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ABSTRACT

In this work, we study a novel top-k query type, called top-k,m
queries. Suppose we are given a set of groups and each group con-
tains a set of attributes, each of which is associated with a ranked list
of tuples, with ID and score. All lists are ranked in decreasing order
of the scores of tuples. We are interested in finding the best combi-
nations of attributes, each combination involving one attribute from
each group. More specifically, we want the top-k combinations of at-
tributes according to the corresponding top-m tuples with matching
IDs. This problem has a wide range of applications from databases
to search engines on traditional and non-traditional types of data
(relational data, XML, text, etc.). We show that a straightforward
extension of an optimal top-k algorithm, the Threshold Algorithm
(TA), has shortcomings in solving the top-k,m problem, as it needs
to compute a large number of intermediate results for each com-
bination and reads more inputs than needed. To overcome this
weakness, we provide here, for the first time, a provably instance-
optimal algorithm and further develop optimizations for efficient
query evaluation to reduce computational and memory costs and the
number of accesses. We demonstrate experimentally the scalability
and efficiency of our algorithms over three real applications.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query processing; H.3.3
[Database Management]: Information Search and Retrieval—Search
process

General Terms

Algorithms, Experimentation, Performance, Theory

Keywords

keyword search, package search, top-k querying

1. INTRODUCTION

During the last decade, the topic of top-k query processing has
been extensively explored in the database community due to its im-
portance in a wide range of applications. In this work, we identify a
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novel top-k query type that has wide applications and requires novel
algorithms for efficient processing. Before we give the definition of
our problem, we describe an interesting example to motivate it.

Assume a basketball coach plans to build a good team for an
important game (e.g., Olympic games). He would like to select
a combination of athletes including forward, center, and guard
positions, by considering their historical performance in games. See
Figure 1 for the example data, which comes from the NBA 2010—
2011 pre-season. Each tuple in Figure 1(a) is associated with a pair
(game ID, score), where the score is computed by an aggregation of
various scoring items provided by the NBA for this game. To build
a good team, one option is to select athletes with the highest score
in each group (e.g., “Juwan Howard” in the “forward” group), or to
calculate the average scores of athletes across all games. However,
both methods overlook an important fact: a strong team spirit is
critical to the overall performance of a team. Therefore a better
way is to evaluate the performance of athletes by considering their
combined scores in the same game. We can formalize this problem
as to select the top-k combinations of athletes according to their best
top-m aggregate scores for games where they played together. For
example, as illustrated in Figure 1, F,C,G is the best combination
of athletes, as the top-2 games in which the three athletes played
together are G02 and GOS5, and 40.27 (= 21.51 + 18.76) is the
highest overall score (w.r.t. the sum of the top-2 scores) among
all eight combinations. We study in this paper a new query type
called top-k,m query that captures this need of selecting the top
combinations of different attributes, when each attribute is described
by a ranked list of tuples.

1.1 Problem description

Given a set of groups G,...,G, where each group G; contains
multiple attributes e;;,...,e;;,, we are interested in returning top-k
combinations of attributes selected from each group. As an example,
recall Figure 1: there are three groups, i.e., forward, center, and
guard, and one athlete corresponds to one attribute in each group.
Our goal is to select a combination of three athletes, each from a
different group.

We suppose that each attribute e is associated with a ranked list L,,
where each tuple 7 € L, is composed of an ID p(7) (taken out of
an arbitrary set of identifier) and a score o°(7) (from an arbitrary
fully ordered set, say, the reals). The list is ranked in descending
order of the scores. In the example NBA data, each athlete has a
list containing the game ID and the corresponding score. Given
a combination e of attributes, a match instance 1€ of € is a set of
tuples based on some arbitrary join condition on tuple IDs p(7) from
lists. For example, the game G02 (including the three tuples (G02,
8.91), (G02, 6.01), (G02, 6.59)) is a match instance by the equi-
join of the game IDs. In the top-k,m problem, we are interested in
returning top-k combinations of attributes which have the highest



Forward Center Guard
Fi F2 Ci C2 Gi G2
Juwan Howard |LeBron James Chris Bosh Eddy Curry || Dwyane Wade | Terrel Harris
(G01,9.31) (G02, 8.91) (G05,7.21)~ (GO1, 3.81) -(G02, 6.59) | (G09, 7.10)
(G07,9.02) | (G08,8.07) |[”*(G02, 6.01)- EGU6 359)|| (G03,6.19) | (G03, 6.01)
(G03,8.87) | (G05,7.54)]| (G06,5.58) | (G04,321) || (GO4,5.81) | (G04,3.79)
(G04, 5.02) (G10, 7.52) (G10,5.51) |(G0O7, 3,03)\ ~~(G05,4.01) | (GO08, 3.02)
(G11,4.81) | (G03,6.14) || (G04,5.00) | (G09,2.07)|| (GO1,3.38) | (GOS,2.89)
(G08,4.02) | (GO1,5.05) || (Gl11,3.09) | (G11,1.70)|| (G09,2.25) | (G02,2.52)
(G06,4.31) | (G04,5.01) || (GO1,2.06) | (G10,1.62)|| (GO06, 1.52) | (GO1,2.00)
(G05,3.59) | (G09,3.34) || (G08,2.03) |(G02,1.59)|| (GOS8, 1.51) | (G10, 1.59)
(G09,2.06) | (G06,3.01) (G09, 1.98) | (G08, 1.19) || (G07,1.00) | (GOG6, 1.52)
(a) Source data of three groups
40.27(=21.51+18.76) is the largest
among the aggregate scores of top-2
FiCiGi1 | FiICiG2 | FiC2Gi | FiC2G2 | F2Ci1Gi | F2CiG2 | F2C2Gi | F2C2Ge
(G04, 15.83) | (GO4, 13.81) | (GO1, 16.50) | (GO1, 15.12) [ (G02, 21.51) [ (G03, 17.64) [ (G02, 17.09) [ (G02, 13.02)
(G5, 14.81) | (GO, 13.69) | (GO4, 14.04) | (GO7, 12.05) | (G03, 18.76) | (G02, 17.44) | (G04, 14.03) | (G09, 12.51)

(b) Top-2 aggregate scores for each combination

Figure 1: Motivating example using 2010-2011 NBA data. Our
purpose is to select one athlete from each of the three groups.
The best combination is F,C;G,. Values in bold font indicate
tuples contributing to the score of this best combination.

overall scores over their top-m match instances by a monotonic
aggregate function. Suppose that k = 1, m = 2, and that scores are
aggregated using the sum function. The top-2 match instances of
F,C,G; are GO2 and GO5 and their overall score is 40.27, which
is the highest overall score among the top-2 match instances of all
combinations. Therefore, we say that the answer of the top-1,2 query
for the problem instance in Figure 1 is the combination F,C,G;.

1.2 Applications

Next we give more use-case scenarios of top-k,m queries, which
shed some light on the generality and importance of top-k,/m models
in practice.

Use-case 1. Top-k,m queries are useful in XML databases. A
simple yet effective way to search an XML database is keyword
search. But in a real application it is often the case that a user issues
a keyword query Q which does not return the desired answers due to
the mismatch between terms in the query and in documents. A com-
mon strategy for remedying this is to perform some query rewriting,
replacing query terms with synonyms that provide better matches.
Interestingly, top-k, m queries find an application in this scenario.
Specifically, for each keyword (or phrase) g in Q, we generate a
group G(g) that contains the alternative terms of g according to a
dictionary which contains synonyms and abbreviations of q. For ex-
ample, given a query Q = (DB, UC Irvine, 2002), we can generate
three groups: G, = {“DB”, “database”}, G, = {“UCI”,“UC Irvine”},
and G5 = {*2002"}. We assume that each term in G(g) is associated
with a list of node identifiers (e.g., JDewey IDs [7]) and scores (e.g.,
information-retrieval scores such as tf-idf [4]). See Figure 2 for an
example XML tree and scores. The goal of top-k,m queries is to find
the top-k combinations (of terms) by considering the corresponding
top-m search results in the XML database. Therefore, a salient fea-
ture of the top-k,/m model for the refinement of XML keyword query
is that it guarantees that the suggested alternative queries have high
quality results in the database within the top-m answers.

Use-case 2. Top-k,m queries also have applications in evidence
combination mining in medical databases [2]. The goal is to predict
or screen for a disease by mining evidence combination from clinical
and pathological data. In a clinical database, each evidence refers
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(b) Sorted lists and groups

Figure 2: An example illustrating XML query refinement
using the top-k,n framework. The original query QO =
(DB, UC Irvine, 2002) is refined into (DB, UCI,2002). Each
term is associated with an inverted list with the IDs and weights
of elements. Underlined numbers in the XML tree denote term
scores.

to a group and different degrees of the evidence act as different
attributes. For example queasiness, headaches, vomit, and diarrhea
are four pieces of evidence (referring to groups) for acute enteritis,
and each evidence has different degrees (referring to attributes), e.g.,
very low, low, middle, high, very high. Each tuple in a list associated
to an attribute consists of the patient ID and the probability the
patient catches the disease. The goal of the top-k, m query is to find
the top-k combinations of different degrees of evidences ordered by
the aggregate values of the probabilities of top-m patients for which
there is the highest belief this disease is involved.

