach may
not be the best. We thus develop an Explore–Exploit strategy (or
EE), which performs IM based on existing influence probability
information:

• [Exploit] Select k seed nodes for getting the most rewarding
influence spread from the influence graph, derived from the un-
certain influence graph. Any state-of-the-art IM algorithms (e.g.,
CELF [19], DD [7], TIM and TIM+ [27]) can be used; or
• [Explore] Select k seed nodes based on some strategy (e.g.,
through estimating the confidence bound of the influence proba-
bility) to improve the knowledge about the influence graph.

In this paper, we study strategies for exploit and explore. With
suitable use of strategies, EE performs better than running an exist-
ing IM algorithm on the uncertain influence graph alone.

In our OIM solution, N trials are carried out. In each trial, an ex-
isting IM algorithm may be executed. If N is large, the performance
of our algorithm can be affected. The problem is aggravated if the
underlying uncertain influence graph is big. For state-of-the-art IM
algorithms (e.g., CELF [19] and TIM+ [27]), this running time is
dominated by the cost of sampling the influence graph. For example,
in TIM+, the sampling effort costs more than 99% of the computa-
tion time. We design an efficient solution, based on the intuition that
users’ feedback often only affects a small portion of the influence
graph. If samples of the previous iterations are stored, it is possi-
ble to reuse them, instead of sampling the influence graph again.
We examine conditions allowing a sampled graph to be effectively
reused in a new trial. We propose an incremental algorithm, and
present related data structures for facilitating efficient evaluation
of our solution. This algorithm can support any sample-based IM
algorithm running on independent cascade models. We demonstrate
how to use TIM+ in this paper.
2. Updating the uncertain influence graph. As discussed before,
our seed selection strategy is executed on the uncertain influence
graph (Figure 1). It is important that this graph accurately reflects
the current knowledge about the influence among different users,
so that the seed selection strategy can make the best decision. We
investigate algorithms for updating this graph based on the feedback
of activated users (e.g., whether they spread out an advertisement

message). We examine two variants, which update the influence
graph locally and globally. A local update refreshes the parameters
of the influence probability distribution between two graph nodes,
while a global update is applied to the parameters of the influence
probability information that applies to the whole uncertain influence
graph. These algorithms are developed based on classical machine
learning methods (e.g, Least Squares Estimation and Maximum
Likelihood).

Our solutions can be adopted by social marketers who aim to
promote their products, in cases when the underlying probabilities
of the influence graph are unknown. Our approach can utilize any
state-of-the-art IM algorithm. We also examine how to update the
uncertain influence graph effectively by machine learning methods.
We develop an incremental algorithm to improve the efficiency
of our solution. Our experiments demonstrate that our proposed
methods can effectively and efficiently maximize influence spread.

2. RELATED WORK
Influence Maximization (IM). Kempe et al. [16] first proposed

the study of IM in social networks. They showed that finding the
set of seed nodes that maximizes influence is NP-hard, and showed
that the greedy algorithm has a constant approximation guarantee.
However, this solution is not very fast, because thousands of samples
are often required, and each sampling operation has a complexity
linear to the graph size. To improve the efficiency of IM solutions,
several heuristics were developed, namely Degree Discount [7],
PMIA [6], IPA [17], and IRIE [15]. Although these heuristics are
fast, their accuracy is not theoretically guaranteed. Improved aprox-
imation algorithms with theoretical guarantees include CELF [19],
CELF++ [13], and NewGreedy [7]. More recently, Borgs et al.
proposed an algorithm based on reverse influence sampling, and
showed that it is runtime-optimal with accuracy guarantees [4]. The
scalability of this solution was enhanced by Tang et al., who devel-
oped TIM and TIM+ [27] to further reduce the number of samples
needed.

There are also other works that address different variants of the
IM problem: (1) incorporating community [28] and topic [2] in-
formation in the propagation process; (2) competition of different
parties for influence [21]; and (3) use of other influence propagation
models such as linear threshold or credit distribution [12, 14, 26].

Learning influence probabilities. Saito et al. [25] modeled the
problem of obtaining influence probabilities as an instance of like-
lihood maximization, and developed an expectation maximization
algorithm to solve it. Given a social network and an action log
(e.g., user u performs action a at time t), Goyal et al. [11] developed
static and time-dependent models to compute influence probabili-
ties between a pair of social network users. These methods require
the action log information of all the users involved to be known
in advance; however, this information may not be available. Our
framework does not require all action logs to be available. Instead,
we select seed nodes in multiple advertising campaigns, so that influ-
ence maximization can be done faster. We then use users’ feedback
in each campaign to learn and refine influence probabilities.

Multi-armed bandits (MAB). The EE strategy in the seed se-
lection phase of our solution is inspired by the ε-greedy algorithm,
which was originally developed to solve the multi-armed bandit
problem (MAB) [24]. In the ε-greedy algorithm [22], ε controls
the trade-off between exploitation and exploration. Specifically,
with probability 1 - ε , an action is executed based on the current
knowledge (i.e., exploit); with probability ε , another action is per-
formed (i.e., explore). This framework is adopted as a baseline in
our solution.

Table 1: Symbols used in this paper.

symbol description

G influence graph
V set of users (nodes) of G
E set of edges of G
pi j influence probability from i to j (fixed value)
Pi j influence probability from i to j (random variable)
N number of trials
k budget for each trial
S set of seed nodes

σ(S) expected influence spread
(α,β) global prior for the beta distribution

An set of successfully activated nodes in trial n
Fn real world activation feedback in trial n

(hi j,mi j) number of successful and unsuccessful
activations of the edge from i to j

[8] studies combinatorial MAB algorithms, and in particular
the CUCB algorithm, which uses upper confidence bounds [3] for
choosing between explore and exploit. A scenario akin to the OIM
problem is illustrated and it is shown that CUCB achieves a bound
on the regret. However, CUCB is not applicable due to two factors.
First, the activated nodes are counted multiple times leading to
redundant activations and choices. Second, and most practically
important, the approximation bound depends on an initialization
step in which each arm (in this scenario, seed node) is tested to get
an activation feedback; this is not practically feasible in cases when
activation budgets are limited. Another algorithm closely related to
our framework is Thompson Sampling [1], where each independent
arm is simulated by a Beta distribution of successes and failures.
In our scenario, the arms are the parameters of the algorithms, and
defining success and failure in a result of an influence maximization
is not trivial.

3. INFLUENCE MAXIMIZATION: REVIEW
We now provide a review of the IM problem and its solutions.

This forms the basis of the OIM problem to be studied in this paper.
Table 1 shows the notation used.

