
Optimal Top-k Generation of Attribute Combinations based on
Ranked Lists

Motivation and Problem Statement

Top-k,m Algorithms

Optimality properties

XML Keyword Refinement

Experimental Study

Optimized top-k,m algorithm: ULA+

Baseline algorithm: ETA

Essential difference between top-k queries and top-k,m problem

Example

Instance Optimality

Conclusion
Propose a new problem called top-k,m query evaluation
Developed a family of efficient algorithms, including ULA and ULA+
Analyzed different classes of data and access models, such as group size and wild guesses and their implication on the optimality
of query evaluation
Showed how to adapt our algorithms to the context of XML keyword query refinement

Jiaheng Lu*, Pierre Senellart#, Chunbin Lin*, Xiaoyong Du*, Shan Wang* and Xinxing Chen*

* School of Information and DEKE, MOE, Renmin University of China
Institute Telecom; Telecom ParisTech, France

{jiahenglu, chunbinlin, duyong, swang, xxchen}@ruc.edu.cn, pierre@senellart.com

Experimental Setup and Data Sets
Language: Java; OS: Windows XP; CPU: 2.0GHz; Disk:320GB

Metrics
(1) running time: the cost of the overall;
(2) access number: the total number of tuples accessed by both
sorted access and random access
(3) number of processed combinations: the total number of
combinations processed in memory

Experimental results on NBA and YQL datasets
1、Scalability with database size: Figure (a) (b) (e) (f)
2、Performance vs. range of k: Figure (c) and (g)
3、Performance vs. range of m: Figure (d) and (h)

Experimental results on DBLP dataset

ULA+(PL) uses the optimization of “avoiding
both sorted and random accesses”.
ULA+(AR) applies the optimization of
“reducing random accesses across two lists”.
ULA+(RO) employs the optimization of
"eliminating random accesses for tuples".

The performance of optimization to reduce combinations

The performance of different optimizations

The number of combinations processed in memory by our optimized
algorithm is far less than that of ULA.

The combination of all optimizations
has the most powerful pruning
capability.

Both ULA and ULA+ expose an amazingly
stable performance while ETA scales linearly.
ULA+ outperforms ETA by 1-2 orders of
magnitude both in running time and access
number.

XULA and XULA+ perform better than XETA
and scale well in both running time and

number of accesses.

JDewey labels are clustered by their lengths. The dashed boxes include all data in column 4.

Consider a top-1,2 query, 17 combinations in total.

•Given a query Q = {DB;UC Irvine; 2002}
•Groups G1 = {"DB"; "database"}, G2={"UCI";"UC
Irvine"}, and G3 = {"2002"}.

Q’={DB, UCI, 2002} with two SLCA nodes (i.e., 1.3.10 and
1.2) The lower bound of Q’ is 0.567 + 0.729 = 1.296

JDewey Labelling

Goal: select the top-1 combination of athletes
according to their best top-2 aggregate scores for
games where they played together.

F2C1G1 is the best combination of athletes, as the
top-2 games are G02 and G05, and 40.27 (= 21.51 +
18.76) is the highest overall score.

Problem Statement (Top-k,m)
Given a set of groups where each group contains
multiple attributes and each attribute is associated
with a ranked list.
Top-k,m returns top-k combinations of attributes
which have the highest overall scores over their top-
m match instances by a monotonic aggregate
function.

 Top-k query returns the top-k tuples (objects), while Top-k,m query returns the top-k combinations of attributes in
groups.

 Top-k,m queries cannot be transformed into a SQL (nested) query, since SQL queries return tuples, while top-k,m returns
attribute combinations based on ranked inverted lists.

Access model
• Sorted accesses: read the tuple of lists sequentially.
• Random accesses: quickly locate tuples whose ID has been seen by sorted access.

Compute top-m results for
each combination

By Threshold Algorithm TA

Calculate aggregate score for
each combination pick the top-k combinations

it needs to compute top-m results for each combination and reads more inputs than needed

Shortcoming

ULA (Upper and Lower bounds Algorithm)

Compute the upper and lower
bounds for each combination

Return the top-k combinations
(at least k combinations which
meet the hit-condition)

Upper Bound Lower Bound Hit-condition
One combination should be an answer if there
are at least (is the total number of
the combinations) distinct combinations

,such that

Although ULA is more efficient than ETA, ULA needs to compute the lower and upper bounds for each combination, which may be an expensive operation
when the number of combinations is large.

