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ProbTree: A Query-Efficient Representation of Probabilistic Graphs!

2

4

3

0

6

5

1

0.25

0.750.5

0.5

0.75

0.75

1

0.5

0.75

(a) A probabilistic graph G with unit-weighted edges

40 1 : 1.00

(b) G(q) for q(0, 4)

0
6

1 2

1: 0.75
2: 0.06

1: 0.25

1: 1

1: 0.75 1: 0.75

4

1: 0.75

(c) G(q) for q(1, 4)

Figure 1: Illustrating (a) a probabilistic graph; (b) a possible
world; and (c), (d) query-e�cient representations

of q(1, 4). Also, the subgraph containing vertex 1, 5, and 6
is abstracted by a directed edge 6 ! 1, which means that
there are two paths from vertex 6 to vertex 1, with lengths 1
and 2 and respective probabilities of 0.75 and 0.0625.

In these examples, G(q) is smaller than G. Hence, the pos-
sible world graphs sampled from G(q) are smaller than those
generated from G, increasing both e�ciency and accuracy.
How can a small G(q) be obtained? We propose to use a

ProbTree, a structure derived from G. Given a query q(s, t),
the ProbTree is decomposed to yield G(q). We require the
ProbTree to be of size comparable to G. Moreover, the time
for indexing and retrieving a ProbTree should be small. To
achieve these goals, we show that the ProbTree must be in the
form of a tree. In the following we examine structures called
SPQR trees [12], and implement ProbTrees by incorporating
probabilistic graph information into SPQR trees.

2. FORMAL MODEL

Probabilistic graphs. We begin by giving the definition
of a probabilistic graph, modeled as a directed graph with
(finite) distance probability distributions on edges, and the
notion of possible world induced by such a graph.

Definition 1. A probabilistic graph is a triple G = (V,E, p)
where: (i) V is a set of vertices; (ii) E ✓ V ⇥ V is a set

of edges; (iii) p : E ! 2Q
+⇥(0,1] is a function that as-

signs to each edge a finite probability distribution of edge
weights, i.e., each edge e is associated with a partial map-
ping p(e) : Q+ ! (0, 1] with finite support supp(p(e)) such
that

P
w2supp(p(e)) p(e)(w) 6 1. We commonly denote V (G),

E(G), pG the vertices, edges, and probability assignment func-
tion of a given probabilistic graph G.

A given edge e is considered non-existing in the graph with
probability 1�

P
w2supp(p(e)) p(e)(w). Probability distribu-

tions on di↵erent edges are considered independent.

Definition 2. Let G = (V,E, p) be a probabilistic graph.
The (weighted) graph G = (V,EG,!) with EG ✓ V ⇥ V and
! : EG ! Q+ is called a possible world of G if EG ✓ E and
! is such that, for every edge e 2 EG, !(e) 2 supp(p(e)).
We write G v G. The probability of the possible world G is
defined by:

Pr(G) :=
Y

e2EG

p(e)(w(e))⇥
Y

e2E\EG

0

@1�
X

w02supp(p(e))

p(e)(w0)

1

A .

ST-queries on probabilistic graphs. In this paper, we fo-
cus on source-target distance query types (or ST-query for
short), which can be answered on the discrete distance distri-
bution of the input pair of vertices. The distance distribution
p(s ! t) between 2 vertices s, t 2 V is a set of tuples of the
form (di, pi), where pi is the probability that the shortest
distance between s and t is di.
Examples of ST-queries include:

Reachability: probability that t is reachable from vertex
s.

Distance-constraint reachability: probability that t is
reachable from vertex s within distance d.

Expected shortest distance: expected value of the dis-
tance distribution from s to t.

All query types above are computationally hard on proba-
bilistic graphs as shown in [20].

Indexes on probabilistic graphs. To define indexes on
probabilistic graphs, we use the notion of transformation
system.

Definition 3. A probabilistic graph transformation sys-
tem is a pair (index, retrieve) where: (i) index is a function
that takes as input a probabilistic graph G and produces as
output some arbitrary object I = index(G); (ii) retrieve is an
operator that, given an arbitrary (s, t) ST-query q in G (where
s and t are the source and target of the query), and the index
I obtained by applying index on G, produces a probabilistic
graph G(q) = retrieveq(I) such that s and t are vertices of
G(q).