Let G = (V,E, p) be an influence graph, where v ∈ V are users
or nodes, and e ∈ E are the links or edges between them. Each
edge e = (i, j) between users i and j is associated with an influence
probability pi j ∈ [0,1]. This value represents the probability that
user j is activated by user i at time t+1, given that user i is activated
at time t. We also suppose that time flows in discrete, equal steps.
In the IM literature, pi j is given for every i and j. Obtaining pi j
requires the use of action logs [11] which may not be available. In
this paper, we investigate how to perform IM without knowing pi j
in advance.

In the independent cascade model, at a given timestamp t, ev-
ery node is in either active (influenced) or inactive state, and the
state of each node can be changed from inactive to active, but not
vice-versa. When a node i becomes active in step t, the influence is
independently propagated at t +1 from node i to its currently inac-
tive neighbors with probability pi j. Node i is given one chance to
activate its inactive neighbor. The process terminates when no more
activations are possible. A node can be independently activated by
any of its (active) incoming neighbors. Suppose that the activation
process started from a set S of nodes. We call the expected number
of activated nodes of S the expected influence spread, denoted σ(S).
Formally:

DEFINITION 1. Given a weighted graph G = (V,E, p), let infl
be the immediate influence operator, which is the random process

that extends a set of nodes X ⊆V into a set of immediately influenced
nodes infl(X), as follows:

Pr(v ∈ infl(X)) =

1 if v ∈ X;
1−∏(u,v)∈E

u∈X
(1− puv) otherwise.

Given a seed set S⊆V , we define the set of influenced nodes I(S)⊆
V as the random variable that is the fixpoint I∞(S) of the following
inflationary random process:

I0(S) = /0;

I1(S) = S;

In+2(S) = In+1(S)∪ infl(In+1(S)\In(S)) for n > 0.

The influence spread σ(S) is E[|I(S)|].

Based on the above definition, [16] defines the influence maxi-
mization problem (IM) as follows.

PROBLEM 1. Given a weighted graph G = (V,E, p) and a num-
ber 1 6 k 6 |V |, the influence maximization (IM) problem finds a
set S⊆V such that σ(S) is maximal subject to |S|= k.

As discussed in [16], evaluating the influence spread is difficult.
Even when the spread values are known, obtaining an exact solution
for the IM problem is computationally intractable. Next we outline
the existing IM algorithms for this problem.

IM algorithms. A typical IM algorithm evaluates the score of a
node based on some metric, and inserts the k best nodes, which have
the highest scores, into S. For example, the degree discount (DD)
heuristic [7] selects the nodes with highest degree as S. Another
classical example is greedy: at each step, the next best node, or the
one that provides the largest marginal increase for σ , is inserted into
S. This is repeated until |S|= k. The greedy algorithm provides an
(1− 1/e)-approximate solution for the IM problem. To compute
the influence spread efficiently, sampling-based algorithms with
theoretical guarantees were developed. For example, CELF [19]
evaluates the expected spread of nodes with the seed nodes, and
select the nodes with the largest marginal spread; TIM [27] counts
the frequencies of the nodes appearing in the reversed reachable
sets, and chooses the nodes with the highest frequencies; TIM+ [27]
is an extension of TIM for large influence graphs.

We say that the above IM algorithms are offline, since they are
executed on the influence graph once, assuming knowledge of pi j
for every i and j. If these values are not known, these algorithms
cannot be executed. This problem can be addressed by online IM
algorithms, as we will discuss next.

4. MAXIMIZING INFLUENCE ONLINE
The goal of the online influence maximization (or OIM) is to

perform IM without knowing influence probabilities in advance.
Given a number N of advertising campaigns (or trials), and an
advertising budget of k units per trial, we would like to select up to
k seed nodes in each trial. These chosen nodes are then advertised
or activated, and their feedback is used to decide the seed nodes in
the next trial. Let us formulate the OIM problem below.

PROBLEM 2. Given a weighted graph G = (V,E, p) with un-
known probabilities puv, and a budget consisting of N trials with
1 6 k 6 |V | activated nodes per trial, the online influence maximiza-
tion (OIM) problem is to find for each 1 6 n 6 N a set Sn of nodes,
with |Sn|6 k, such that E

[∣∣⋃
16n6N I(Sn)

∣∣] is maximal.

Note that the IM problem, discussed in Section 3, is a special
case of the OIM problem (by setting N = 1). Since solving the IM

problem is computationally difficult, finding a solution for the OIM
is also challenging. We propose a solution that consists of multiple
trials. In each trial, a selection (for choosing appropriate seed nodes)
and an action (for activating the seed nodes chosen) is performed
(Figure 1). The seed selection makes use of one of the offline IM
algorithms discussed in Section 3.1

We next present the uncertain influence graph, which captures
the uncertainty of influence probabilities (Section 4.1). We then
discuss our solution based on this graph in Section 4.2.

4.1 The Uncertain Influence Graph
We assume that a social network, which describes the relation-

ships among social network users, is given. However, the exact
influence probability on each edge is not known. We model this by
using the uncertain influence graph, in which the influence proba-
bilities of each edges are captured by probability density functions,
or pdf (Figure 1). The pdf can be refined based on the feedback
returned from a trial. Since influence activations are binary random
variable, we capture the uncertainty over the influence as a Beta
distribution. Specifically, the random variable of the influence prob-
ability from node i to node j, Pi j is modeled as a Beta distribution
having probability density function:

fPi j (x) =
xαi j−1(1− x)βi j−1

B(αi j,βi j)
,

where B(αi j,βi j) is the Beta function, acting as a normalization
constant to ensure that the total probability mass is 1, and αi j and βi j
are the distribution parameters. For the Beta distribution, E[Pi j] =

αi j
αi j+βi j

and σ2[Pi j] =
αi jβi j

(αi j+βi j)2(αi j+βi j+1) . An advantage of using
the Beta distribution is that it is a conjugate prior for Bernoulli
distributions, or more generally, binomial distributions. This allows
us to compute the posterior distributions easily when new evidence
is provided. Section 6 explains this in more detail.

At the time of the first trial, we assume no prior information
about the influence graph, except global α and β parameters, shared
by all edges, i.e., Pi j ∼ B(α,β) ∀(i, j) ∈ E. These global α and
β parameters represent our global prior belief of the uncertain
influence graph. In the absence of any better prior, we can set
α = β = 1, with B(1,1) being the uniform distribution.