Use-case 3. Top-k,m queries may finally have applications in
package recommendation systems, e.g., the trip selection problem.
Consider a tourist who is interested in planing a trip by choosing
one hotel, one shopping mall, and one restaurant in a city. Assume
that we have survey data provided by users who made trips be-
fore. The data include three groups and each group have multiple
attributes (i.e., names of hotels, malls, or restaurants), each of which
is associated with a list of users’ IDs and grades. Top-k,m queries
recommend top-k trips which are combinations of hotels, malls, and
restaurants based on the aggregate value of the highest m scores of
the users who had the experience of this exact trip combination.

Generally speaking, top-k,m queries are of use in any context
where one is interested in obtaining combinations of attributes asso-
ciated with ranked lists. In addition, note that the model of top-k,m
queries offers great flexibility in problem definitions to meet the
various requirements that applications may have, in particular in the
adjustment of the m parameter. For example, in the application to
XML keyword search, a user is often interested in browsing only the
top few results, say 10, which means we can set m = 10 to guarantee
the search quality of the refined keywords. In another application,
e.g., trip recommendation, if a tourist wants to consider the average
score of all users, then we can define m to be large enough to take
the scores of all users into accounts. (Of course, in this case, the
number of accesses and the computational cost are higher.)

1.3 Novelty and contributions

The literature on top-k query processing in relational and XML
databases is particularly rich [5-8, 12, 13]. We stress the essential



difference between top-k queries (e.g., as in [8]) and our top-k,m
problem: the latter returns the top-k combinations of attributes in
groups, but the former returns the top-k tuples (objects). Therefore,
a top-k,m problem cannot be reduced to a top-k problem through a
careful choice of the aggregate function. In addition, contrarily to the
top-k problem, we argue that top-k,m queries cannot be transformed
into a SQL (nested) query, since SQL queries return tuples but our
goal is to return attribute combinations based on ranked inverted
lists, which is not something that the SQL language permits. To
the best of our knowledge, this is the first top-k work focusing on
selecting and ranking sets of attributes based on ranked lists, which
is a highly non-trivial extension of the traditional top-k problem. An
extended discussion about the difference between top-k,m queries
and the existing top-k queries can be found in Section 3.

To answer a top-k,m query, one method, called extended TA
(for short ETA hereafter), is to compute all top-m results for each
combination by the well-known threshold algorithm (TA) [8] and
then to pick the top-k combinations. However, this method has
one obvious shortcoming: it needs to compute top-m results for
each combination and reads more inputs than needed. To address
this problem, we develop a set of provably optimal algorithms to
efficiently answer top-k,m queries.

Following the model of TA [8], we allow both random access and
sorted access on lists. Sorted accesses mean to perform sequential
scan of lists and random access can be performed only on objects
which are previously accessed by sorted access. For example, con-
sider Figure 1 again. When the first tuple (G05,7.21) of C, is read,
the random access enables us to quickly locate all tuples whose ID
are GO5 (e.g., (G05,7.54) in F,). We propose an algorithm called
ULA (Upper and Lower bounds Algorithm) to avoid the needs
to compute top-m results of combinations (Section 4) and thus to
significantly reduce the computation costs compared to ETA.

We then bring to light some key observations and develop an
optimized algorithm called ULA*, which minimizes the number of
accesses and consequently reduces the computational and memory
costs. The ULA algorithm needs to compute bounds (lower and
upper bounds) for each combination, which may be expensive when
the number of combination is large. In ULA*, we avoid the need
to compute bounds for some combinations by carefully designing
the conditions to prune away useless combinations without reading
any tuple in the associated lists. We also propose a native structure
called KMG graph to avoid the useless sorted and random accesses
in lists to save computational and memory costs.

We study the optimal properties of our algorithms with the notion
of instance optimality [8] that reflects how well a given algorithm
performs compared to all other possible algorithms in its class.
We show that two properties dictate the optimality of top-k,m al-
gorithms in this setting: including (1) the number of attributes in
group G;, namely |G;|, which is part of the input of the problem; and
(2) whether wild guesses are allowed. Following [8], wild guesses
mean random access to objects which have not been seen by sorted
access. Only if each |G| is treated as a constant and there are no
wild guesses is our algorithm guaranteed to be instance-optimal.
In addition, we show that the optimality ratio of our algorithms is
tight in a theoretical sense. Unfortunately, if either |G;| is considered
variable or wild guesses exist (uncommon cases in practice), our
algorithms are not optimal. But we show that in these cases no
instance-optimal algorithm exists.

To demonstrate the applicability of the top-k,m framework, we
apply it to the problem of XML keyword refinement. We show how
to judiciously design the aggregation functions and join predicates
to reflect the semantic of XML keyword search. We then adapt the
three algorithms: ETA, ULA and ULA* (from the most straight-

forward to the highly optimized one) to efficiently answer an XML
top-k,m problem (Section 5).

We verify the efficiency and scalability of our algorithms using
three real-life datasets (Section 6), including NBA data, YQL trip-
selection data, and XML data. We find that our top-k,m algorithms
result in order-of-magnitude performance improvements when com-
pared to solutions based on the baseline algorithm. We also show
that our XML top-k,m approach is a promising and efficient method
for XML keyword refinement in practice.

To sum up, this article presents a new problem with important
applications, and a family of provably optimal algorithms. Compre-
hensive experiments verify the efficiency of solutions on three real
datasets.

2. PROBLEM FORMULATION

Given a set of groups Gy,...,G, where each group G; contains
multiple attributes e;,...,e;,, we suppose that each attribute e is
associated with a ranked list L., where each tuple 7 € L, is composed
of an ID p(7) and a score o°(7). The list is ranked by the scores in
descending order. Let € = (ey;,...,e,;) € G X --- X G, denote
an element of the cross-product of the n groups, hereafter called
combination. For instance, recall Figure 1, every three athletes from
different groups form a combination (e.g., {Lebron James, Chris
Bosh, Dwyane Wade}).

Given a combination €, a match instance 1¢ is defined as a
set of tuples based on some arbitrary join condition on IDs of
tuples from lists. Each tuple in a match instance should come
from different groups. For example, in Figure 1, given a com-
bination {Juwan Howard, Eddy Curry, Dwyane Wade}, then
{(G01,9.31),(GO1,3.81),(G01,3.38)} is a match instance for the
game GO1. Furthermore, we define two aggregate scores: tScore and
cScore: the score of each match instance 7€ is calculated by Score,
and the top-m match instances are aggregated to obtain the overall
score, called cScore. More precisely, given a match instance 7€
defined on €,

tScore(1€) = F1(o(11),...,0(1,))

where 77 is a function: R"—>R and 7y, ..., 7, form the matching
instance 7 €. Further, given an integer m and a combination e,
cScore(e,m) = max {F2(tScore(IY), ..., tScore(I},))}

1€, T,

d]istinct
where ¥, is a function R"—R and I75,..., I}, are any m distinct
match instances defined on the combination e. Intuitively, cScore
returns the maximum aggregate scores of m match instances. Fol-
lowing common practice [8], we require both #; and ¥, functions
to be monotonic, i.e., the greater the individual score, the greater the
aggregate score. This assumption captures most practical scenarios,
e.g., if one athlete has a higher score (and the other scores remain
the same), then the whole team is better.

DeriniTiON 1 (TOP-A,/m PROBLEM). Given groups Gy, ..., G,, two
integers k, m, and two score functions ¥, >, the top-k,m problem
is an (n + 4)-tuple (Gy,...,G,, k,m,F1,%2). A solution is an or-
dered set S containing the top-k combinations € = (ey;, ..., ¢e,;) €
G X --- X G, ordered by cScore(e,m). [

ExampLE 2. Consider a top-1,2 query on Figure 1, and assume
that ¥, and ¥, are sum. The final answer S is {F,C,G,}. This
is because the top-1 match instance 7 of F,C,G; consists of tu-
ples (G02,8.91), (G02,6.01) and (G02,6.59) of the game G02
with £Score 21.51 = 8.91 + 6.01 + 6.59. And the second top in-
stance J, consists of tuples whose game ID is GO5 with #Score



18.76 = 7.54 + 7.21 + 4.01. Therefore, the cScore of F,C,G; is
40.27 = 21.51 + 18.76, which is the highest score among all combi-
nations. [

3. BACKGROUND AND RELATED WORK

Before we describe the novel algorithms for top-k,m queries, we
pause to review some related works about top-k queries. Top-k
queries were studied extensively for relational and XML data [5-8,
12,13,22]. Notably, Fagin, Lotem, and Naor [8] present a compre-
hensive study of various methods for top-k aggregation of ranked
inputs. They identify two types of accesses to the ranked lists: sorted
accesses and random accesses. In some applications, both sorted
and random accesses are possible, whereas, in others, some of the
sources may allow only sorted or random accesses. For the case
where both sorted and random accesses are possible, a threshold
algorithm (TA) (independently proposed in [10,20]) retrieves ob-
jects from the ranked inputs in a round-robin fashion and directly
computes their aggregate scores by using random accesses to the
lists where the object has not been seen. Fagin et al. prove that TA
is an instance-optimal algorithm. In this paper, we follow the line of
TA to support both sorted accesses and random accesses for efficient
evaluation of top-k,m query. We prove that our algorithm is also an
instance-optimal algorithm and its optimality ratio is tight.