In other words, a transformation encodes a probabilistic
graph into an structure that can be used to build specific
probabilistic graphs for pairs of vertices. Since the pair
of vertices can be found in the target probabilistic graph,
ST-queries on this pair can be run on top of this target graph.

For a transformed graph, there are two classes of important
properties to be taken into account: (i) the loss, quantified as
the di↵erence between the probabilities returned by the trans-
formed graph and those of the original graph, and (ii) the
e�ciency, quantified as the time and space cost of evaluation
on the transformed graph. We detail the formalization of
each of the two types below.
We are especially interested in lossless translations, such

that a ST-query produces the same result on the transfor-
mation as on the original probabilistic graph; for generality,
we use a common quantitative notion of loss for a trans-
formation, the mean squared error (MSE). We consider a
transformation lossless if, for all possible queries, its MSE is
equal to 0.
A transformation system is called an e�cient represen-

tation if it is e�cient for answering a given kind of query.
Formally:
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there are two paths from vertex 6 to vertex 1, with lengths 1
and 2 and respective probabilities of 0.75 and 0.0625.
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How can a small G(q) be obtained? We propose to use a

ProbTree, a structure derived from G. Given a query q(s, t),
the ProbTree is decomposed to yield G(q). We require the
ProbTree to be of size comparable to G. Moreover, the time
for indexing and retrieving a ProbTree should be small. To
achieve these goals, we show that the ProbTree must be in the
form of a tree. In the following we examine structures called
SPQR trees [12], and implement ProbTrees by incorporating
probabilistic graph information into SPQR trees.
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tion of a given probabilistic graph G.
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ST-queries on probabilistic graphs. In this paper, we fo-
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form (di, pi), where pi is the probability that the shortest
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Examples of ST-queries include:
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Distance-constraint reachability: probability that t is
reachable from vertex s within distance d.

Expected shortest distance: expected value of the dis-
tance distribution from s to t.

All query types above are computationally hard on proba-
bilistic graphs as shown in [20].

Indexes on probabilistic graphs. To define indexes on
probabilistic graphs, we use the notion of transformation
system.

Definition 3. A probabilistic graph transformation sys-
tem is a pair (index, retrieve) where: (i) index is a function
that takes as input a probabilistic graph G and produces as
output some arbitrary object I = index(G); (ii) retrieve is an
operator that, given an arbitrary (s, t) ST-query q in G (where
s and t are the source and target of the query), and the index
I obtained by applying index on G, produces a probabilistic
graph G(q) = retrieveq(I) such that s and t are vertices of
G(q).

In other words, a transformation encodes a probabilistic
graph into an structure that can be used to build specific
probabilistic graphs for pairs of vertices. Since the pair
of vertices can be found in the target probabilistic graph,
ST-queries on this pair can be run on top of this target graph.

For a transformed graph, there are two classes of important
properties to be taken into account: (i) the loss, quantified as
the di↵erence between the probabilities returned by the trans-
formed graph and those of the original graph, and (ii) the
e�ciency, quantified as the time and space cost of evaluation
on the transformed graph. We detail the formalization of
each of the two types below.
We are especially interested in lossless translations, such

that a ST-query produces the same result on the transfor-
mation as on the original probabilistic graph; for generality,
we use a common quantitative notion of loss for a trans-
formation, the mean squared error (MSE). We consider a
transformation lossless if, for all possible queries, its MSE is
equal to 0.
A transformation system is called an e�cient represen-

tation if it is e�cient for answering a given kind of query.
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is abstracted by a directed edge 6 ! 1, which means that
there are two paths from vertex 6 to vertex 1, with lengths 1
and 2 and respective probabilities of 0.75 and 0.0625.
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generated from G, increasing both e�ciency and accuracy.
How can a small G(q) be obtained? We propose to use a

ProbTree, a structure derived from G. Given a query q(s, t),
the ProbTree is decomposed to yield G(q). We require the
ProbTree to be of size comparable to G. Moreover, the time
for indexing and retrieving a ProbTree should be small. To
achieve these goals, we show that the ProbTree must be in the
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SPQR trees [12], and implement ProbTrees by incorporating
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form (di, pi), where pi is the probability that the shortest
distance between s and t is di.
Examples of ST-queries include:

Reachability: probability that t is reachable from vertex
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Distance-constraint reachability: probability that t is
reachable from vertex s within distance d.