Our model can be extended to handle various prior informa-
tion about the influence graph. For example, if we have individ-
ual prior knowledge (αi j,βi j) about an edge, we can set Pi j as
Pi j ∼ B(αi j,βi j). When we have access to only the mean and vari-
ance of the influence of an edge, we can derive αi j and βi j from
the formulas of E[Pi j] and σ2[Pi j] given above. For the situation
in which some action logs involving the social network users are
available, algorithms for learning the influence probabilities from
these logs [11, 12] can be first applied, and the estimated influence
probabilities can then be used as prior knowledge for the graph.

4.2 The OIM Framework
Algorithm 1 depicts the solution framework of the OIM problem.

In this algorithm, N trials are executed. Each trial involves selecting
seed nodes, activating them, and consolidating feedback from them.
In each trial n (where n = 1, . . . ,N), the following operations are
performed on the uncertain influence graph G:

1. Choose (Line 5): A seed set Sn is chosen from G, by us-
ing an offline IM algorithm, and strategies for handling the
uncertainty of G (Section 5).

1In this paper we assume that the advertising budget k is fixed for
each trial.

Algorithm 1 Framework(G, k, N)

1: Input: # trials N, budget k, uncertain influence graph G
2: Output: seed nodes Sn(n = 1 . . .N), activation results A
3: A← /0
4: for n = 1 to N do
5: Sn← Choose(G,k)
6: (An,Fn)← RealWorld(Sn)
7: A← A∪An
8: Update(G,Fn)

9: return {Sn|n = 1 . . .N}, A

2. RealWorld (Lines 6–7): The selected seeds set is tested in the
real world (e.g., sending advertisement messages to selected
users in the social network). The feedback information from
these users is then obtained. This is a tuple (An,Fn) comprised
of: (i) the set of activated nodes An, and (ii) the set of edge
activation attempts Fn, which is a list of edges having either a
successful or an unsuccessful activation.

3. Update (Line 8): We refresh G based on (An,Fn) (Section 6).
One could also choose not to update G, and instead only run

an offline IM based on the prior knowledge. Our experimental
results show that the influence spread under our OIM framework
with proper updates is better than the one without any update. Next,
we investigate the design and implementation of Choose (Section 5)
and Update (Section 6).

5. CHOOSING SEEDS
We now study two approaches for selecting k seed nodes in the

Choose function of Algorithm 1: heuristic-based (Section 5.1) and
explore-exploit strategies (Section 5.2).

5.1 Heuristic-Based Strategies
We first discuss two simple ways for choosing seeds from the

uncertain influence graph G.
1. Random. This heuristic, which arbitrarily selects k seed nodes,

is based on the fairness principle, where every user has the same
chance to be activated.

2. MaxDegree. Given a node p in G, we define the out-degree
of p to be the number of outgoing edges of p with non-zero influence
probabilities. The out-degree of p can mean the number of friends
of the social network user represented by p, or their number of
followers. Intuitively, if p has a higher out-degree, it has a higher
chance of influencing other users. The MaxDegree heuristic simply
chooses the nodes with k highest out-degree values.

The main advantage of these two heuristics is that they are easy to
implement. However, they do not make use of influence probability
information effectively. In a social network, some users might be
more influential than others. It may thus be better to target users with
higher influence probabilities on their outgoing edges. The above
heuristics also do not consider the feedback information received
from the activated users, which can be useful to obtain the true
values of the influence probabilities. We will examine a better
seed-selection method next.

5.2 Explore-Exploit Strategies
The Explore-Exploit (EE) strategy chooses seed nodes based on

influence probabilities. Its main idea is to exploit, or execute an
offline IM algorithm, based on the influence information currently
available. Since this information may be uncertain, the seed nodes
suggested by exploit may not be the best ones. We alleviate this prob-
lem by using explore operations, in order to improve the knowledge
about influence probabilities. Solutions for effectively controlling

explore and exploit operations have been studied in the multi-armed
bandit (MAB) literature [22, 24]. These MAB solutions inspire our
development of the two seed-selection strategies, namely ε-greedy
and Confidence-Bound (CB). Next, we present these two solutions
in detail.

1. ε-greedy. In this strategy (Algorithm 2), a parameter ε is used
to control when to explore and when to exploit. Specifically, with
probability 1− ε , exploitation is carried out; otherwise, exploration
is performed.

Algorithm 2 ε-greedy(G,k)

1: Input: uncertain influence graph G = (V,E,P), budget k
2: Output: seed nodes S with |S|= k
3: sample z from Bernoulli(ε)
4: if z = 0 then S← Explore(G,k)
5: else S← Exploit(G,k)
6: return S

In Exploit, we execute an offline IM algorithm, given the graph
information we have obtained so far. Recall that we model the
influence probability pi j between nodes i and j as a probability
distribution Pi j. We use the mean of Pi j to represent pi j, i.e., pi j =

E[Pi j] =
αi j

αi j+βi j
. A graph with the same node structure but with the

pi j values on edges constitutes an influence graph G′, on which
the offline IM algorithm is executed. Notice that when ε = 0, the
solution reduces to exploit-only, i.e., the IM algorithm is run on G′

only.
The main problem of Exploit is that estimating pi j by E[Pi j]

can be erroneous. For example, when Pi j is a highly uncertain
Beta distribution (e.g., the uniform distribution, B(1,1)), any value
in [0,1] can be the real influence probability. Let us consider a
node i that has, in reality, a high influence probability pi j on another
node j. Due to the large variance in Pi j , its value is underestimated.
This reduces the chance that Exploit chooses node i to activate;
consequently, the seed nodes selected may not be the best. The
Explore routine is designed to alleviate this problem. Rather than
equating pi j to E[Pi j], pi j is over-estimated by using Pi j’s standard
deviation, or σi j , pi j = E[Pi j]+σi j.

Then an offline IM algorithm on these new values of pi j is per-
formed. A node i that has a small chance to be chosen may now
have a higher probability to be selected. Our experiments show that
the use of Explore is especially useful during the first few trials
of the OIM solution, since the influence probability values during
that time may not be very accurate. From the feedback of activated
users, we can learn more about the influence probabilities of the
edges of i. We will discuss this in detail in Section 6.

This ε-greedy algorithm has two problems. First, it is difficult
to set an appropriate ε , which may have a large impact on its ef-
fectiveness. Second, increasing pi j by σi j may not always be good.
Based on these observations, we next propose an improved version
of ε-greedy.

2. Confidence-Bound (CB). The main idea of this strategy is to
use a real-valued parameter θ to control the value of pi j:

pi j = E[Pi j]+θσi j. (5.1)

As shown in Algorithm 3, for every edge e from node i to j, we
compute its mean µi j, variance σi j, and influence probability pi j
based on θ (Lines 3-6). An offline IM algorithm is then run on G′,
the influence graph with the probabilities computed by Equation 5.1
(Lines 7-8). The set S of seed nodes is then returned (Line 9).