Pruning combinations without computing the bounds
Intuitively, the combinations with lists containing small top tuples are guaranteed not to be part of answers, as their scores are too
small. Therefore, we do not need to take time to compute their accurate upper and lower bounds.

Domination

A combination is said to dominate another combination (denoted) if for every 1 > k > n, either
holds, where ei and ti are two (possibly identical) attributes of the same group Gi.

if dominates then the upper bound of is greater than or equal to that of .

Seed combination selection Dropping useless combinations

Example

1、find the seed combination
2、Drop useless combinations: All combinations (Ai,Bj)

, as well as (A2, Bj) and (B1, Ai) are dominated
by and can be pruned quickly.

 Let D be the class of all databases. Let A be the class of all algorithms that correctly find top-k,m answers for every
database and that do not make wild guesses. If the size of each group is treated as a constant, then ULA and ULA+ are
instance-optimal over A and D.

The upper bound of the optimality ratio is tight
 There is no deterministic algorithm that is instance-optimal for top-k,m problem, with optimality ratio less than

, where

No Instance Optimal Algorithms
 Let D be the class of all databases. Let A be the class of all algorithms (wild guesses are allowed) that correctly find top-k,m

answers for every database. There is no deterministic algorithm that is instance-optimal over A and D.

Optimized top-k,m algorithm: ULA+

Reducing the number of accesses

Three level
optim

izations

Avoiding both sorted and random accesses for specific lists

Reducing random accesses across two lists

Eliminating random accesses for specific tuples

Top-k,m Graph
(KMG)

Operations in KMG

(i) decreasing the weight of edges by 1 if one of combinations involving the edge is terminated
(ii) deleting the edge if its weight is 0, which means that random accesses between the two lists are useless
(iii) removing the node if its degree is 0, which indicates that both sorted and random accesses in this list are useless

Prune dominated
combinations

Compute upper and lower bounds for
unterminated combinations

Terminate combinations by reducing
number of accesses

Return the top-k combinations
(at least k combinations which
meet the hit-condition)

ULA+ Algorithm

Example

1) Prune the dominated combinations
2) Construct KMG for rest combinations
3) Delete weights, edges and nodes according to operations
4) Compute upper and lower bounds for rest combinations
5) Continue step 3 and 4 until KMG is empty

CenterForward Guard
F1 F2 C1 C2 G1 G2

Juwan Howard LeBron James Chris Bosh Eddy Curry Dwyane Wade Terrel Harris
(G02, 8.91)
(G08, 8.07)
(G05, 7.54)
(G10, 7.52)
(G03, 6.14)
(G01, 5.05)
(G04, 5.01)
(G09, 3.34)
……
(G06, 3.01)

(G01, 3.81)
(G06, 3.59)
(G04, 3.21)
(G07, 3.03)
(G09, 2.07)
(G11, 1.70)
(G10, 1.62)
(G02, 1.59)
……
(G08, 1.19)

(G02, 6.59)
(G03, 6.19)
(G04, 5.81)
(G05, 4.01)
(G01, 3.38)
(G09, 2.25)
(G06, 1.52)
(G08, 1.51)
……
(G07, 1.00)

(G09, 7.10)
(G03, 6.01)
(G04, 3.79)
(G08, 3.02)
(G05, 2.89)
(G02, 2.52)
(G01, 2.00)
(G10, 1.59)
……
(G06, 1.52)

(a) Source data of three groups

(b) Top-2 aggregate scores for each combination

40.27(=21.51+18.76) is the largest
among the aggregate scores of top-2

(G01, 9.31)
(G07, 9.02)
(G03, 8.87)
(G04, 5.02)
(G11, 4.81)
(G08, 4.02)
(G06, 4.31)
(G05, 3.59)
……
(G09, 2.06)

(G05, 7.21)
(G02, 6.01)
(G06, 5.58)
(G10, 5.51)
(G04, 5.00)
(G11, 3.09)
(G01, 2.06)
(G08, 2.03)
……
(G09, 1.98)

F1C1G1
(G04, 15.83)
(G05, 14.81)

F1C1G2 F1C2G1 F1C2G2 F2C1G1 F2C1G2 F2C2G1 F2C2G2
(G04, 13.81)
(G05, 13.69)

(G01, 16.50)
(G04, 14.04)

(G01, 15.12)
(G07, 12.05)

(G02, 21.51)
(G05, 18.76)

(G05, 17.64)
(G02, 17.44)

(G02, 17.09)
(G04, 14.03)

(G02, 13.02)
(G09, 12.51)… … … … … … … …

	Optimal Top-k Generation of Attribute Combinations based on Ranked Lists

