RENMIN UNIVERSITY OF CHINA

Optimal Top-k Generation of Attribute Combinations based on
Ranked Lists

Jiaheng Lu’, Pierre Senellart?, Chunbin Lin", Xiaoyong Du”, Shan Wang" and Xinxing Chen"”

TELECOM
ParislTech

m ZE

Motivation and Problem Statement

Forward Center Guard .LA+ Algorithm
H F Goal: select the top-1 combination of athletes N
RN CEAT Chris Bosh 'gjgi’ C?’“gi’ [zg)(;azneevg;(;e Tég;' Hargs according to their best top-2 aggregate scores for Compute upper and lower bounds for Return the top-k combinations
v I y 091, y (21~ y 9.01)--- y 0. , 7.1 -
(G07, 9.02) EGOS, 8.07)) ’éggg 2.33-—1%@@@‘3’593 (G03, 6.19) EGOS, 6.01; games where they played together. Prune d'oml'nated unterminated combinations) (at least k combinations which
(G03,8.87) (GO5,7.54)" (G06,5.58) (G04,3:21) (G04,5.81) (GO04, 3.79) combinations meet the hit-condition)
(G04,5.02) (G10,752) (G10,5.51) (GO7,3.03) «(G05,4.01) (G0, 3.02) _ o , o)
(G11,4.81) (GO03,6.14) (G04,5.00) (G09,2.07) (G01,3.38) (GO5,2.89) F,C,G, is the best combination of athletes, as the Terminate combinations by reducing
(G08,4.02) (G01,5.05) (G11,3.09) (G11,1.70) (GO09,2.25) (GO02,2.52) top-2 games are G02 and GO05, and 40.27 (=21.51 + number of accesses
(G06,4.31) (G04,5.01) (G01,2.06) (G10,162) (GO6,1.52) (GO, 2.00) 18.76) is the highest overall score. J
(G05,3.59) (G09,3.34) (G08,2.03) (G02,159) (GO8, 1.51) (G10,1.59)
(G09,2.06) (GO06,3.01) (G09,1.98) (G08,1.19) (GO7,1.00) (GO6, 1.52) I’roblem Statement (Top-k,m)

* School of Information and DEKE, MOE, Renmin University of China

Institute Telecom; Telecom ParisTech, France

{jiahenglu, chunbinlin, duyong, swang, xxchen}@ruc.edu.cn, pierre@senellart.com

Optimized top-k,m algorithm: ULA+

(a) Source data of three groups
40.27(=21.51+18.76) is the largest

among the aggregate scores of top-2

Given a set of groups where each group contains
multiple attributes and each attribute is associated
with a ranked list.

Top-k,m returns top-k combinations of attributes
which have the highest overall scores over their top-
m match instances by a monotonic aggregate
function.

~

1) Prune the dominated combinations

2) Construct KMG for rest combinations

3) Delete weights, edges and nodes according to operations
4) Compute upper and lower bounds for rest combinations
5) Continue step 3 and 4 until KMG is empty

=

(G04, 15.83) (G04, 13.81) (GO1, 16.50) (GO1, 15.12)
(GO5, 14.81) (GO5, 13.69) (G04, 14.04) (GO07, 12.05)

(G02, 21.51)
(G05, 18.76)

(GO05, 17.64) (G02, 17.09) (G02, 13.02)
(G02, 17.44) (G04, 14.03) (G09, 12.51)

(b) at depth 2

(a) initial KMG (c) at depth 3 (d) at depth 4

J

(b) Top-2 aggregate scores for each combination

Issential difference between top-k queries and top-k,m problem

Optimality properties

» Top-k query returns the top-k tuples (objects), while Top-k,m query returns the top-k combinations of attributes in
groups.

» Top-k,m queries cannot be transformed into a SQL (nested) query, since SQL queries return tuples, while top-k,m returns
attribute combinations based on ranked inverted lists.

l'\stance Optimality

» Let D be the class of all databases. Let A be the class of all algorithms that correctly find top-k,m answers for every
database and that do not make wild guesses. If the size of each group is treated as a constant, then ULA and ULA+ are
instance-optimal over A and D.

Top-k,m Algorithms

Ihe upper bound of the optimality ratio is tight

» There is no deterministic algorithm that is instance-optimal for top-k,m problem, with optimality ratio less than 7 + K¢C,/C;
,Where T =21 g K = 2i,(88))

ccess model

e Sorted accesses: read the tuple of lists sequentially.
e Random accesses: quickly locate tuples whose ID has been seen by sorted access.