Algorithm 3 CB(G,k)

1: Input: uncertain influence graph G = (V,E,P), budget k
2: Output: seed nodes S with |S|= k
3: for e ∈ E do
4: µi j←

αi j
αi j+βi j

5: σi j← 1
(αi j+βi j)

·
√

αi jβi j
(αi j+βi j+1)

6: pi j← µi j +θσi j

7: G′← G, with edge probabilities pi j,∀(i, j) ∈ E
8: S← IM(G′,k)
9: return S

 Feedback

Global

Local

 in CB

Global Update
(Sec 6.2)

Local Update (Sec 6.1)

 Update

(Sec 6.3)

Update in the nth trial

Figure 2: Updating the influence graph and θ with user feedback.

Setting θ . The key issue of Algorithm 3 is how to determine
the value of θ , so that the best S can be found. Observe that when
θ = 0, pi j becomes µi j or E[Pi j], and CB reduces to Exploit of the
ε-greedy algorithm. On the other hand, when θ = 1, pi j becomes
E[Pi j] +σi j, and CB is essentially Explore. Thus, ε-greedy is a
special case of CB. However, CB does not restrict the value of θ to
zero or one. Thus, CB is more flexible and general than ε-greedy.

In general, when θ > 0 is used, it means that CB considers the
influence probabilities given by µi j’s to be under-estimated, and it
attempts to improve the activation effect by using larger values of pi j .
On the contrary, if θ < 0, the influence probabilities are considered
to be over-estimated, and CB reduces their values accordingly. As we
will discuss in Section 6.3, θ can be automatically adjusted based
on the feedback returned by activated users. This is better than
ε-greedy, where the value of ε is hard to set. Note that we choose
to use a global θ instead of a local one on each edge, to reduce the
number of parameters to be optimized and to improve efficiency.

6. MANAGING USER FEEDBACK
Recall from Algorithm 1 that after the seed nodes S are obtained

from Choose (Line 5), they are activated in the real world. We then
collect feedback from the users represented by these nodes (Lines 6–
7). The feedback describes which users are influenced, and whether
each activation is successful. For instances of such feedback traces,
take for example Twitter and other micro-bloggin platforms. In
these, the system can track actions such as likes and retweets which
are reasonable indicators of influence propagation. We now explain
how to use the feedback information to perform Update (Line 8),
which refreshes the values of influence probabilities and θ used in
the CB algorithm.

Given a trial n in Algorithm 1, let An be the set of activated nodes
in that trial, and Fn be the set of activation results. Specifically,
Fn contains tuples in the form of (i, j,ai j), where i and j are users
between which an activation was attempted; ai j = 1 if the influence
was successful, and ai j = 0 otherwise. Note that (i, j) is an edge of

the influence graph G. Also, Fn might not contain all edges of G,
since an activation might not reach every user in G.

Three kinds of updates can be performed based on An and Fn:
1. Local (Section 6.1): Update the influence probability’s distribu-
tion (i.e., B(αi j,βi j)) if the edge (i.e., activation from i to j) was
attempted;
2. Global (Section 6.2): Update the global prior information α

and β , which are shared by all edges of G; and
3. θ (Section 6.3): Update the value of θ used in CB, if it is used as
a seed selection strategy in Choose.

Figure 2 illustrates these three kinds of updates in the n-th trial.
In the next sections, we discuss how to conduct these updates in
detail. We remark that these update methods do not affect Random
and MaxDegree, since they do not use these updated values.

6.1 Updating Local ~α and ~β

As we mentioned before, the influence probability between any
two adjacent nodes i and j is modeled as a Beta distribution with
parameters αi j and βi j , denoted as Pi j ∼ B(αi j,βi j). Since the Beta
distribution is a conjugate prior for the Bernoulli distribution, then,
given feedback (i, j,ai j) in Fn (seen as a Bernoulli trial), we can
update the distribution as follows:

1. If ai j = 1, i.e., the activation from node i to node j was
successful: Pi j ∼ B(αi j +1,βi j);

2. If ai j = 0, i.e., the activation from node i to node j failed:
Pi j ∼ B(αi j,βi j +1).

In the beginning, we have no prior information about the distri-
bution except the global α and β , i.e., αi j = α and βi j = β . After
n trials and activations, we have thus collected n pieces of feed-
back information. Let hi j (mi j) be the number of successful (failed)
activations for edge (i, j). Then αi j = α + hi j, βi j = β +mi j.
Hence, this local update is equivalent to maintaining a distribution
B(α +hi j,β +mi j), i.e., the distributions on the edges simply count
the number of successful and failed activations passing through that
edge, smoothed by the prior B(α,β).

Note that this update process corresponds exactly to the MLE
approach taken by [11] to learn influence probabilities from action
logs, with a smoothing prior added. The important difference is
that [11] only conducts this estimation for edges where there is
evidence, i.e., local updates. If the evidence is sparse, this can lead
to a sub-optimal, and overfitting, influence graph. Global update of
Beta priors, which go beyond the local feedback, can yield a better
influence graph.

6.2 Updating Global ~α and ~β

Local updates to the random variable Pi j allows the edge influ-
ence probability distribution to be updated directly. In the first few
trials, however, the real influence spread is sparse and limited, and
most of the edges will not be reached by an activation. Therefore,
the influence of choosing a good prior will weigh heavily on how
Choose performs. Once some evidence is gathered, this prior can
be refined by taking into account the feedback in a global sense,
over all trials up to the current one. Next, we present two methods
of updating the global α and β priors based on the feedback.

Least Squares Estimation. The first solution is to find the
best fit for the α and β priors according to the real spread that we
obtained from the real world test at each trial.

Let us first explain the reasoning when there is one seed node
(i.e., |Sn| = 1), and we fix α = 1. Let An be the set of successful
activated nodes before the n-th trial (i.e.,An =∪n−1

l=1 Al), and σn({i})
be the expected number of additional activated nodes (or expected
additional spread) from the seed node i in the n-th trial. For Sn = {s},

σn({s}) is:

σn({s}) = 1+ ∑
(s,i)∈E
i 6∈An

psi×σn({i})+ ∑
(s,i)∈E
i∈An

psi× (σn({i})−1),

which is the sum of the outgoing spreads weighted by the outgoing
probabilities psi and discounted by 1 for nodes already activated
along an outgoing edge.