Expected shortest distance: expected value of the dis-
tance distribution from s to t.

All query types above are computationally hard on proba-
bilistic graphs as shown in [20].

Indexes on probabilistic graphs. To define indexes on
probabilistic graphs, we use the notion of transformation
system.

Definition 3. A probabilistic graph transformation sys-
tem is a pair (index, retrieve) where: (i) index is a function
that takes as input a probabilistic graph G and produces as
output some arbitrary object I = index(G); (ii) retrieve is an
operator that, given an arbitrary (s, t) ST-query q in G (where
s and t are the source and target of the query), and the index
I obtained by applying index on G, produces a probabilistic
graph G(q) = retrieveq(I) such that s and t are vertices of
G(q).

In other words, a transformation encodes a probabilistic
graph into an structure that can be used to build specific
probabilistic graphs for pairs of vertices. Since the pair
of vertices can be found in the target probabilistic graph,
ST-queries on this pair can be run on top of this target graph.

For a transformed graph, there are two classes of important
properties to be taken into account: (i) the loss, quantified as
the di↵erence between the probabilities returned by the trans-
formed graph and those of the original graph, and (ii) the
e�ciency, quantified as the time and space cost of evaluation
on the transformed graph. We detail the formalization of
each of the two types below.
We are especially interested in lossless translations, such

that a ST-query produces the same result on the transfor-
mation as on the original probabilistic graph; for generality,
we use a common quantitative notion of loss for a trans-
formation, the mean squared error (MSE). We consider a
transformation lossless if, for all possible queries, its MSE is
equal to 0.
A transformation system is called an e�cient represen-

tation if it is e�cient for answering a given kind of query.
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Figure 2: SPQR tree of the graph in Figure 1.

edges; the corresponding tree bags are called serial or S-bags,
(ii) two vertices having parallel edges; the corresponding
bags are called parallel or P-bags, and (iii) a triconnected
graph not containing any of the above two structures; the
corresponding bags are called rigid or R-bags.

Example 1. We present in Figure 2 the SPQR ProbTree
resulting from the graph in Figure 1. Note that each edge
of the original graph (shown solid, while skeleton edges are
dashed) is present only in one bag, but vertices can be repeated
across bags. The SPQR ProbTree is composed of three S-bags,
one P-bag and one R-bag. Each bag contains the union of
the induced subgraph of G and the skeleton edges. Moreover,
each bag contains a triconnected component.

Take bag (�) as an example. It consists of three vertices
and two edges of G (1, 2, 6 and 1! 2, 2! 6), and a skeleton
edge propagated from node ("), summarizing paths from 6 to 1
in node (") (there is no path from 1 to 6 in node (")). Vertices
2 and 6 are a separation pair for the subgraph induced by the
vertices in bags (�) and ("), i.e., vertices 1, 2, 5, 6.

Bag (�) is an R-bag, and the bag is a P-node, containing
two parallel undirected skeleton edges, corresponding to the
two branches of the SPQR tree.

Algorithm 1 details the index operator using SPQR trees.
It outputs a ProbTree (T ,B).
The first step is the application of the SPQR tree algo-

rithms from [12], which creates a tree T and a mapping B
from bags of T to sets of vertices of G. We omit here the
details of the SPQR algorithm, as it is not our focus, and we
direct the reader to [12] for an up-to-date description of the
working of the decomposition algorithm. Bags B(n) are then
populated with the original edges from G which are between
vertices in B(n).

The second step is the pre-computation and upwards prop-
agation of distance probabilities of the separation pairs in
T , i.e., function precompute-propagate

SPQR. We use here
the observation that the distance distributions between end-
points can be computed in two directions. For example, take
bag (�). Edge 0! 4 can either be computed as coming from
the independent subgraph defined by bags (↵) and (�), or by
the independent subgraph defined by bags (�), (�), and (").