Ilo Instance Optimal Algorithms

» Let D be the class of all databases. Let A be the class of all algorithms (wild guesses are allowed) that correctly find top-k,m
answers for every database. There is no deterministic algorithm that is instance-optimal over A and D.

lBaseIine algorithm: ETA

(~

Compute top-m results for

Calculate aggregate score for o
inati oo ick the top-k combinations d f

each combination each combination p P XM L Keywor Re |nement
\
By Threshold Algorithm TA -/ B

-))
B Shortcomlng ~ m_asteifl?esalj};_j:— :‘El‘%'-_‘”‘":"'[“‘-‘“" a2 _}zl_ﬁ_t_helsui]ﬁ] lzxamp|e
g s\ sl G Ga\ UM [iDewey Labelling)

i - inati i 1D (Llag)\ (1246 (1257)(1.2.68) \ 13812 (135.03), ewey Labelling . .

\It needs to compute top-m results for each combination and reads more inputs than needed) “[?(l;'n}h]& 'J’"‘i‘-“':l-}cf\é‘w.mL‘?‘i b3 72002 ﬁ;ﬂce L3810, _,518'&1}?53 ki *Given a query Q = {DB;UC Irvine; 2002}
(13 A *Groups G1 = {"DB"; "database"}, G2={"UCI";"UC
I 0gno ape GEaD O30 (3 A (R G340 Irvi .'?} d G{3 - {"2002"} et
LA (U d L b d AI th u|.1._'=.:~.11[1.11.Ill=f1.:1g|_)|f§1.s.3> l".:3-|7-9:.’"L.'-?-;‘-{O-?l(!.é-l?-'l,-ﬁ’ B Gl L B rvineéy, an - :
(Upper and Lower bounds Algorithm) gL R G T]
R t th t k b t DE Gg-c:lu]ll SRR wer (;mujﬁlc rorieE [;zcmg:i ConSIder a top_]_’z query’ 17 Comblnatlons In total.
eturn the top-k combinations e [[= = 1
Compute the upper and lower prk cor . ’_Fh:—'” [Eriwsle]| T oof| GG, o |wo's|
L (at least k combinations which [TTsle) o) | =i, || R e = | EEEE oo
bounds for each combination . .. GG o = — I ’ : ;
meet the hit-condition) L2510 9 - Q’={DB, UCI, 2002} with two SLCA nodes (i.e., 1.3.10 and
JDewey labels are clustered by their lengths. The dashed boxes include all data in column 4. 12) The lower bound of Q’ is 0.567 + 0.729 = 1.296

;Upper Bound \\ " Lower Bound Hit-condition
FaliScore(T)......1S core Ty) T....T) " <m 4 FoltScoreT). ...1Score(T<,).0.....0) nf <m One combination € should be an answer if there
max T:rr min ‘?_/m—,l N —_— k N
e max{ASCore(T)....Score T o | e =Y i Scoretp.iscore Tt > are at Iea§t Veom .(Neams the‘totaTI number of . -
ps . the combinations) distinct combinations I Experimental Setup and Data Sets I Metrics
_ AN €1 ENeom—ksuch that €™ > max{™* | 1 <i < Neom — k} Language: Java; 0S: Windows XP; CPU: 2.0GHz; Disk:320GB (1) running time: the cost of the overall;
Dataset | #ofobjects £ of groups group size # of combinaiton (2) access number: the total number of tuples accessed by both
Although ULA is more efficient than ETA, ULA needs to compute the lower and upper bounds for each combination, which may be an expensive operation - i R) avg | oo — L 'l_\: sorted access and random access
when the number of combinations is large. 3431 13010;1005 ’ i l;f 16‘ ;'::foj 1: (3) number of processed combinations: the total number of
DBLP | 3736406 7 16 | 12 5 37100 7 combinations processed in memory
[] [] - [] . + :
Opt|m|ZEd top k'm algorlthm. ULA prerlmental results on NBA and YQL datasets

e —w—FTA

1. Scalability with database size: Figure (a) (b) (e) (f)
2. Performance vs. range of k: Figure (c) and (g)
3. Performance vs. range of m: Figure (d) and (h)

Rl el s N -

55555

LA
ULa+

.'uning combinations without computing the bounds

!

o b

time (sec)
of accessed tuples (K)
e

of aocessed tuples(K)

Intuitively, the combinations with lists containing small top tuples are guaranteed not to be part of answers, as their scores are too
small. Therefore, we do not need to take time to compute their accurate upper and lower bounds.