We estimate σn({s}) by |An| from the feedback obtained by the
influence campaign. We also estimate psi =

α+hsi
α+hsi+β+msi

, i.e., the
mean of B(αi j,βi j). Note that hsi + msi is the total number of
attempts from node s to i, which is the same for neighbors of s
because every activation through s tries to activate all outgoing
nodes in the independent cascade model. Thus, we use ts to denote
hsi +msi ∀(s, i) ∈ E. By further estimating σn({i}) by an overall
estimation σ̂n and set α = 1, we obtain

|An|= 1+
1

β + ts +1

(
∑

(s,i)∈E
(hsi +1)σ̂n− ∑

(s,i)∈E,i∈An

(hsi +1)

)
.

Let os be the outgoing degree of s, as be the number of (previ-
ously) activated neighbors of s (i.e., as = |{i|(s, i) ∈ E ∧ i ∈An}|),
hs be the number of total successful activations (or hits) on outgoing
edges of s, and has be the number of total hits on edges leading to
activated neighbors. The above equation is simplified to

(|An|−1)β = (1−|An|)(ts +1)+(hs +os)σ̂n− (has +as).

We then rewrite it as the form of xnβ = yn. Since this equation
also applies to activations in all trials up to the current one, we use
the least square estimator for linear regression without an intercept
term to get an estimator for β , β̂ = (~x ·~y) / (~x ·~x), where ~x and ~y
are the vectors of values xn and yn. The same principles apply when
estimating α and β simultaneously, and we omit the details here.

We estimate σ̂n by the average spread of the node from the acti-
vation campaigns, i.e., σ̂n = ∑

n
l=1 |An|/∑

n
l=1 |Sn|. Note that, when

σ̂n = 0, the equation for |An| is exactly the degree discount estima-
tor from the IM literature [7], and represents a lower bound on the
spread from a node.

A further complication occurs when |Sn|> 1, which might result
in an equation at least quadratic in β , due to the influence probability
equations of nodes which are neighbors of more than one seed
node. In this work, we simplify the estimation by assuming full
independence among seed nodes, and hence replacing xn and yn by
the sum over all s ∈ Sn.

We remark that the estimator above suffers from the reliance on
the spread estimation σ̂n. However, it is a good option when we
cannot access the full activation feedback Fn, but instead, do have
the access to the set of successful activated nodes in each trial (i.e.,
the set An). This may happen in an alternate problem setting when
one cannot get all the feedback information from the activated users
in An.

Maximum Likelihood Estimation. Given the feedback from
trial n, we can compute the likelihood of the feedback Fn given the
probabilities of each edge in the feedback tuples, by assuming that
they are independently activated. The likelihood depends on the
successful activations (hits) and failed activations (misses) of each
edges and the global prior parameters α and β :

L(Fn) = ∏
(i, j,ai j)∈Fn

pai j
i j (1− pi j)

1−ai j ,

L(Fn | α,β) = ∏
(i, j,ai j)∈Fn

(α +hi j)
ai j (β +mi j)

1−ai j

α +β +hi j +mi j
.

We need to find the parameters α and β for maximizing the
likelihood:

argmax
α,β

L(Fn | α,β).

To simplify calculations, we use the usual method of taking the
maximum of the log likelihood, and arrive at the optimal values by
solving the equations ∂ logL(Fn|α,β)

∂α
= 0 and ∂ logL(Fn|α,β)

∂β
= 0 for

α and β , respectively. This becomes:

∑
(i, j,ai j)∈Fn,ai j=1

1
α +hi j

= ∑
(i, j,ai j)∈Fn,ai j=0

1
β +mi j

.

This equation can be solved numerically by setting α and solving
β . In practice, we can fix α = 1, and solve β by binary search. The
full details can be found in our technical report [18].

6.3 Updating ~θ

We now explain how to dynamically update the value of θ used
in the CB strategy (Section 5.2).

Let ~θ = {θ1,θ2, . . . ,θq} be the q possible values of θ . We also let
~ϕ = {ϕ1,ϕ2, . . . ,ϕq}, where ϕ j is the probability of using θ j in CB.
Initially, ϕ j = 1/q for j = 1, . . . ,q, and its value is updated based on
the gain obtained in each trial. The gain is defined as Gn = |An|/|V |,
where |An| is the real influence spread observed in each round. We
then determine ~θ by using the exponentiated gradient algorithm [5].
The rationale of using this solution is that if the value of θ j used
in this trial results in a high gain, the corresponding ϕ j will be
increased by the algorithm, making θ j more likely to be chosen in
the next trial. Algorithm 4 gives the details.

Algorithm 4 ExponentiatedGradient(~ϕ,δ ,Gn, j,w)

1: Input: ~ϕ , probability distribution; δ , accuracy parameter; Gn,
the gain obtained; j, the index of latest used θ j; w, a vector of
weights; N, the number of trials.

2: Output: θ

3: γ ←
√

ln(q/δ)
qN , τ ← 4qγ

3+γ
, λ ← τ

2q
4: for i = 1 to q do
5: wi← wi× exp

(
λ × Gn×I[i= j]+γ

ϕi

)
6: for i = 1 to q do
7: ϕi← (1− τ)× wi

∑
k
j=1 w j

+ τ× 1
q

8: return sample from ~θ according to ~ϕ distribution

Here, γ and λ are smoothing factors used to update weights, and
I[z] is the indicator function. We compute ~ϕ by normalizing vector
w with regularization factor τ . All the values in w are initialized
with the value of 1.

In [5], it is shown that, for a choice of constant θ ’s, Exponenti-
atedGradient can provide a regret bound on the optimal sequence
of chosen θ in the vector. In our case, the experimental results
also show that ExponentiatedGradient is the best performing
strategy.

7. INCREMENTAL SOLUTION FOR OIM
In our OIM solution, an offline IM algorithm is invoked once

in every trial to select seeds. However, the state-of-the-art IM
algorithms with good theoretical approximation bounds, such as
CELF, TIM, and TIM+, are generally costly to run, especially for
large graphs with high influence probabilities. For instance, in our
experiments in DBLP, which has around two million edges, the best

IM algorithm, TIM+, takes 30 minutes to select the nodes for a trial.
Since an OIM solution requires multiple trials, the running time can
be very high in practice. In this section, we study how to improve
the scalability of the OIM solution. We use TIM+ as an example, but
our approach can generally be used to handle other IM algorithms
(e.g., CELF) that perform sampling on influence graphs.