Algorithm 1: indexSPQR(G)
input : a probabilistic graph G, width parameter w
output : indexSPQR(G) = (T ,B)

1 G undirected, unweighted graph of G;
2 (B, T ) compute-spqr(G);
3 for n node of T do

4 copy the edges of G to B(n);
5 for l, leaf of T do

6 root T at l; for h height(T ) to 0 do

7 for node n of T s.t. level(n) = h do

8 precompute-propagate

SPQR(B(n), T );
9 root the tree at the node with largest bag;

10 return (T ,B);

This bi-directional computation is very useful for the retrieve
step, as we shall see. We can perform this computation in
an optimal manner, by successively rooting T at each of its
leaves l, and then propagate the computation upwards. For
every node n of T , we first need to collect the computed
distributions of the separation pairs corresponding to bags of
children of n. Then the probability distribution correspond-
ing to the endpoints {v1, v2}, i.e., p(v1 ! v2) and p(v2 ! v1),
is computed, if it has not been computed previously when
rooting the tree at other leaf bags.
Depending on the type of bag, we have two ways of com-

puting the endpoint distance distributions. For S-bags and
P-bags, these can be computed exactly using convolutions of
distance distributions. In the case of a P-bag, the distance
distributions between endpoints can be computed using a
MIN convolution – denoted in the following as � – of all the
parallel edges in the bag. This computation is linear in the
maximum distance of the input distributions. In the case
of an S-bag, the endpoint distribution can be computed by
applying a SUM convolution of the path between v1 and v2
passing through the other vertices in the bag – denoted as �
– followed by a MIN convolution with the direct edge distri-
bution. The SUM convolution is quadratic in the maximum
distance of the input distributions. For more details on the
computation of convolutions of probability distributions, we
refer the reader to [2].
For R-bags, it is expensive to compute exactly the end-

point distribution in the general case, as the graph present
in the bag can have an arbitrary configuration. In this case,
we can compute the endpoint distribution using sampling,
choosing the number of samples by applying the Cherno↵
and Hoe↵ding inequalities, to obtain an (", �) multiplicative
guarantee. We can then use the per-bag guarantees to com-
pute the overall guarantees on the distributions in the root
bag, in the spirit of [18].
Algorithm 2 shows the pre-computation step. Note that

for P-bags, we do not need to do anything in the second step,
as the collection of children nodes will already take care of
the MIN convolution of the parallel edges.

Retrieval. When answering (s, t) ST-queries on the Prob-
Tree we have two main cases. First, when both s and t are
present in the root node, we only need to query the root bag
without the need to look in the decomposition. The second
case is the most interesting one: when at least one of s, t are
not in the root, but are vertices in the decomposition bags.

Algorithm 2: precompute-propagateSPQR(B, T )

input : bag B, tree T
1 for distribution pc(u! v) in children of B do

2 p(u! v) p(u! v)� pc(u! v) ;
3 for edge v1 ! v2 between endpoints v1, v2 do

4 if pc(v1 ! v2) 62 computed(B) then
5 if type(B) = R then

6 pc(v1 ! v2) sample(v1, v2, B) ;
7 else if type(B) = S then

8 p0(v1 ! v2) p(v1 ! u1)� · · ·� p(uj ! v2)
;

9 pc(v1 ! v2) p(v1 ! v2)� p0(v1 ! v2) ;
10 add pc(v1 ! v2) to computed(B);
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Figure 3: Retrieval for the pair (1, 4).

In this case, the query vertices need to be propagated to the
root node.

The bi-directional property of computed new edges means
that we can simply assume that the root of the tree is located
at one of the bags containing s or t, and then propagate only
the edges corresponding to the other query vertex. Which
node is chosen is not important – it is easy to verify that the
number of edges propagated will be the same – so we will
assume we root the tree at the node whose bag contains t in
the following.

The original edges in ancestors of the bags containing the
query vertices are propagated up, all the way to the new root,
in a bottom-up manner. The previous pre-computations of
edges in areas of the graphs not containing the query vertices
and in the subtree of the bags containing the query vertices
are not a↵ected by this change. Recomputing the edges on
these parts of the tree is not necessary, and this ensures that
only a fraction of the bags in the tree is a↵ected by retrieve.
Algorithm 3 presents this operation in detail.