o L

10 2 30 40 0 60 70 0 90 100
Varying # of mples (*K)k=30.m=15)

0 0 30 4 0 & M W 10
Varying # of nuples (*E)(k=30,m=15)

15 20 25 30 33 9 12 15 18 ;oMW
Varying kim=15) Varying m (&=30)

(a)running time on NBA (b)# of accessed tuple on NBA (c)# of accessed tuple on NBA (d)running time on NBA

Domination Both ULA and ULA+ expose an amazingly
A combination €= {e1.....¢,}is said to dominate another combination & = {71.....7.}enoted €= ¢ for every 1 >k > n, either H F] % P a stable performance while ETA scales linearly.
. . . . Zao =2 5 " —a—u z -
holds, e =1 or L., > L,are two (possibly identical) attributes of the same group G.. £ jojlm=e] || ULA+ outperforms ETA by 1-2 orders of
b S asaa e e TO[TEA L. . e magnitude both in running time and access
aing o e B0 aming » ot s RO 50 " ek o Nz 0mio0 number.
(e)running time on YQL (£)# of accessed tuples on YQL (g)# of accessed tuples on YQL (h)mnning time on YQL
[if edominates &then the upper bound of €s greater than or equal to that of .¢]
- 1.20 ULA+(PL) uses the optimization of “avoiding # of lists in each group 5 10 15 20 25 30
i i i : : : £ 100 both sorted and random accesses”. - o 5 250375 12 265625 2

[Seed combination selection] [DrOpplng useless combinations] I 0s N ULA+(AR) applies the cpimisation of # of total combinations | 3125 100000 759375 3200000 9765625 24300000
% = . 0.62 0.61 “reducing random accesses across two lists”. # of pruned combinations| 1875 30000 494325 2332800 7604375 19756800
8 o Fl. - - = .. .
g™ s I o R % ULA+(RO) employs the optimization of Pruning Percentage | 60.0% 80.0% 65.1% 729% 77.9% 81.3%
g - RS = s« 2 eliminating random accesses for tuples'. The performance of optimization to reduce combinations

0.00 L . 1= . . e
o ol : : : TA WA A WA WA WMWY 2. The combination of all optm_nzatmns The number of combinations processed in memory by our optimized
Al A2 A3 An Bl B2 Bn 1. find the seed combination ¢ = (A,.B)) o =9 &R has the most powerful pruning algorithm is far less than that of ULA.
(a. ioj ((‘; 8.3) (3 ES) (3 4%) (b,9.0) (? §0) (?1 ii) 2. DrOp useless combinations: All combinations (Ai' BJ) The performance of different optimizations capability.
(b.5.8)/(d. 7.1)|(d. 3.7)| [(d.4.3)|}}|(a. 8.2)|(£.3.2) |(d.4.5) (Vi € [3.n]. j € [2.n]), as well as (A,, B)) and (B,, A)) are dominated
by andcan bé pruned quickly
G1 G2 : ’ .
lxperlmental results on DBLP dataset

.educmg BSEIBETot accesses 3 i e z XULA and XULA+ perform better than XETA
Avoiding both sorted and random accesses for specific lists : ? o R * and scale well in both running time and
: S

number of accesses.

AR AR AW RO 100%
Varying the size of DBLP(k=3.m=2)

(b)# of accessed tuples on DBLP

Varying k (m=2)

(c)# of accessed tuple on DBLP

2 sme e Bo% 100%
Varying the size of DELPk=3,m=2)

(a)unning time on DBLP

Varying k {m=2)

Top-k,m Graph
(KMG)

(d)rmnning time on DBLP

Reducing random accesses across two lists

suoneziwindo
[9A3] 934Y1

Eliminating random accesses for specific tuples

Conclusion

OPropose a new problem called top-k,m query evaluation

ODeveloped a family of efficient algorithms, including ULA and ULA+

OAnalyzed different classes of data and access models, such as group size and wild guesses and their implication on the optimality
of query evaluation

OShowed how to adapt our algorithms to the context of XML keyword query refinement

'Operations in KMG

(i) decreasing the weight of edges by 1 if one of combinations involving the edge is terminated
(i) deleting the edge if its weight is 0, which means that random accesses between the two lists are useless
(iii) removing the node if its degree is 0, which indicates that both sorted and random accesses in this list are useless

	Optimal Top-k Generation of Attribute Combinations based on Ranked Lists