Let us first explain the intuition behind our approach. We observe
that the running time of TIM+ is dominated by the cost of sampling
the influence graph. In our experiments, over 99% of its computation
is spent in generating samples (which are random reverse reachable
sets, or RR sets in short). Given a node v, the RR is the set of all
nodes that can influence v. Another observation is that the size of
the real-world feedback Fn is relatively small compared with the
number of edges in influence graph G. In DBLP, when k is set to
1 for each trial, the average size of Fn is less than 1% of the total
number of edges of G. Since samples are generated from G, and the
user feedback only influences a small part of G, it can only affect a
few samples obtained from the updated G in the next trial. Based on
these observations, we develop a new method to save the sampling
effort, based on reusing samples of previous trials. We call this the
incremental algorithm of OIM.

Here we give an outline of this approach; the details can be found
in [18]. The algorithm stores the samples generated during the TIM+
computation in previous trials in a data structure. In a new trial,
when TIM+ requires a new sample, instead of immediately sampling
G, we first randomly select a stored sample from the data structure,
and check whether this sample can be reused. If this is the case, the
selected sample will be returned; otherwise, a new sample will be
generated according to the current G and stored in the data structure.
Next, we discuss how to determine whether a sample can be reused.

Intuitively, if G remains the same (or only deviates little), the
occurrence probability of a sample is only slightly affected. Hence,
reusing a randomly selected sample will not incur much error. Recall
that in our OIM framework, only the update component might affect
the estimation of the influence graph. Therefore, we only need to
check whether the updates affect G or the samples significantly, in
order to determine whether a sample can be reused. Suppose s is the
sample to be checked. In TIM+, s is a random RR set. We design
three checks corresponding to three updates in Section 6.
[1. Local check] If all edges that point to a node in s are not affected
by local updates, local check is passed.
[2. Global check] If the prior of generating s (denoted by αt ,β t)
is close to the current prior, global check is passed. The check is
controlled by a threshold τ , i.e., the condition is | α t

α t+β t − α

α+β
|< τ .

[3. θ check] If θ and the standard deviation of the global prior when
generating s (denoted by θ t ,σ t) is similar to the current values, θ

check is passed, i.e., |θ tσ t −θσ |< τ .
We remark that with our checking mechanism, conducting checks

on a sample is about d times faster than sampling a new one, where
d is the average in-degree for a node. As shown by our experiments,
this incremental approach can significantly save the computation
effort of our OIM solution.

8. EXPERIMENTAL EVALUATION

Setup. We developed a “real-world simulator” to mimic the user
feedback process of Figure 1. This simulator first uses a real social
network to obtain a graph G. It then associates an influence prob-
ability to each edge in G, where pi j = 1/d j, with d j the in-degree
of node j. This setting of influence probability values is adopted in
previous works [6, 7, 12, 16, 19, 27].

10 20 30 40 50700

800

900

1,000

1,100

1,200

k (NETPHY, Budget = 50)

In
flu

en
ce

Sp
re

ad

(a) Varying k under fixed budget

0 10 20 30 40 500

1,000

2,000

3,000

4,000

Trial (NETPHY, k = 5)

In
flu

en
ce

Sp
re

ad

0 10 20 30 40 500

2,000

4,000

6,000

Trial (NETPHY, k = 10)

In
flu

en
ce

Sp
re

ad

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

·104

Trial (NETPHY, k = 25)

In
flu

en
ce

Sp
re

ad

(b) Varying k under fixed trials

Real Random MaxDegree CB CB-INC

Figure 3: Heuristic-based v.s. Explore–Exploit.

Table 2: Datasets

Dataset NETHEPT NETPHY DBLP

of Nodes 15K 37K 655K
of Edges 59K 231K 2.1M
avg. degree 7.73 12.46 6.1
max. degree 341 286 588

When the chosen seed nodes are tested on whether they can influ-
ence other nodes, the simulator runs a single independent cascade
simulation on G, and obtains feedback information Fn, in a form of
(i, j,ai j) and An, the set of successfully activated nodes. We mea-
sure the effectiveness of an OIM solution by its influence spread in
the real world, after N trials, as the total number of successfully ac-
tivated nodes in these trials, i.e, |∪N

n=1 An|. We repeat each solution
10 times and report the average.

Datasets. We have studied several real social network datasets.
We have used NETHEPT and NETPHY are collaboration networks,
obtained from arXiv.org in the High Energy Physics Theory and
Physics domains, respectively. We have also used the DBLP graph,
which is an academic collaboration network. In these datasets, nodes
represent authors, and edges representing co-authorship. These
datasets are commonly used in the literature of influence maximiza-
tion [6, 7, 12, 16, 27]. Table 2 shows the details of these datasets.

Options for OIM algorithm. We have evaluated several possible
options for the seed selection and graph update components for our
OIM solution:

[Choosing seeds]
• Heuristic-based strategies: Random, MaxDegree;
• Explore–Exploit strategies: 1) Exploit contains only exploit

algorithm; 2) ε-greedy represents ε-greedy algorithm; 3)
CB is our Confidence-Bound explore–exploit algorithm with
Exponentiated Gradient update.

[Updating graph]
• NO does not conduct any update;
• LOC only local updates;
• LSE local and global updates where Least Squares Estimation

is adopted in global update;
• MLE as LSE, but Maximum Likelihood Estimation is adopted.

In our experiments, we compare the algorithms using combina-
tions of the above two components. Note that Random and MaxDe-

gree do not rely on the influence probability of the edges, and they
are not combined with update methods. When a particular EE strat-
egy is adopted, the update method would be specified, for instance,
CB+MLE means that we use CB with MLE update. By default, we use

MLE for updating the graph. Furthermore, if the EE strategy is used
in choosing seeds, we use CB by default.

When an IM algorithm is invoked in an EE strategy, we use TIM+
since it is the state-of-art influence maximization algorithm. We also
compare the incremental approach with the non-incremental one for
EE strategy. For example, we denote the incremental version for CB
as CB-INC.

Parameters. By default, the global prior is set to be B(1,19),
θ = {−1,0,1} in CB, ε = 0.1 in ε-greedy, and τ = 0.02 in the
incremental approach.

Our algorithms, implemented in C++, are conducted on a Linux
machine with a 3.40 GHz Octo-Core Intel(R) processor and 16GB of
memory. Next, we focus on NETPHY, and evaluate different com-
binations of the algorithms in our OIM framework. We summarize
our results for other datasets in Section 8.2.