Algorithm 3: retrieveSPQR(T ,B, s, t)
input : ProbTree (T ,B), source s, target t
output : probabilistic graph G

1 root the tree at one of the bags containing t;

2 for h height(T ) to 0 do

3 for node n of T s.t. level(n) = h do

4 B  B(n);
5 if V (B) \ {s} 6= ; then
6 delete pc in parent(B) resulting from B;
7 E(parent(B)) E(parent(B)) [ E(B);
8 V (parent(B)) V (parent(B)) [ V (B);
9 return B(root(T ))

Example 2. Let us return to the decomposition in Fig-
ure 2, and exemplify how a retrieve operation for the query
pair (1, 4) proceeds. Figure 3 illustrates the execution of
Algorithm 3 for this pair.

First, since 1 and 4 are on the same branch of T , we can
root the tree at bag (�). Moreover, one can notice that there
is no need to recompute endpoint distributions on bags (↵),
(�), and ("). Hence, the computed edge 6! 1 is used from
bag (") and 0! 4 from (↵). However, the computed edges
6 ! 2 and 2 ! 6 are not propagated from bag (�) to bag
(�), as their computation involves a query vertex, in this
case vertex 1. Hence, all vertices and edges from bag (�) are
propagated to bag (�), and joined by the original edge in (↵),
0! 4. The resulting graph in the new root – bag (�) – is a
graph which outputs equivalent results for the query on (1, 4)
as the original graph in Figure 1a.

Properties. It is easy to check that the above operators de-
fine an e�cient representation where queries run faster on the
decompressed graph than on the original graph. Theorem 1
ensures the validity of the approach. The implementation of
SPQR trees of [12] is linear in the size of G. The precompute-
propagate function only pre-computes endpoint distributions
once per bag. The computation itself is polynomial, either
the MIN and SUM convolutions, or the sampling of the R-
bags using a set number of sampling rounds. The above
two results verify Property (i) of Definition 4. Moreover, it
is known that the number of skeleton edges added in the
triconnected components tree is O(E) (more precisely, it is
upper-bounded by 3|E|� 6, as shown in [19]), thus verifying
Property (ii).
Each retrieve outputs a graph that is at most as big as

the original graph, and hence the standard shortest-path
algorithms [8] would execute in less time for each sample.
Moreover, retrieve is linear in the number of tree bags, which
is itself linear in the size of G, verifying Property (iii). Hence
(indexSPQR, retrieveSPQR) is an e�cient representation.

Note. SPQR trees are not the only way to decompose a
graph to obtain a ProbTree. We have experimented with
partial fixed-width decompositions of the graph, and found
they can be useful (and indeed, sometimes more e�cient
than SPQR trees) when one desires lossless representations,
but with a “weaker” decomposition. Due to space reasons,
we omit them here.

5. EXPERIMENTAL EVALUATION
We now report on our experimental evaluation showing

the e�ciency of SPQR trees for indexing probabilistic graphs.

Datasets and setup. We use two probabilistic graph data-
sets, from di↵erent application domains:
1. The Wiki dataset, representing Wikipedia1 text inter-

actions between contributors. Each probabilistic edge has
distance 1 and the probability proportional to the number
of positive interactions over the number of total interactions.
Positive interactions represent text interactions which do not
involve the deletion or replacement of another contributor’s
text, and edges in the graphs represent the probability that

1
http://en.wikipedia.org/

Table 1: ProbTree properties (R is the root bag)

Graph Type R vertices R edges T height

Wiki
orig. 109,694 1,568,754 0
SPQR 41,268 296,714 536

NH
orig. 66,627 159,694 0
SPQR 45,777 112,676 9

two authors agree on a topic. The graph has 109,694 vertices
and 1,568,754 edges.

2. The United States road network graphs2, in which the
edges represent roads between geographic locations, and
have weights representing the average driving time. We have
attached to each edge the probability of driving occurring
without incident, chosen uniformly in the interval [0.95, 1].
We have experimented on the NH road network of 66,627
vertices and 159,694 edges.

Our ProbTree framework was implemented in C++, and all
experiments were run on a Linux machine with a quad-core
3.6 GHz CPU and 48 GB of RAM. The deterministic part of
the SPQR decomposition was done using the implementation
in the Open Graph Drawing Framework library3.