There is also a rich literature for top-k queries in other envi-
ronments, such as no random access [9, 18], no sorted access on
restricted lists [5, 6], no need for exact aggregate score [11], or ad-
hoc top-k queries [15,23]. For example, Mamoulis, Yiu, Cheng and
Cheung [18] proposed a family of optimizations for top-k queries in
the case of no random accesses. They impose two phases (growing
and shrinking) that any top-k algorithm should go through, and per-
form optimizations on the shrinking phase to reduce the number of
accesses. Theobald, Schenkel and Weikum [21] proposed a top-k
query processor for efficient and self-tuning query expansion, which
is related to the XML keyword refinement method described in
Section 5. In contrast to our work, Theobald et al. also support a
non-fixed number of keywords in the refined query; however, no op-
timality guarantees are given. Recently, Jin and Patel [13] proposed
a novel sequential access scheme for top-k query evaluation, which
outperforms existing schemes. For more information about top-k
query evaluation, readers may refer to an excellent survey [12] by
Ilyas, Beskales, and Soliman.

In this article, we argue that top-k,m queries are new types of
queries and that the existing top-k algorithms cannot be used to solve
them. For example, consider the ad-hoc top-k queries in [15,23].
Note the difference regarding the notion of “group” between those
works and ours. For ad-hoc queries, a group refers to a set of objects
(rows) which satisfy certain predicates, while a group in this article
means a set of attributes (columns). Therefore, top-k,m queries, in a
different approach from ad-hoc top-k queries, focus on the ranking
of the combinations of attributes (not objects). To the best of our
knowledge, this is the first work focusing on selecting and ranking
the set of attributes, which is a highly non-trivial extension of the
traditional top-k problem.

Top-k processing in XML databases has recently gained more at-
tention since XML has become the preferred medium for formatting
and exchanging data in many domains [1,7, 19]. There are various
types of problems on XML top-k processing, including top-k twig
query processing [1, 19], top-k keyword search [4], top-k probabilis-
tic query processing [16] and top-k keyword cleansing [17]. In this
article, we demonstrate how to apply the framework of top-k,m on
the problem of XML top-k keyword refinement. Note the differ-
ence between keyword cleansing [17] and keyword refinement: the
former rewrites the query by fixing spelling errors, but the latter

rewrites the query using semantic knowledge such as synonyms and
abbreviations. Both approaches are complementary in query pro-
cessing and can be used together to improve search engine results.

4. TOP-KM ALGORITHMS

In this section we begin our study of an efficient top-k,m algorithm
which can stop earlier than the straightforward algorithm (i.e., ETA
mentioned earlier), by avoiding the need to compute the exact top-m
scores for each combination. We propose a family of optimizations
to improve the performance by reducing the number of accesses and
computational and memory costs. We also analyze the optimality
properties for proposed algorithms.

4.1 Access model: sorted and random accesses

As mentioned in the Introduction, given an instance of a top-k,m
problem, following the practice in the top-k literature (e.g., [8]), we
support both sorted and random access. Sorted accesses read the
tuple of lists sequentially and random accesses quickly locate tuples
whose ID has been seen by sorted access (assuming the existence of
an index to achieve this goal). For example, in Figure 1, at depth 1
(depth d means the number of tuples seen under sorted access to a
list is d), consider the combination “F,C,G,”; the tuples seen by
sorted access are (G02, 8.91), (G05,7.21), (G02,6.59) and we can
quickly locate all tuples (i.e., (G02,6.01), (G0S,7.54), (G05,4.01))
whose IDs are G02 or GO5 by random accesses.

4.2 Baseline algorithm: ETA

To answer a top-k,m query, one straightforward method (called
extended TA, or ETA for short) is to first compute all top-m results
for each combination by the well-known threshold algorithm TA [8§]
and then pick the top-k combinations. However, this method has
one obvious shortcoming: it needs to compute top-m results for
each combination and reads more inputs than needed. For example,
in Figure 1, ETA needs to compute the top-2 scores for all eight
combinations (see Figure 1(b)). Indeed, this method is not instance-
optimal in this context. To address this problem, we develop a set of
provably optimal algorithms to efficiently answer top-k,m queries.

4.3 Top-k,m algorithm: ULA

When designing an efficient top-k,m algorithm, informally, we
observe that a combination € cannot contribute to the final answer if
there exist k distinct combinations whose lower bounds are greater
than the upper bounds of €. To understand this, consider the top-1,2
query in Figure 1 again. At depth 1, for the combination “F,C,G,”,
we get two match instances G02 and GOS5 through the sorted and
random accesses. Then the lower bound of the aggregate score
(i.e., cScore) of “F,C,G,” is at least 40.27 (i.e., (7.54 + 7.21 +
4.01) + (8.91 + 6.01 + 6.59)). At this point, we can claim that some
combinations are not part of answers. This is the case of “F,C,G,”,
whose c¢Score is no more than 38.62 (= 2 X (8.91 + 3.81 + 6.59)).
Since 38.62 < 40.27, F,C,G; cannot be the top-1 combination.
We next formalize this observation by carefully defining lower and
upper bounds of combinations. We start by presenting threshold
values, which will be used to estimate the upper bounds for the
unseen match instances.

DEFINITION 3 (THRESHOLD VALUE). Let € = (ey;,...,e,;) € Gy X
.-+ X G, be an arbitrary combination, and 7; the current tuple seen
under sorted access in list L;. We define the threshold value 7 ¢ of
the combination € to be F;(o(1y),...,0(7,)), which is the upper
bound of tScore for any unseen match instance of €. [

As an example, in Figure 1(a), consider the combination € =
“F,C1G,”, atdepth 1. The current tuples are (G02, 8.91), (G0S5,7.21),



(G02,6.59). Assume ¥, = sum, we have for threshold value
T¢=891+721+6.59 =22.71.

DEeFiNITION 4 (LOWER BOUND). Assume one combination € has
seen m’ distinct match instances. Then the lower bound of the
cScore of € is computed as follows:

Fa(tScore(I7), ..., tScore(I,),0,...,0) m <m
NG

Emin _ m—m’ D
=1 max{F2(tScore(I5),..., tScore(I;))} m >=m

When m’ < m, we use the minimal score (i.e., zero) of unseen
m — m’ match instances to estimate the lower bound of the cScore.
On the other hand, when m’ > m, €™M equals the maximal aggregate
scores of m match instances.

DEFINITION 5 (UPPER BOUND). Assume one combination € has
seen m’ distinct match instances, where there are m’’ match instances
(m"" < m") whose scores are greater than or equal to 7 ¢ . Then the
upper bound of the cScore of € is computed as follows:

Fa(tScore(I7),. .. tScore(Ts ), T¢..., 79 m'<m
s

m’ >m

€™ =1 max(Fa(Score(TD) .., 1Score(TS)]

m

O
If m"” < m, it means that there is still a chance that we will
see a new match instance whose tScore contributes to the final
cScore. Therefore, the computation of €™ should be padded with
m — m’" copies of the threshold value (i.e., 7°), which is the upper
bound of #Score for all unseen match instances. Otherwise, m” >
m, meaning that the final top-m results are already seen and thus
e =cScore(e, m) now.

ExampLE 6. This example illustrates the computation of the up-
per and lower bounds. See Figure 1 again. Assume that #; and
¥, are sum, and the query is top-1, 2. At depth 1, the combination
“F,C1G;” read tuples (G02,8.91), (G05,7.21), and (G02, 6.59) by
sorted accesses, and (G05,7.54), (G02,6.01), (G05,4.01) by ran-
dom accesses. m’ = m = 2. Therefore, the current lower bound of
“FC G, 1s40.27 (i.e., (7.54+7.21 +4.01) + (8.91 + 6.01 + 6.59) =
18.76 + 21.51), since the two match instances of F,C;G, are GO2
and GO5. The threshold 772€161 = 891 + 7.21 + 6.59 = 22.71 and
m” = 0, since 18.76 < 22.71 and 21.51 < 22.71. Therefore, the
upper bound is 45.42 (i.e., 22.71 + 22.71). In fact, the final cScore
of “F,C,G,” is exactly 40.27 which equals the current lower bound.
Note that the values of lower and upper bounds are dependent of the
depth where we are accessing. For example, at depth 2, the upper
bound of “F,C;G,” decreases to 41.78 (i.e., 21.51 + 20.27) and the
lower bound remains the same. [

The following lemmas show how to use the bounds above to
determine if a combination € can be pruned safely or confirmed to
be an answer.