8.1 Results on NetPHY
Heuristic-based v.s. Explore–Exploit. We first fix the total

budget and verify how the OIM algorithms perform with different
number of trials. We set Budget = 50, and vary k in {1,5,10,25,50}.
By varying k, we essentially vary the total budget. For example, with
k = 5, 50 units of budget is invested over N = 10 trials. Figure 3a
shows our results. Since Random only has influence spread less
than 200 on average, we do not plot it. We observe that the spread
of MaxDegree does not change much since it does not depend
on the real-world feedback. For CB, its spread increases when k
decreases and it is better than MaxDegree when k 6 10 (or N ≥ 5).
Specifically, when k = 1, CB is about 35% better than MaxDegree.
The reason is that, for CB, a smaller k indicates more chances to
get real-world feedback, and thus, more chances to learn the real
influence graph, which leads to a better result. Moreover, when
k = 50, all budget is invested once, which can be regarded as an
offline solution, and produces the worst result for CB. This further
indicates the effectiveness of our OIM framework. For CB-INC, it
performs close to CB with only a small discount (around 5% for
different k) on the spread. It supports our claim that the incremental
approach can perform without incurring much error.

We next fix k and compare different algorithms in Figure 3b. The
results are consistent with our previous findings that CB outperforms
other variants. CB-INC produces similar results with CB. We observe
that the gap between CB and MaxDegree increases with N and k.
For example, at N = 50, CB is about 20% better than MaxDegree

when k = 5, and the percentage grows to 45% when k = 25. The
reason is that larger k and larger N give more chances for CB to learn
the real influence graph. We also plot the result for TIM+ when the
real influence probability is known, denoted as Real. This can be
seen as an oracle, serving as a reference for other algorithms. We

0 10 20 30 40 500

1,000

2,000

3,000

Trial (NETPHY, k = 5)

In
flu

en
ce

Sp
re

ad

0 10 20 30 40 500

2,000

4,000

6,000

Trial (NETPHY, k = 10)

In
flu

en
ce

Sp
re

ad

Exploit ε-greedy CB

Figure 4: Explore–exploit strategies

0 10 20 30 40 500

200

400

600

800

1,000

Trial (NETPHY, k = 1)

In
flu

en
ce

Sp
re

ad

(a) Different updates

0 50 100 150 200

600

800

1,000

1,200

Beta (NETPHY, k = 1)

In
flu

en
ce

Sp
re

ad

(b) Effect of priors

CB+MLE CB+LSE CB+LOC CB+NO

Figure 5: Comparing different updating methods

find that CB performs close to Real, and its discount on the spread
decreases with N. For example, when k = 5, the discount decreases
from 30% at N = 10 to 13% at N = 50. This indicates that, with
more real-world feedback, the learned graph for CB is closer to the
real graph, and thus, leads to a closer result to Real.

Explore–Exploit Strategies. We compare three versions of the
EE strategies for different k in Figure 4. We observe that Exploit
is the worst, since it may suffer from the wrong prediction of the
influence probabilities and does not explore other potential high
influencing nodes. CB is the best, especially, for small k. When
k = 5,N = 50, CB is about 20% and 32% better than ε-greedy and
Exploit, respectively. The reason is that for a smaller k, fewer
feedback tuples are returned in one trial, which makes the learned
influence graph converge to the real graph slower. Hence, the effect
of exploration is strengthened, which is more favorable to CB. We
have also conducted experiments for ε-greedy by varying ε . We
observe that its performance is sensitive to ε and ε = 0.1 is the best
one in our results, but it is still worse than CB in all cases.

Updating the uncertain influence graph. In Figure 5a, we com-
pare different updating methods for the uncertain influence graph.
Although NO makes use of the prior knowledge about the influence
graph to select seeds, it still performs worse than other update op-
tions. LOC is slightly better, but still worse than MLE and LSE, since
it does not employ any global update and it suffers from the sparse-
ness of the activations. MLE is the best (about 25% better than LSE

and 40% better than LOC), which is consistent with the fact that MLE
makes use of the full feedback to update the graph while LSE only
utilizes the set of successfully activated nodes.

We also test the updating methods with different priors (Figure 5b)
to check whether they are sensitive to the prior. We observe that
while LOC and NO fluctuate a lot with different priors, MLE and LSE’s
performance is very stable. In fact, during different runs of MLE and
LSE with different priors, the global β values all converge to around
27. This supports the fact that the global updating techniques are

0 10 20 30 40 500

2,000

4,000

6,000

8,000

Trial (NETPHY, k = 1)

R
un

ni
ng

Ti
m

e
(i

n
se

co
nd

s)

(a) Time v.s. N

0 10 20 30 40 500

2,000

4,000

6,000

8,000

k (NETPHY, Budget = 50)

R
un

ni
ng

Ti
m

e
(i

n
se

co
nd

s)

(b) Time v.s. k

Random MaxDegree CB CB-INC

Figure 6: Cumulative running time

crucial when we do not have good prior information. Even an inexact
choice of prior will be generally fixed, minimizing the impact on
performance.

Efficiency. In Figure 6a, we illustrate the cumulative running
time for running N trials for different algorithms. Random and
MaxDegree are most efficient as they do not rely on any influence
evaluation. With the help of incremental approach, CB-INC runs sig-
nificantly faster than CB, and for the case where N > 10, it achieves
about 10 times speedup. For instance, at N = 50, CB-INC reduces
the running time by 88%, compared to CB. This is intuitive, as in the
first few trials the graph is more uncertain, and the updates affect the
samples a lot. However, when N > 10, we observe that the global
priors become more stable, leading to a high ratio of re-using sam-
ples (e.g., the ratio is about 80% to 99% when N > 10). Moreover,
the average in-degree of NETPHY is 12.46, making the time of
generating a new sample about an order of magnitude slower than
re-using a sample. These two factors together make CB-INC have a
much more efficient performance than CB.

We then show the efficiency results by fixing Budget = 50 and
varying k in Figure 6b. The running time of MaxDegree and Random
is stable for various k, while CB and CB-INC show a decline on
efficiency when k decreases. This is because a smaller k indicates
that more trials are required to invest all budget, and so, TIM+
should be executed more often, for a general decrease in efficiency.
Another observation is that the improvement of CB-INC over CB
increases with k. This further strengthens the utility of using CB-

INC in practice. Figure 6b and Figure 3a together show a tradeoff
of setting k: a smaller k leads to a better performance in spread
but worse performance in efficiency. We suggest to set a small k to
ensure the algorithm’s better performance in spread. The value of k
will depend on how much total time that the user can afford.

