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Optimized top-k,m algorithm: ULA+

(a) Source data of three groups
40.27(=21.51+18.76) is the largest

among the aggregate scores of top-2

Given a set of groups where each group contains
multiple attributes and each attribute is associated
with a ranked list.

Top-k,m returns top-k combinations of attributes
which have the highest overall scores over their top-
m match instances by a monotonic aggregate
function.
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1) Prune the dominated combinations

2) Construct KMG for rest combinations

3) Delete weights, edges and nodes according to operations
4) Compute upper and lower bounds for rest combinations
5) Continue step 3 and 4 until KMG is empty
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(b) at depth 2

(a) initial KMG (c) at depth 3 (d) at depth 4
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(b) Top-2 aggregate scores for each combination

Issential difference between top-k queries and top-k,m problem

Optimality properties

» Top-k query returns the top-k tuples (objects), while Top-k,m query returns the top-k combinations of attributes in
groups.

» Top-k,m queries cannot be transformed into a SQL (nested) query, since SQL queries return tuples, while top-k,m returns
attribute combinations based on ranked inverted lists.

l'\stance Optimality

» Let D be the class of all databases. Let A be the class of all algorithms that correctly find top-k,m answers for every
database and that do not make wild guesses. If the size of each group is treated as a constant, then ULA and ULA+ are
instance-optimal over A and D.

Top-k,m Algorithms

Ihe upper bound of the optimality ratio is tight

» There is no deterministic algorithm that is instance-optimal for top-k,m problem, with optimality ratio less than 7 + K¢C,/C;
,Where T =21 g K = 2i,(88))

ccess model

e Sorted accesses: read the tuple of lists sequentially.
e Random accesses: quickly locate tuples whose ID has been seen by sorted access.

Ilo Instance Optimal Algorithms

» Let D be the class of all databases. Let A be the class of all algorithms (wild guesses are allowed) that correctly find top-k,m
answers for every database. There is no deterministic algorithm that is instance-optimal over A and D.

lBaseIine algorithm: ETA
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1. Scalability with database size: Figure (a) (b) (e) (f)
2. Performance vs. range of k: Figure (c) and (g)
3. Performance vs. range of m: Figure (d) and (h)
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Intuitively, the combinations with lists containing small top tuples are guaranteed not to be part of answers, as their scores are too
small. Therefore, we do not need to take time to compute their accurate upper and lower bounds.
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Eliminating random accesses for specific tuples

Conclusion

OPropose a new problem called top-k,m query evaluation

ODeveloped a family of efficient algorithms, including ULA and ULA+

OAnalyzed different classes of data and access models, such as group size and wild guesses and their implication on the optimality
of query evaluation

OShowed how to adapt our algorithms to the context of XML keyword query refinement

'Operations in KMG

(i) decreasing the weight of edges by 1 if one of combinations involving the edge is terminated
(i) deleting the edge if its weight is 0, which means that random accesses between the two lists are useless
(iii) removing the node if its degree is 0, which indicates that both sorted and random accesses in this list are useless
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