LeEmMA 7 (DROP-CONDITION). One combination € does not con-
tribute to the final answers if there are k distinct combinations
€l,...,€6 such that €™ < min{e™" | 1 < i<k}

Proor. The aggregate score of the top-m match instances is no
more then the upper bound of €, i.e., cScore(e, m) < €™*. And Vi €
[1,k], cScore(e;,m) > €™, since the "™ is the lower bound of €.
Therefore, cScore(e,m) < min{cScore(e/,m) | |1 < i < k}, which

means that € cannot be one of the top-k answers, as desired. [

LeEMMA 8  (HIT-CONDITION). One combination € should be an an-
swer if there are at least Neom — k (Neom IS the total number of
the combinations) distinct combinations e,. .. ,€y,,— Such that
emin > max{e™ | 1 <i< Neom — &}

Proor. The aggregate score of the top-m match instances of € is
no less than the lower bound of €, i.e., cScore(e,m) > €™*. And
Vi € [1, Neom — k], €™ > cScore(€;, m). Therefore, cScore(e, m) >
max{cScore(e;,m) | 1 < i < Neom — k}, meaning that the top-m
aggregate score of € is larger than or equal to that of other Ny — k
combinations. Therefore € must be one of the top-k,m answers. []

DEFINITION 9 (TERMINATION). A combination € can be terminated
if € meets one of the following conditions: (i) the drop-condition,
(ii) the hit-condition, or (iii) € has seen m match instances whose
tScores are greater than or equals to the threshold value 7¢. [

Intuitively, one combination is terminated if we do not need
to compute its lower or upper bounds any further. The first two
conditions in the above definition are easy to understand. The third
condition means that we have found top-m match instances of e.
Note that we may not see the final top-m match instances when €
satisfy the drop- or hit-condition.

We are now ready to present a novel algorithm named ULA
(Upper and Lower bounds Algorithm), that relies on the dynamic
computing of upper and lower bounds of combinations (see Algo-
rithm 1).

Algorithm 1 The ULA algorithm

Input: a top-k,m problem instance with n groups Gy, ..., G,, where
each group has multiple lists L;; € G;.
Output: top-k combinations of attributes in groups.
(i) Do sorted access in parallel to each of the sorted lists L;;. As
a tuple 7 is seen under sorted access in some list, do random
access to all other lists in G; (j # i) to find all tuples 7’ such
that p(1) = p(7').
(ii) For each unterminated combination € (by Definition 9), com-
pute €™" and €™, and check if € can be terminated now.
(iii) If there are at least k combinations which meet the hit-
condition, then the algorithm halts. Otherwise, go to step (i).
(iv) Let Y be a set containing the k combinations (breaking ties
arbitrarily) when ULA halts. Output Y.

In the last step of the algorithm, note that the set Y is unordered by
cScore. In the case where the output set should be ordered by cScore,
we need to continuously maintain the lower and upper bounds of
objects in Y until their order is clear.

ExampLE 10. We continue the example of Figure 1 to illustrate
the ULA algorithm. First, in step (i) (at depth 1), ULA performs
sorted accesses on one row for each list and does the correspond-
ing random accesses. In step (ii) (at depth 1 again), it computes
the lower and upper bounds for each combination, and then three
combinations F;C,G,, F>C,G, and F,C,G, are safely terminated,
since their upper bounds (i.e., e?l“ézcl = 3942, eg"ézal = 38.62
and e?;ézcz = 39.64) are less than the lower bound of F,C,G;
(e}‘?zi‘él G = 40.27). Next, we go to step (i) again (at depth 2), as there
is no combination satisfying the hit-condition in step (iii). Finally,
at depth 4, F,C, G, meets the hit-condition and the ULA algorithm
halts. To understand the advantage of ULA over ETA, note that ETA
cannot stop at depth 4, since F,C,G; does not yet obtain its top-2
match instances. Indeed, ETA stops at depth 5 with 54 accesses,
whereas ULA performs only 50 accesses by depth 4. [

4.4 Optimized top-k,m algorithm: ULA+

In this subsection, we present several optimizations to minimize
the number of accesses, memory cost, and computational cost of the
ULA algorithm by proposing an extension, called ULA*.



Pruning combinations without computing the bounds.
The ULA algorithm has to compute the lower and upper bounds
for each combination, which may be an expensive operation when
the number of combinations is large. We next propose an approach
which prunes away many useless combinations safely without com-
puting their upper or lower bounds.

We sort all lists in the same group by the scores of their top tuples.
Notice that all lists are sorted by decreasing order. Intuitively, the
combinations with lists containing small top tuples are guaranteed
not to be part of answers, as their scores are too small. Therefore, we
do not need to take time to compute their accurate upper and lower
bounds. We exploit this intuitive observation by defining the precise
condition under which a combination can be safely pruned without
computing its bounds. We first define a relationship between two
combinations called dominating.

Given a group G in a top-k,m problem instance, let L, and L, be
two lists associated with attributes e, € G, we say L, dominates
L, denoted L, > L, if L,.0(t,) > L,;.0(t), where 7; denote the ith
tuple in the list. That is, the score of the mth tuple in L, is greater
than or equal to the score of the first tuple in L,.

DEeriNiTiON 11 (DOMINATION). A combination € = {ey,...,e,} is
said to dominate another combination ¢ = {7,...,t,} (denoted
e > ¢)if forevery 1 > k > n, either e; = t; or L,, > L, holds, where
¢; and 1; are two (possibly identical) attributes of the same group G;.
[

For example, in Figure 3, there are two groups G; and G,. We
say that the combination “A,B,” dominates “A3B,”, because in the
group Gy, 7.1 > 6.3 and in G,, 8.2 > 8.0. In fact, “A, B,”” dominates
all combinations of attributes from A3 to A, in G| and from B, to B,
in G,. Note that the lists in each group here are sorted by the scores
of the top tuples.

Lemma 12. Given two combinations € and &, if € dominates &
then the upper bound of € is greater than or equal to that of &.

Proor. If € dominates &, then for every attribute e in &, if ¢ ¢ €,
then there is an attribute ¢ in €, s.t. the m-th tuple in the list L,
has a larger score than the first tuple in L,. Therefore, the up-
per bound of m match instances of € is greater than or equal to
that of ¢£. More formally, € > ¢ = Vi, L,,.0(t,) > L,.0(t)) =
Fi1(Le, .0 (Tm)s. . s Le,.0(T)) = F1(Ly, .0(T1),. .., Ly,.0(71)), since
¥1 is monotonic. So m X (F1(Le,.0(Ty), ..., Le,.0(Ty))) = m X
(F1(Ly, .o(t1), ..., Ly,.0(11))). Note that

€™ 2 m X (Fi(Le,.0(Tn), . . . Le, .0 (T))),

since the threshold value and the scores of the unseen match in-
stances of € are no less than F1(L,, .0(7,), ..., L,.0(T)). In addi-
tion, it is easy to verify that £™ < mx(Fi(L;,.0(11), ..., L;,.0(11))).
Therefore, €™* > £ holds, as desired. [

According to Lemma 12, if € meets the drop-condition (Lemma 7),
it means the upper bound of € is small, then any combination &
which is dominated by € (i.e., &’s upper bound is even smaller) can
be pruned safely and quickly.

To apply Lemma 12 in our algorithm, the lists are sorted in de-
scending order by the score of the first tuple in each list, which can
be done oft-line. We first access m tuples sequentially for each list
and perform random accesses to obtain the corresponding match
instances. Then we consider two phases. (i) Seed combination
selection. As the name indicates, seed combinations are used to
trigger the deletion of other useless combinations. We pick the lists
in descending order, and construct the combinations to compute
their upper and lower bounds until we find one combination € which
meets the drop-condition, then € is selected as the seed combination.

n-2 | n-1
AT [ A2 | A3 An ||/ [(BI [ B2 Bn_ ||
(2,10) |(c, 8.3)|(2, 6.3)| _|(c,4.8) || | (b, 9.0)|(e, 8.0)| ...| (2, 5.8) |
(b,5.8)|(d, 7.1)|(d. 3.7) " |(d.43) ||| (2. 8.2)[(£.32)| |(d.45)]

G1 | G2 |

Figure 3: An example for Lemma 12

(ii) Dropping useless combinations. By Lemma 12, all combinations
which are dominated by e are also guaranteed not to contribute to
final answers. For each group G;, assuming that the seed combina-
tion € contains the list L,; in G;, then we find all lists L,; such that
L, > Ly;. This step can be done efficiently as all lists are sorted by
their scores of first tuples. Therefore, all the combinations which
are constructed from L;; can be dropped safely without computing
their upper or lower bounds.