ProbTree properties. For the R-bags of the resulting SPQR
tree, we have computed the probabilities of the separation
pairs by using 1,000 rounds of sampling.

Table 1 shows the properties of applying ProbTree on the
four graphs, containing the number of vertices and edges in
the root bag. It can be noted that the best decomposition
for SPQR is achieved in the Wiki graph, which is also the
densest graph. The index operator is very e�cient, running in
the order of seconds even on large graphs. In NH the running
time is 23 seconds, while on Wiki it is 40 seconds. Moreover,
the space overhead of I reasonable. Generally, ProbTree only
incurs between roughly 10% (Wiki, 32MB from 30MB for
the original graph) and quadruple (NH, 16MB from 4.5MB
for the original graph) space overhead compared to the space
cost of the original graph.

Running time. For evaluating the execution time and query
accuracy, we used the following experimental setup. For each
dataset, a query workload of 1,000 vertex pairs from the
original graphs were generated. For each query workload, we
generated the ground truth probabilities via 10,000 rounds
of sampling. For each query pair we generated the actual
distance distribution between the vertices, by applying Dijsk-
tra’s shortest path algorithm on every sampling round. For
testing, we executed the workloads for a number of samples
between 10 and 1,000. As Figure 4 shows, the e�ciency gains
are important when queries are executed on ProbTree de-
compositions. The gains range from a factor of 2 in the case
of NH to 5 for Wiki. ProbTree based on SPQR performs
extremely well in the denser graph, Wiki.
The retrieve time does not influence significantly the exe-

cution of the queries. In the worst case, SPQR for NH, it
is roughly 2% of the execution time for 1,000 samples, and
under 0.2% for Wiki. Also, the average number of bags
needing re-computation is very small, again under 3% for

2
http://www.dis.uniroma.it/challenge9/data/tiger

3
http://ogdf.net/
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Figure 5: Relative error vs. time (log-log axis)

NH and under 0.05% for Wiki – out of the total number of
bags in the tree decomposition.

Error vs. time. The question we wish to answer now is the
following: Can such approaches beat sampling algorithms?
That is, is the error vs. time trade-o↵ enough to justify using
indexing, and not simply more sampling rounds? To check
this, we have plotted the running time of applying sampling
on ProbTree versus its error – expressed in terms of the
mean squared error as compared to the ground truth results.
For brevity, we only track the results for reachability – or
2-terminal reliability – queries. As query answers are derived
directly from the distance distribution, results for other types
of queries are equivalent.

Figure 5 presents the results for the NH and Wiki graphs
(note the log-log axes). The black dots represent the results
on sampling the original graph, for sample rounds between
10 and 1,000. Intuitively, we want the points corresponding
to ProbTree (drawn for the same amount of samples) to lie
“below” the line induced by the black points, meaning that
they yield a better time-accuracy trade-o↵. As seen before,
the gains in execution time when using the decompositions
are important. The results also show that the relative error
can be even slightly improved when using ProbTree. For
instance, note that the white dots in the NH graph are
slightly lower than the corresponding black dots, suggesting
an increase in accuracy. In the case of the Wiki graph, the
errors are lower for SPQR when the number of samples is
less than 500. Note that the error is relatively constant for
SPQR after a point, suggesting a lower bound of error due to
the sampling in the R-bags of the SPQR tree. This suggests
that SPQR in Wiki is best to be used in conjunction with
a lower number of samples, and that its appeal is mainly
directed at denser graphs.

Table 1: ProbTree properties (R is the root bag)

Graph Type R vertices R edges T height

Wiki
orig. 109,694 1,568,754 0
SPQR 41,268 296,714 536

NH
orig. 66,627 159,694 0
SPQR 45,777 112,676 9

two authors agree on a topic. The graph has 109,694 vertices
and 1,568,754 edges.

2. The United States road network graphs2, in which the
edges represent roads between geographic locations, and
have weights representing the average driving time. We have
attached to each edge the probability of driving occurring
without incident, chosen uniformly in the interval [0.95, 1].
We have experimented on the NH road network of 66,627
vertices and 159,694 edges.