Effect of τ . We also verify the effect of τ in the incremental
approach by varying τ from 0.01 to 0.03 and fixing k = 1,Budget =
50. We compare them with CB, the non-incremental algorithm. First,
a smaller τ gives better results in terms of influence spread. For
instance, it leads to 3%, 5%, 15% discount in spread compared with
CB for τ = 0.01,0.02,0.03, respectively. However, a smaller τ leads
to a slowdown in efficiency since it has a stricter requirement in
global check. For example, the running time for τ = 0.01 is about
28% slower than the one for τ = 0.02 and 38% worse than the one
for τ = 0.03.

Discussion. The OIM framework is highly effective in maximiz-
ing influence when the real influence probabilities are unknown. In
this framework, MLE is the best updating method. Moreover, CB
and CB-INC consistently outperform other algorithms. By using
CB-INC, we can also significantly improve the efficiency of CB, with
only a small discount in influence spread.

0 10 20 30 40 500

1,000

2,000

3,000

Trial (NETHEPT, k = 5)

In
flu

en
ce

Sp
re

ad

0 10 20 30 40 500

0.5

1

1.5

2
·104

Trial (DBLP, k = 5)

In
flu

en
ce

Sp
re

ad

Real Random MaxDegree CB CB-INC

Figure 7: Effectiveness on other datasets

0 10 20 30 40 500

200

400

600

800

1,000

Trial (NETHEPT, k = 1)

R
un

ni
ng

Ti
m

e
(i

n
se

co
nd

s)

0 10 20 30 40 500

2

4

6

·104

Trial (DBLP, k = 1)

R
un

ni
ng

Ti
m

e
(i

n
se

co
nd

s)

Random MaxDegree CB CB-INC

Figure 8: Efficiency on other datasets

8.2 Results for NetHEPT and DBLP
Figure 7 and Figure 8 show representative results for NETHEPT

and DBLP. These results are consistent with the ones for NETPHY,
where CB and CB-INC are close to the oracle (Real), and better
than heuristic-based algorithms in maximizing influence spread. For
efficiency, CB-INC significantly reduces the running time of CB,
especially for a large dataset DBLP. For instance, at k = 1,N = 50,
CB-INC saves 16 hours compared with CB which costs 19 hours in
total to get the result for DBLP.

9. CONCLUSIONS
In this paper, we examine how to perform influence maximization

when influence probabilities may not be known in advance. We
develop a new solution, where IM is performed in multiple trials,
and we have proposed explore–exploit strategies for this problem.
We showed experimentally that explore–exploit based on the uncer-
tainty in the graph performs well. We also proposed novel methods
to update the knowledge of the graph based on the feedback received
from the real world, and showed experimentally that they are effec-
tive in longer campaigns. Even when the influence probabilities are
not known in advance, the influence spread of our solution is close
to the spread using the real influence graph, especially when the
number of trials increases.

In the future, we will examine the scenario where budgets are
different in each trial. We will extend our solution to handle other
complex situations (e.g., the change of influence probability val-
ues over time), consider IM methods (e.g., [28], [2]) that utilize
community and topic information, and other influence propagation
models, such as linear threshold or credit distribution [12, 14, 26].
Another direction is to increase the scalability of our methods; this
may require distributed algorithm, such as distributed sampling.

Acknowledgments. Siyu Lei, Silviu Maniu, Luyi Mo, and Reynold
Cheng were supported by University of Hong Kong (201311159095
and 201411159171). We thank the reviewers for their comments.

10. REFERENCES
[1] S. Agrawal and N. Goyal. Analysis of thompson sampling for the

multi-armed bandit problem. In COLT, 2012.
[2] C. Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates. Online

topic-aware influence maximization queries. In EDBT, 2014.
[3] P. Auer. Using confidence bounds for exploitation-exploration

trade-offs. JMLR, 3:397–422, 2003.
[4] C. Borgs, M. Bratbar, J. Chayes, and B. Lucier. Maximizing social

influence in nearly optimal time. In SODA, 2014.
[5] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games.

Cambridge University Press, 2006.
[6] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In KDD,
2010.

[7] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in
social networks. In KDD, 2009.

[8] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit:
General framework and applications. In ICML, 2013.

[9] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in
social networks under the linear threshold model. In ICDM, 2010.

[10] P. Domingos and M. Richardson. Mining the network value of
customers. In KDD, 2001.

[11] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence
probabilities in social networks. In WSDM, 2010.

[12] A. Goyal, F. Bonchi, and L. V. Lakshmanan. A data-based approach to
social influence maximization. PVLDB, 5(1), 2011.

[13] A. Goyal, W. Lu, and L. V. Lakshmanan. Celf++: Optimizing the
greedy algorithm for influence maximization in social networks. In
WWW, 2011.

[14] J. Huang, X.-Q. Cheng, H.-W. Shen, T. Zhou, and X. Jin. Exploring
social influence via posterior effect of word-of-mouth
recommendations. In WSDM, 2012.

[15] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust influence
maximization in social networks. In ICDM, 2012.

[16] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of
influence through a social network. In KDD, 2003.

[17] J. Kim, S.-K. Kim, and H. Yu. Scalable and parallelizable processing
of influence maximization for large-scale social networks? In ICDE,
2013.

[18] S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart. Online influence
maximization (extended version). arXiv:1056.01188, 2015.

[19] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance. Cost-effective outbreak detection in networks. In KDD,
2007.

[20] M. J. Lovett, R. Peres, and R. Shachar. On brands and word of mouth.
J. Marketing Research, 50(4), 2013.

[21] W. Lu, F. Bonchi, A. Goyal, and L. V. Lakshmanan. The bang for the
buck: Fair competitive viral marketing from the host perspective.
KDD, 2013.

[22] S. Richard and A. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[23] M. Richardson and P. Domingos. Mining knowledge-sharing sites for
viral marketing. In KDD 2002.

[24] H. Robbins. Some aspects of the sequential design of experiments.
Bull. Amer. Math. Soc., 58(5), 1952.

[25] K. Saito, R. Nakano, and M. Kimura. Prediction of information
diffusion probabilities for independent cascade model. In KES, 2008.

[26] Y. Singer. How to win friends and influence people, truthfully:
influence maximization mechanisms for social networks. In WSDM,
2012.

[27] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal
time complexity meets practical efficiency. In SIGMOD, 2014.

[28] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks.
In KDD, 2010.

	Introduction
	Related Work
	Influence Maximization: Review
	Maximizing Influence Online
	The Uncertain Influence Graph
	The OIM Framework

	Choosing Seeds
	Heuristic-Based Strategies
	Explore-Exploit Strategies

	Managing User Feedback
	Updating Local and
	Updating Global and
	Updating

	Incremental Solution for OIM
	Experimental Evaluation
	Results on NetPHY
	Results for NetHEPT and DBLP

	Conclusions
	References