ExampLE 13. See Figure 3. Assume the query is top-1,2 and
F1 = F> = sum. The lists are sorted in descending order according
to the score of the first tuple. We access the lists in descending order
to find the seed combination, which is & = (A,, By) (E™ = 2% (7.1+
8.2) = 30.6 < €™, e={A,, B}). In Gy, Vi € [3,n] La, > Ly, (e.g.,
Ly, > Ly,, since 7.1 > 6.3). Similarly, in G, Vi € [2,n] Lg, > Lg,.
Therefore all combinations (4;, B;) (Vi € [3,n], j € [2,n]), as well as
(A2, Bj) and (B, A;) are dominated by ¢ and can be pruned quickly.
Therefore there are (n —2)(n— 1)+ (n— 1)+ (n—-2)=n> —n -1
combinations pruned without the (explicit) computation of their
bounds, which can significantly save memory and computational
costs. [

Note that in the ULA* algorithm (which will be presented later),
we perform the two phases above as a preprocessing procedure to
filter out many useless combinations.

Reducing the number of accesses. We now propose some
further optimizations to reduce the number of accesses at three
different levels: (i) avoiding both sorted and random accesses for
specific lists; (ii) reducing random accesses across two lists; and
(iii) eliminating random accesses for specific tuples.

CLamm 14. During query processing, given a list L, if all the
combinations involving L are terminated, then we do not need to
perform sorted accesses or random accesses upon the list L any
longer.

Cram 15. During query processing, given two lists L, and L,
associated with two attributes e and t in different groups, if all the
combinations involving L, and L, are terminated, then we do not
need to perform random accesses between L, and L, any longer.

CLamm 16. During query processing, given two lists L, and L,
associated with two attributes e and t in different groups, consider a
tuple 7 in list L,. We say that the random access for the tuple T from
L, to L, is useless, if there exists a group G (e ¢ G and t ¢ G) such
that Vs € G, either of the two following conditions is satisfied: (i)
the list L does not contain any tuple v, s.t. p(t) = p(7’); or (ii) the
combination € involving s, e and t is terminated.

It is not hard to see Claim 14 and 15 hold. To illustrate Claim 16,
let us consider three groups G1, G2 and G3 in Figure 4, where
G3 contains only two lists. The list L; does not contain any tuple
whose ID is x and the combination € is terminated. Therefore,
according to Claim 16, the random access between L, and L, for
tuple x is unnecessary. This is because no match instances of x
can contribute to the computation of final answers. Note that it is
common in real life that some objects are not contained in some list.
For example, think of a player who missed some games in the NBA



& is terminated before accessing x (Condition (i))
I i i
| GI | G2 | G3

S ><\‘i(x’ . )} ...... (x,' )

Le ‘ Lt ‘ Ls
1 i i
Ls does not contain any tuple whose

ID is x (Condition (ii))

Figure 4: Example to illustrate Claim 16. Assume there are two
lists in group G;. Random access from L, to L, is useless, since
€ is terminated and L, does not contain any tuple whose ID is x.

(d) at depth 4

(a) initial KMG

(b) at depth 2 (c) at depth 3

Figure 5: Example top-k,m graphs (KMG)

pre-season. Furthermore, to maximize the elimination of useless
random accesses implied in Claim 16, in our algorithm, we consider
the Small First Access (SFA) heuristic to control the order of random
accesses, that is, we first perform random accesses to the lists in
groups with less attributes. In this way, the random access across
lists in larger groups may be avoided if there is no corresponding
tuple in the list of smaller groups. As shown in our experimental
results, Claim 16 and the SFA heuristic have significant practical
benefits to reduce the number of random accesses.

Summarizing, Claim 14 through 16 imply three levels of gran-
ularity to reduce the number of accesses. In particular, Claim 14
eliminates both random accesses and sorted accesses, Claim 15 aims
at preventing unnecessary random accesses, while Claim 16 comes
in to avoid random accesses for some specific tuples.

In order to exploit the three optimizations in the processing of our
algorithm, we carefully design a native data structure named top-k,m
graph (called KMG hereafter). Figure 5(a) shows an example KMG
for the data in Figure 1. Formally, given an instance I1 of the top-k,m
problem, we can construct a node-labeled, weighted graph G defined
as (V, E,W,C), where (1) V is a set of nodes, each v € V indicating
alistin II, e.g., in Figure 5, node F refers to the list F; in Figure 1;
(2) E € Vx Visasetof edges, in which the existence of edge (v,v")
means that random accesses between v and V' are necessary; (3) for
each edge e in E, W(e) is a positive integer, which is the weight
of e. The value is the total number of unterminated combinations
associated with e; and finally (4) C denotes a collection of subsets
of V, each of which indicates a group of lists in II, e.g., in Figure 5,
C={{F1, F2},{C1,C1},{G1,G,}}. A path of length |C| in G that spans
all subsets of C corresponds to a combination in IT.

Based on the above claims, we propose three dynamic operations
in KMG: (i) decreasing the weight of edges by 1 if one of combina-
tions involving the edge is terminated; (ii) deleting the edge if its
weight is 0, which means that random accesses between the two lists
are useless (implied by Claim 15); and (iii) removing the node if its
degree is 0, which indicates that both sorted and random accesses in
this list are useless (implied by Claim 14).

Optimized top-k,m algorithm. We are now ready to present
the ULA™* algorithm based on KMG, which combines all optimiza-
tions implied by Claim 14 to 16. This algorithm is shown as Algo-
rithm 2.

Algorithm 2 The ULA* algorithm

Input: a top-k,m problem instance with multiple groups and each
group G has multiple attributes and each attribute 7 is associated
with a list L,,.

Qutput: top-k combinations of attributes in groups.

(i) Find the seed combination € and prune all useless combina-
tions dominated by € according to the approach in Section 4.4.

(ii) Initialize a KMG @G for the remaining combinations.

(iii) Do sorted accesses in parallel to lists with nodes in G.

(iv) Do random accesses according to the existing edges in G (note
that we need to first access the smaller group based on SFA
strategy). In addition, given a tuple 7 € L,, n € G, if there
is another group G’ such that each node »n’ in G’ (where 3
edge (n,n’) € G) does not contain the tuple with the same ID
of 7, then we can immediately stop all random accesses for 7
(implied by Claim 16).

(v) Compute €™ and €™ for each unterminated combination e
and determine if € is terminated now by Definition 9 using €™
and e™*. If yes, decrease the weights of all edges involved
in € by 1. In addition, remove an edge if its weight is zero and
remove a node v € G if the degree of v is zero.

(vi) Add e to the result set Y if it meets the hit-condition. If there
are at least k combinations which meet the hit-condition, then
the algorithm halts. Otherwise, go to step (iii).

(vii) Output the result set Y containing top-k combinations.

ExampLE 17. We present an example with the data of Figure 1 to
illustrate ULA*. Consider a top-1,2 query again. Firstly, in step (i),
ULA™* performs sorted accesses to two rows of all lists, and finds
a seed combination, e.g., F>,C,G,, as e?;éle =40.18 < e,'?;‘é]Gl =
40.27. Because L¢, > Lc,, the combination €f,¢,g, dominates
€r,C,G,- Therefore, both €, ¢, ¢, and €g,¢,¢, can be pruned in step (i).
Then ULA* constructs a KMG (see Figure 5(a)) for non-pruned
combinations in step (ii). Note that there is no edge between F, and
G, since both €r,¢,g, and €p,¢,6, have been pruned. By depth 2,
ULA* computes €™ and €™ for each unterminated combination
in step (iii). Then €F,0,G and €g,¢,g, meet the drop-condition (e.g.,
€rc,6, = 37-6 < €p¢,g,), and we decrease the weights by 1 for
the corresponding edges, e.g., w(F,G;) = 1. In addition, node C,
should be removed, since all the combinations containing C, are
terminated, (see Figure 5(b)) in step (iv). At depth 3, €r,¢,q, is
terminated, since €;'¢, 5, = 36.48 < e,TZ‘"CIG], and we decrease the
weights of (F, Cy), (F,G,) and (Cy, G) by 1 and remove the node
G, (see Figure 5(c)). Finally, ULA™* halts at depth 4 in step (vi) and
F,C,G, is returned as the final result in step (vii). To demonstrate
the superiority of ULA*, we compare the numbers of accessed
objects for three algorithms: ETA accesses 54 tuples (at depth 5)
and ULA accesses 50 tuples (at depth 4) , while ULA* accesses
only 37 tuples (at depth 4) . [

4.5 Optimality properties

We next consider the optimality of algorithms. We start by defin-
ing the optimality measures, and then analyze the optimality in
different cases. Some of the proofs are omitted here due to space
limitation; and most proofs are highly non-trivial.