Our ProbTree framework was implemented in C++, and all
experiments were run on a Linux machine with a quad-core
3.6 GHz CPU and 48 GB of RAM. The deterministic part of
the SPQR decomposition was done using the implementation
in the Open Graph Drawing Framework library3.

ProbTree properties. For the R-bags of the resulting SPQR
tree, we have computed the probabilities of the separation
pairs by using 1,000 rounds of sampling.

Table 1 shows the properties of applying ProbTree on the
four graphs, containing the number of vertices and edges in
the root bag. It can be noted that the best decomposition
for SPQR is achieved in the Wiki graph, which is also the
densest graph. The index operator is very e�cient, running in
the order of seconds even on large graphs. In NH the running
time is 23 seconds, while on Wiki it is 40 seconds. Moreover,
the space overhead of I reasonable. Generally, ProbTree only
incurs between roughly 10% (Wiki, 32MB from 30MB for
the original graph) and quadruple (NH, 16MB from 4.5MB
for the original graph) space overhead compared to the space
cost of the original graph.

Running time. For evaluating the execution time and query
accuracy, we used the following experimental setup. For each
dataset, a query workload of 1,000 vertex pairs from the
original graphs were generated. For each query workload, we
generated the ground truth probabilities via 10,000 rounds
of sampling. For each query pair we generated the actual
distance distribution between the vertices, by applying Dijsk-
tra’s shortest path algorithm on every sampling round. For
testing, we executed the workloads for a number of samples
between 10 and 1,000. As Figure 4 shows, the e�ciency gains
are important when queries are executed on ProbTree de-
compositions. The gains range from a factor of 2 in the case
of NH to 5 for Wiki. ProbTree based on SPQR performs
extremely well in the denser graph, Wiki.
The retrieve time does not influence significantly the exe-

cution of the queries. In the worst case, SPQR for NH, it
is roughly 2% of the execution time for 1,000 samples, and
under 0.2% for Wiki. Also, the average number of bags
needing re-computation is very small, again under 3% for
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NH and under 0.05% for Wiki – out of the total number of
bags in the tree decomposition.

Error vs. time. The question we wish to answer now is the
following: Can such approaches beat sampling algorithms?
That is, is the error vs. time trade-o↵ enough to justify using
indexing, and not simply more sampling rounds? To check
this, we have plotted the running time of applying sampling
on ProbTree versus its error – expressed in terms of the
mean squared error as compared to the ground truth results.
For brevity, we only track the results for reachability – or
2-terminal reliability – queries. As query answers are derived
directly from the distance distribution, results for other types
of queries are equivalent.

Figure 5 presents the results for the NH and Wiki graphs
(note the log-log axes). The black dots represent the results
on sampling the original graph, for sample rounds between
10 and 1,000. Intuitively, we want the points corresponding
to ProbTree (drawn for the same amount of samples) to lie
“below” the line induced by the black points, meaning that
they yield a better time-accuracy trade-o↵. As seen before,
the gains in execution time when using the decompositions
are important. The results also show that the relative error
can be even slightly improved when using ProbTree. For
instance, note that the white dots in the NH graph are
slightly lower than the corresponding black dots, suggesting
an increase in accuracy. In the case of the Wiki graph, the
errors are lower for SPQR when the number of samples is
less than 500. Note that the error is relatively constant for
SPQR after a point, suggesting a lower bound of error due to
the sampling in the R-bags of the SPQR tree. This suggests
that SPQR in Wiki is best to be used in conjunction with
a lower number of samples, and that its appeal is mainly
directed at denser graphs.
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ProbTree Data Structure

• Objective: efficiently execute probabilistic source-to-
target queries!

• ProbTree: data structure able to retrieve equivalent 
graphs for a source-to-target query!

• based on tree decompositions — SPQR trees of 
independent triconnected components!

• supported by two operators:!
1. index: pre-compute the ProbTree via SPQR 

decomposition and pre-computation of distance 
probabilities!

2. retrieve: given a query, efficiently retrieve the 
equivalent graph for result computation

• ProbTree is efficient in 
retrieving equivalent graphs 
and computing source-to-
target queries!

!

• ProbTree is effective and can 
increase the accuracy of the 
query answers, needing fewer 
samples than other algorithms