Competing algorithms. Let D be the class of all databases. We
define A to be all deterministic correct top-k, m algorithms
running on every database & in class D . Following the
access model in [8], an algorithm <7 € A can use both sorted
accesses and random accesses.

Cost metrics. We consider the number of tuples seen by sorted
access and random access as the dominant computational



factor. Let cost(</, Z) be the nonnegative performance cost
measured by running algorithm <7 over database &, which
represents the amount of the tuples accessed.

Instance optimality. We use the notions of instance optimality. We
say that an algorithm .o/ € A is instance-optimal if for every
o/’ € A and every & € D there exist two constants ¢ and ¢’
such that cost(o/, P) < ¢ X cost(H’, D) + ¢'.

Following [9], we say that an algorithm makes wild guesses if it
does random access to find the score of a tuple with ID x in some list
before the algorithm has seen x under sorted access. For example, in
Figure 1, we can see tuples whose IDs are G04 only at depth 3 under
sorted and random accesses. But wild guesses can magically find
GO04 in the first step and obtain the corresponding scores. In other
words, wild guesses can perform random jump on the lists and locate
any tuple they want. In practice, we would not normally implement
algorithms that make wild guesses. We prove the instance optimality
of ULA (and ULA") algorithm, provided the size of each group is
treated as a constant. This assumption is reasonable as it is mainly
about assuming that the schema of the database is fixed.

THEOREM 18. Let D be the class of all databases. Let A be the
class of all algorithms that correctly find top-k,m answers for every
database and that do not make wild guesses. If the size of each group
is treated as a constant, then ULA and ULA* are instance-optimal
over A and D.

Proor. According to the definition of instance optimality, the
main goal of this proof is to show that for every <7 € A and every
2 € D there exist two constants ¢ and ¢’ such that cost(ULA, &) <
¢ X cost(ef, D) + ¢’. We obtain the values of ¢ and ¢’ as follows.

Assume that an optimal algorithm <7 halts by sorted access at
most up to depth d. Since <7 needs to access at least one tuple in
each list (otherwise we can easily make .7 err), the cost of o7 is at
least (d + X1, g — 1)Cy, where C, denotes the cost of one sorted
access and g; is the number of attributes in the group G;.

We shall show that ULA halts on & by sorted access at most up
to depth d + m. Then the cost of ULA is at most:

Cost < (d +m)(LiL; 8)Cs + (d +m) X {g:(X)- g — 8)IC»
=(d+m)(ZiL; 8)C;s + (d +m) ¥ (88))Cr

where C, denotes the cost of one random access. For simplicity of
presentation, let 7 = }\_, g; and K = ¥, ,(g;g;). Hence, the cost of
ULA is at most: (d + m)TC; + (d + m)KC,, which is dTC, + dKC,
plus an additive constant of mT'C; + mKC,. So the optimality ratio
c= % =T+KC,/C,. Correspondingly, ¢’= mTC;+mKC,—
(T = 1)Cy= (T?* +mT — T)C, + (kT + mK — K)C,. It is easy to see
that ¢ and ¢’ are two constants and are independent of the depth 4.
The following part of the proof aims at showing ULA halts by
depth d + m (if the optimal algorithm stops by depth d). Let Y
be the output set of 7. There are now two cases, depending on
whether or not <7 has seen the exact top-m match instances for each
combination when it halts.
Case 1: If .7 has seen the exact top-m match instances for each
combination, then ULA also halts by depth d < d + m, as desired.
Case 2: If o/ has not seen the exact top-m match instances for
each combination, then there are still two subcases depending on
whether or not the lower bound of each combination € € Y is larger
than the upper bound of the combinations not in ¥ when 2 halts.
Subcase 2.1: For any combination € € Y and combination & ¢ Y,
emn > &M that is, all the combinations in Y meet hit-condition,
and the size of Y is k, so ULA halts by depth d < d + m, as desired.
Subcase 2.2: There exists one combination € € Y and one combi-
nation & ¢ Y such that ™" < &M% At this point, our ULA algorithm

cannot stop immediately. But since 7 is correct without seeing the
remaining tuples after depth d, we shall prove that ULA algorithm
accesses at most more m depths (i.e., €™ > £M at that moment),
otherwise we can easily make <7 err.

Given a list L; in a combination e, let o denote the seen minimal
score (under sorted or random accesses) in L; at depth d. Assume
that o/ has seen m’ (m’ < m) match instances for €. Let w =

Fi(os, ... ,o'fd) denote the possible minimal tScore. Then we define
an mScore as follows.
mScore(e, m) = Fr(tScore(I5), ..., tScore(I},), w,...,w)
————

Assume that 7 has seen m” (m” < m) match instances for £. Let
/lf denote the unseen possible maximal score (/lf < o(1)) below 7 in
list i by depth d + (m —m") of £. Let ¢ = 7—'1(/15?, ceey Aiffl) denote the
possible maximal tScore. Then hScore is defined as:
hScore(é,m) = ﬂ(tScore(If), R tScore(Ifn,,), Oseis )
NGRS
m—m’’
Let us call a combination e big if its mScore is larger than at least
Neom — k hScore of other combinations. We now show that every
member € of Y is big. Define a database 2’ to be just like 2, except
object unseen by 7. In &', assign unseen objects Vi,..., V,, with
the score of under 7 in each list L; € €(e € Y), and assign unseen
objects Uy,...,U,, with the score /l‘f under rinalist L; € §(£ ¢ Y).
Then .o/ performs exactly the same, and gives the same output and
accesses the same objects, for databases & and 2’. Then by the
correctness of o7, it follows that all combinations in Y is big.
Therefore by depth d + m, ULA would get at least m match
instances, and the lower bound of € is no less than mS core, and the
upper bound of ¢ is no more than kS core. Since mS core(e,m) >
hS core(¢,m), so by depth d + m, emn > gmax Therefore, ULA halts
by depth d + m, as desired. []

The next theorem shows that the upper bound of the optimality
ratio of ULA is tight, provided the aggregation functions ¥ and %,
are strictly monotone (the proof is omitted due to space limitation,
it can be found in a technical report that cannot be referenced due to
the anonymous review).

THEOREM 19. Assume that | and F, are strictly monotonic func-
tions. Let C, and C; denote the cost of one random access and one
sorted access respectively. There is no deterministic algorithm
that is instance-optimal for top-k,m problem, with optimality ratio
less than T + KC,/C;, (which is the exact ratio of ULA), where
T =YL 8 K= 3(gg) and g; denotes the number of lists in
group G;.

When we consider the scenarios when an algorithm makes wild
guesses, unfortunately, our algorithms are not instance-optimal, but
we can show that in this case no instance-optimal algorithm exists.
Note that this appears a somewhat surprising finding, because the TA
algorithm for top-k problems can guarantee instance optimality even
under wild guesses for the data that satisfies the distinct property.
In contrast, the ULA algorithm for top-k,m problem is not instance-
optimal even for distinct data. The intuition for this disparity is
that top-k problem needs to return the exact k objects, forcing all
algorithms (including those with wild guesses) to go through the
list to verify the results, but an algorithm for top-k,m search can
correctly return £ combinations without seeing their m objects by
quickly locating a match instance to instantly boost the lower bound.

THeOREM 20. Let D be the class of all databases. Let A be the
class of all algorithms (wild guesses are allowed) that correctly
find top-k,m answers for every database. There is no deterministic
algorithm that is instance-optimal over A and D.



Finally, we consider the case (not so common in practice) when
the number of attributes in each group is treated as a variable. While
our algorithm is not instance-optimal in this case, we can show that
no instance-optimal algorithm exists.

THEOREM 21. Let D be the class of all databases. Let A be the
class of all algorithms that correctly find top-k,m answers for every
database. If the number of elements in each group is treated as a
variable, there is no deterministic algorithm that is instance-optimal
over A and D.

S. XML KEYWORD REFINEMENT

In this section, we study XML keyword query refinement using
the top-k,m framework. We show how to judiciously define the
aggregate functions and the join predicates in the top-k,m framework
to reflect the semantics of XML keyword search and adapt the
aforementioned three algorithms, i.e., ETA, ULA, and ULA*.

5.1 XML keyword refinement

Given a set of keywords and an XML database D, we study how
to automatically rewrite the keywords to provide users better and
more relevant search results on D, as in real applications users’ input
may not have answers or the answers are not good. In particular,
we rewrite the users’ queries by two operations: transformation by
rules and deletion. We assume that there exists a table to contain
simple rules in the form of A— B, where A and B are two strings.
For example, “UC Irvine”—“UCI”, “Database”—“Data base”.
These rules can be obtained from existing dictionaries, query log
analysis [14], or manual annotation. Given a query ¢ = {q1, ..., qn}s
we scan all keywords sequentially and perform substring match by
rules to generate groups.' For example, assume that g={UC Irvine,
Database}; then the two groups are G;={UC Irvine, UCI} and
G,={Database, DB}.

We assume that each node in an XML database is assigned with
its JDewey identifier [7], which gives the order numbers to nodes at
the same level and inherits the label of their ancestors as their prefix.
In Figure 2, for example, school(1.2.4) shows that the label of its
parent is 1.2 and school is the fourth node in level 3 from left to
right. One good property of JDewey is that the number is a unique
identifier among all nodes in the same tree depth.

In general, to convert the problem of XML keyword refinement to
the top-k,m framework, given a keyword query g = {q1, ..., g}, we
first produce a set of groups Gi,. ..,G, where each element w;; € G;
is a keyword associated with an inverted list composed of binary
tuples 7=(o(7), 0°(7)), where p(7) is the JDewey label and o(7) is the
score of the node (e.g., tf-idf). Then, the XML keyword refinement
problem is to return top-k combinations of keywords that have the
best aggregate scores in their top-m search results.

We now present a widely adopted approach (e.g., [7, 19]) to for-
mally define #Score and cScore in the XML top-k,m problem. In the
XML tree data model, LCA is the lowest common ancestor of multi-
ple nodes and SLCA [1] is the root of the subtree containing matches
to all keywords without a descendant whose subtree contains all
keywords. In particular, given a combination € and tuples 7;... 7y
from different groups, one match instance (i.e., keyword search
result) is formed by the SLCA node 7i = slca(p(t)), ..., p(T))). Let
x;=0(;) x d(I' = I), where I denotes the depth of node p(t;), [ is the
depth of 71, and d(-) is a decreasing function to leverage the score of
SLCA at different levels (e.g., d(x) = 0.9* in our implementation).
We define tScore to compute the score of one match instance 7€ as

'In cases where one word (or a set of words) appears in multiple
rules, we need to design an algorithm to generate the mapping from
words to groups.
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Figure 6: JDewey labels are clustered by their lengths. The
dashed boxes include all data in column 4.

tScore(1€) = min(xy, ..., xj). Intuitively, tScore assigns a greater
score to an SLCA subtree with smaller sizes (/' — ) and higher
weights (o (;)).

Given a combination € and an integer m, and the tScores of any
m match instances I, ..., I on €, we define that

cScore(e, m) = a7 x max{tScore(I}) + - + tScore(I},))}

m

where |G| is the number of groups, |€| is the number of attributes in
the combination €, and « is a damping constant (e.g., @ = 0.7 in
our experiments). The choice of the component /I is to give a
penalty for deletion operation in keyword refinement in the sense
that more deletions (i.e., smaller |e|) lead to smaller scores.

Compared to the regular top-k,m problem (in Section 4), XML
top-k.m follows the same framework to return the top-k combina-
tions ordered by cScore. But the concrete definitions of tScore and
cScore are changed to cater for the tree-specific XML data. There-
fore, to address the challenge from SLCA computation, we convert
SLCA subtree computation to ID equi-join in each level. In particu-
lar, inspired by [7], we put the nodes into segments by the length
of their labels and nodes are ordered by their scores at each level.
See Figure 6. For example, in the list of “DB”, data are clustered
into two segments by label lengths (i.e., 5 and 4). The dashed boxes
show columns corresponding to levels in XML trees, and numbers
in one column uniquely identify nodes at that level (this is because
of the feature of JDewey labels). In Figure 6, column 4 contains all
the 4th JDewey numbers of the nodes. Note that the complete order
of one column from different length segments can be reconstructed
online, as we can maintain a cursor for each segment and pick one
number with the highest score for all the cursors at each iteration.
Therefore, to compute SLCA node, in column i, if two numbers
have the same value v, then they share the same prefix path and
their LCA subtree is uniquely identified by v. Furthermore, since
we access the data in a bottom-up manner in the sense that we first
access the column with greater column number, we guarantee that
the first seen LCA is the smallest LCA node.

5.2 XML top-k,m algorithms

We now describe how to adapt the previous three top-k,m algo-
rithms to work with XML trees. First, the application of ETA on
XML (called XETA) is obvious. For each combination of keywords,
we compute their exact top-m search answers and return the top-k
combinations by sorting the final cScore. Clearly, this approach has
to find the top-m search results for all the combinations, which is
usually prohibitively expensive.

Second, to apply ULA on XML top-k,m, we iteratively access
the JDewey numbers by columns in a bottom-up manner, while
continuously computing the lower and upper bounds, until all top-k
combinations are found. To compute the upper bound, the tricky
issue here is that we access the numbers by columns and do not
know the maximal values in other columns. However, this issue
can be solved by collecting the scores of top nodes in each col-
umn in the preprocessing phase. More precisely, given a term
(an attribute) e; and column /, let yij = max{z,...,2Zy}, where
M denotes the maximal length of nodes in the list of ¢; and z; =



s'xd(j-1) (I < j < M), where s/ is the top score of nodes in length j
and d(-) has been previously defined. For example, see Figure 6,
y‘L‘)B = max(0.8 x 0.9',0.9 x 0.9°) = 0.9, where d(x) = 0.9*.

Suppose that we are accessing the JDewey label 7 in column /,
and the score of current number (representing an LCA node) can
be computed as x'=0(7) x d(n — I), where n is the total number of
components in 7. Given a combination €, the threshold value 7 can
be defined as:

!

I _ il
Te =min{s, ..., o

where ti[ = max{xg[,yé/_, - ,yé‘fl} (1< i < |ée]).

For example, in Figure 6, consider a combination “DB”. (Note
that a single word can be also considered as a combination due
to deletion operation.) Assume that we are accessing the second
tuple in column 4, i.e., the current number in list “DB” is 15 and
the score x3, = 0.7 x 0.9°™ = 0.63, then 72 = 1}, = max{x},
Yo Yo Vol = max{0.63,0.9%,0.9%,0.97} = 0.81, where y! , =
max{0.8 x 0.9°79,0.9 x 0.9“-9}.

We present the XULA algorithm to address top-k,m queries for
XML keyword refinement in Algorithm 3. We iteratively access
numbers from different columns in a bottom-up manner.

Algorithm 3 The XULA algorithm

Input: an XML top-k,m problem instance.

Output: top-k combinations of keywords.

(1) Initialize a variable [ = H, the height of XML trees. For each
combination €, initialize an empty set S to store SLCA nodes
and their scores.

(i) At column /, sorted access in parallel to each list and do the
random accesses to get LCA nodes u. If -dp € S, s.t. uis an
ancestor of p, insert u into S..

(iii) For each unterminated combination €, compute the lower and
upper bounds €y, and €y. (according to the top-m nodes
in S ¢) and check if € is terminated by Definition 9. Prune the
combination € by the drop condition (Lemma 7) or confirm €
to be part of the results by the hit condition (Lemma 8).

(iv) Let Y be a set to contain the results. If there are k combinations
in Y or all columns have been accessed, the algorithm halts.
Output Y.

(v) If all nodes at column / have been accessed, [ := [ — 1.

(vi) Go to step (ii).

ExampLe 22. Given a query ¢ = (DB, UC Irvine, 2002), we gen-

erate three groups G| = {“DB”, “database”}, G, = {“UCI”,“UC Irvine”},

and G; = {"2002”}. See Figure 6. Let d(x) = 0.9* and @ = 0.7.
Consider a top-1,2 query. In step (i), /=5, depth=1, and there are 17
combinations (not 4, due to the deletion operation) and VS, = 0. In
step (ii), the sorted accesses find four (trivial) LCA nodes (single
node) (e.g., 1.1.3.4.2 in DB) and add them to the corresponding S .
In step (iii), we compute the upper and lower bounds for all 17
combinations. For example, €7 = 0.9 + 0.9¢7) = 0.882,
epin = 0.82*~Y=0.392. Then the conditions in step (iv) and (v) are
not satisfied. Then we are in step (ii) again (/=5, depth=2) and add
two new LCA nodes to S pp and S y¢; respectively. In step (iii), at
this moment, five combinations satisfy the drop-condition and are
pruned. For example, €35/ = 0.7 = 227 x min(0.9,0.5),
which is smaller than €35 = 0.735 = (0.7+0.8)a*~. Thus, the com-
bination “{DB, UC Irvine}” is pruned. Now all nodes in column 5
have been accessed. Subsequently, we access nodes in column 4, 3
and 2. Finally, in column 2, we find the result is the combination
“{DB, UCI, 2002}”, which has two SLCA nodes (i.e., 1.3.10 and 1.2)
and its lower bound is 0.567 + 0.729 = 1.296, which is greater than
the upper bounds of all other combinations. [

Dataset | #of objects # of groups group size # of combinai
max avg max avg max avg
YQL 100,100 3 3 150 12 3,375,000 1,728
NBA 31,200 5 5 32 6 33,554,432 7,776
DBLP 3,736,406 7 2.6 12 5 371,292 327

Figure 7: Datasets and their characteristics

Finally, to optimize the XULA algorithm, we can reuse the opti-
mizations in ULA*, except Claim 16. This is because XML keyword
refinement supports the deletion operation and Claim 16 does not
hold when an attribute is allowed to be deleted (recall Figure 4). We
have to omit the details of the optimized XULA algorithm (called
XULA™) here due to the space limitation, but note that XULA™ is
implemented and tested in our experiments.

6. EXPERIMENTAL STUDY

In this section, we report an extensive experimental evaluation
of our algorithms, using three real-life datasets. Our experiments
were conducted to verify the efficiency and scalability of all three
top-k,m algorithms ETA, ULA and ULA*; and their variants for
XML keyword query refinement.

Implementation and environment. All the algorithms were imple-
mented in Java and the experiments were performed on a dual-core
Intel Xeon CPU 2.0GHz running Windows XP operating system
with 2GB RAM and a 320GB hard disk.

Datasets. We use three datasets including NBA?, Yahoo! YQL?,
and DBLP to test the efficacy of top-k,m algorithms in the real
world. Figure 7 summarizes the characteristics of the three datasets.
NBA and Yahoo! YQL datasets were employed to evaluate the top-
k,m algorithms, while DBLP dataset was utilized to test the XML
top-k,m algorithms.

NBA dataset. We downloaded the data of 2010-2011 pre-season in
NBA for the ”Point Guard”, ”Shooting Guard”, ”Small Forward”,
”Power Forward” and ”Center” positions. The original dataset con-
tains thirteen dimensions, such as opponent team, shots, assists and
score. We normalized the score of the data into [0, 10] by assigning
different weights to each dimension. There are five groups, and the
average size of each group is about 6.

YQL dataset. We downloaded data about the hotels, restaurants,
and entertainments from Yahoo! YQL?. The goal of the top-k,m
queries is to recommend the top-k combinations of hotels, restau-
rants, and entertainments according to users’ feedback. There are
three groups, and the average size of each group is around 12.

DBLP dataset. The size of DBLP is about 127M. In order to
generate meaningful query candidates, we obtained 724 synonym
rules about the abbreviations and full names for computer science
conferences and downloaded Babel* data including 9, 136 synonym
pairs about computer science abbreviations and acronyms.

Choosing the XML queries. Regarding to the real-world user
queries, the most recent 1,000 queries are selected from the query
log of a DBLP online demo [3], out of which 219 frequent queries
(with an average length of 3.92 keywords) are selected to form a
pool of queries that need refinement. Finally, we picked 186 queries
that have meaningful refined results to test our algorithms. Here we
show 5 sample XML keyword refinement as follows.
Q::{thomason, huang} is refined by adopting “thomason — thomas”.
Q,:{philipos, data, base} can be refined as {philipos, database}.

’http://www.nba.com/
*http://developer.yahoo.com/yql/console/
“http://www.wonko.info/ipt/babel.htm


http://www.nba.com/
http://developer.yahoo.com/yql/console/
http://www.wonko.info/ipt/babel.htm

# of lists in each group 5 10 15 20 25 30
# of total combinations 3125 100000 759375 3200000 9765625 24300000
# of pruned combinations 1875 80000 494325 2332800 7604375 19756800
Pruning Percentage 60.0%  80.0% 65.1% 72.9% 77.9% 81.3%

Figure 8: The performance of optimization to reduce combina-
tions
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Figure 9: The performance of different optimizations

05:{XML, key, word, application, 2008} is refined by deleting
“2008”, followed by a merging of “key” and “word”.

Q4:{jimy, kevin} which is refined by substituting “jimmy” for
“Simy®.

QOs:{world, wild, web, search, engine, 2007}, which is refined by
either adopting “world, wild, web” — “www” or deleting “2007”.

Metrics. Our performance metrics are (1) running time: the cost of
the overall time in executing top-k,m queries; (2) access number: the
total number of tuples accessed by both sorted access and random
access and (3) number of processed combinations: the total number
of combinations processed in memory.

Experimental Results

We inspected the results returned from all tested algorithms and
found that their results are all the same, which verifies the validity
of our algorithms. Each experiment was repeated over 10 times and
the average numbers are reported here.

Experimental results on NBA and YQL dataset. Here we
illustrate the performance of algorithms (ETA, ULA and ULA*) on
NBA and YQL dataset by varying parameters k, m, and the data
size. In addition, we also deeply study the performance of different
optimizations.

Scalability with database size. We evaluated the scalability of our
algorithms with varying the number of tuples from 10K to 100K in
both datasets. As shown in Figure 10(a)(b), both ULA and ULA*
expose an amazingly stable performance without any significant
fluctuation both in running time and number of accessed tuples
while ETA scales linearly with the size of the database in NBA
dataset. And in general, the execution time of ULA™ outperforms
ETA by 1-2 orders of magnitude, which verifies the efficiency of
the optimizations. In addition, as we can see in Figure 10(e)(f), the
results in YQL datasets are similar to that in NBA dataset.

Performance vs. range of k. In Figure 10(c)(g) we tested the
number of accessed tuples for both random accesses (i.e., ULA(R)
and ULA*(R)) and sorted accesses (i.e., ULA(S) and ULA*(S))
by varying k while fixing m on both NBA and YQL datasets. As
shown, the number of random accesses are greater than that of
sorted accesses for both ULA and ULA*. In addition, ULA* has
less accesses than ULA because of the effects of optimizations. Note
that, the number of accessed tuples in the ETA algorithm is the same
over all k values (i.e., 82K on NBA dataset and 70K on YQL dataset,

without shown in the figures), because ETA has to obtain the exact
top-m match instances for each combination independent of k.

Performance vs. range of m. The results with increasing m from
3 to 30 in NBA data and from 10 to 50 in YQL data are shown
in Figure 10(d)(h), respectively. In general, both ULA and ULA*
are 1 to 2 orders of magnitude more efficient than ETA method.
In addition, ULA™ is more efficient than ULA, which verifies the
effects of our optimizations.

Effect of the optimizations in ULA*. We then performed exper-
iments to investigate the effects of four different optimizations in
ULA*. We fixed the parameters k = 10, m = 30 and the number
of tuples is 100K. First, to evaluate the approach of pruning use-
less combinations introduced in Section 4.4, we plotted Figure 8,
which shows that the number of combinations processed in memory
by our optimized algorithm is far less than that of ULA when the
average number of lists in each group is increased from 10 to 50.
More than 60% combinations are pruned without computing their
bounds, thus significantly reducing the computational and memory
costs. Second, to evaluate the effects of Claim 14 to 16, Figure 9
is plotted to evaluate the performance of different optimizations in
terms of the number of accessed tuples. In particular, ULA*(PL)
uses Claim 14 to prune the whole lists to avoid useless accesses;
ULA*(AR) applies Claim 15 to avoid random accesses in some lists;
and ULA*(RO) employs Claim 16 to prevent random accesses for
some tuples. In Figure 9, the second, third and fourth bars show the
results to measure three optimizations individually, while the others
are actually a combination of multiple optimizations. As shown,
the combination of all optimizations has the most powerful pruning
capability, reducing the accesses for almost 80%.

Experimental results on DBLP dataset. Finally, we run the
experiments to test the scalability and efficiency of XETA, XULA
and XULA™* algorithms on DBLP dataset. In Figure 11(a)(b), we
varied the size of DBLP dataset from 20% to 100% while keeping
k=3, m=2. As expected, both XULA and XULA* perform better
than XETA and scale well in both running time and number of
accesses. In Figure 11(c)(d), we varied k from 1 to 5 while fixing
m = 2 and 100% data size. As shown, both XULA and XULA*
are far more efficient than XETA, and XULA™ accesses 74.2% less
objects than XULA and saves more than 35.1% running time, which
indicates the effects of our optimizations.

7. CONCLUSION AND FUTURE WORK

We proposed a new problem called top-k,m query evaluation.
We developed a family of efficient algorithms, including ULA and
ULA*. We analyzed different classes of data and access models,
such as group size and wild guesses and their implication on the
optimality of query evaluation. We then showed how to adapt our
algorithms to the context of XML keyword query refinement. As
for future work, extending our problem and algorithms with more
access models and query types, e.g., non-random access model and
non-monotone weight functions, while preserving optimal property,
is a challenging item for future research.
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