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ABSTRACT
Scholarly articles in mathematical fields often feature mathematical
statements (theorems, propositions, etc.) and their proofs. In this
paper, we present preliminary work for extracting such information
from PDF documents, with several types of approaches: vision
(using YOLO), natural language (with transformers), and styling
information (with linear conditional random fields). Our main task
is to identify which parts of the paper to label as theorem-like
environments and proofs. We rely on a dataset collected from arXiv,
with LATEX sources of research articles used to train the models.

CCS CONCEPTS
• Information systems→Digital libraries and archives; •Com-
puting methodologies→ Artificial intelligence.
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1 INTRODUCTION
Mathematical statements (theorems, propositions, definitions, etc.)
and their proofs form some of the most important parts of schol-
arly articles in mathematical fields (e.g., mathematics, theoretical
computer science, mathematical physics), and are usually of in-
dependent interest for scientists. However, scientific articles are
often only available as PDF documents with no specific structure
outlining statements and their proofs. We deal in this paper with
the automatic extraction of such information.

We rely on machine learning techniques, and in this prelimi-
nary work explore several different approaches, based on computer
vision, natural language, and document styles. The task is to auto-
matically extract mathematical statements (generically referred to
in the following as theorems) and their proofs and label them.
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Figure 1: Example proof excerpt, end-of-proof (QED) symbol

There is a rich literature on information extraction from scholarly
articles [8, 15] though none on extraction of theorems and proofs.

One of the closest work might be [6] which identifies tables,
lines, and formulas formulated as an object detection task using
CNNs and a hybrid CRF model. This approach faces two major chal-
lenges: first, structured ordering of elements in scholarly articles is
different from regular images that are the use case of popular object
detection frameworks such as YOLO [11] or Faster R-CNN [12],
with in particular a smooth transition of pixel values around objects;
second, spacing between objects in an article vary. For the specific
task of table detection, it appears that vision-based approaches can
nevertheless be very successful, as demonstrated using YOLO v3
[6] and masked R-CNNs [10] with nearly perfect F1 scores on the
ICDAR2013 and 2017 datasets.

In our setting, however, theorems and proofs are often differ-
entiated by styling information such as special fonts or special
characters such as the QED symbol at the end of the proof (see
Figure 1), which are hard to capture using vision-based techniques.
Object detection techniques are also poorly adapted to the under-
standing of the sequencing of text and mathematics, which has
a crucial impact on their semantics. Still, as a representative of a
vision-based technique, we employ in this work YOLO v4 [3] which
shows significant performance gains over YOLO v3.

We also consider approaches based on natural language process-
ing, in particular attention-based mechanisms readily exploited
by transformer language models. These language models help to
understand context information, including for longer text lengths,
which can be lost by simpler models relying on, e.g., LSTM net-
works [1]. The language models that we do use in this work (namely,
BERT [5], DistilBERT [14], and SciBERT [2]) have been pre-trained
to understand the general language rules (English here). SciBERT,
in particular, has been pretrained on 1.14 million papers in the sci-
entific corpus (18% from computer science, 82% from biomedicine),
which may make the vocabulary learned more useful for our task
than that of language models trained on other corpora; SciBERT
[2] shows for instance better performance in sentence classifica-
tion over scientific articles (ACL-ARC) in Computer Science than
BERT. All these language models can be fine-tuned for a specific
task, which is what we do in this work.

Even though language models can retain semantic information,
they lack styling-based information. For example, knowing that a
line starts with a “Theorem” word in bold is a very strong indicator
that the line is the start of a theorem. One work that uses such
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information is [13], where a deep learning network is trained on
features built out of the content and style of scientific articles to
extract metadata of algorithms contained in the paper, reaching
78.5% accuracy (using RMSprop). In the same line, we also explore
in this work a classifier trained from simple content and style-
based features. Specifically, we use a conditional random field (CRF)
classifier to exploit the dependency of labeling from one line to the
next, without requiring too many hyperparameters as with LSTMs.

We present in Section 2 our three different approaches, then
the dataset and experiments in Section 3 before discussing the
results and potential for future research in Section 4. All code and a
description on how to acquire the data used in this article are made
available at https://github.com/PierreSenellart/theoremkb.

2 METHODOLOGY
Collecting and Labeling Data. Since there is no publicly avail-

able dataset for our task of interest, we collected publicly available
articles from arXiv, using arXiv’s bulk data access1. To automat-
ically label this corpus, we focused on articles for which a LATEX
source is available (the vast majority of articles on arXiv in math-
ematical sciences, see [9]). Indeed, when such source material is
present, and when this source material uses standard LATEX prac-
tices (\newtheorem to define theorem-like environments as well
as the proof environment), it is possible to automatically label
lines belonging to theorems and proofs by instrumenting a LATEX
run and producing PDF annotations corresponding to these labels.
We use this as a way to obtain ground truth, however this might
not be completely accurate if the source code contains a differ-
ent way of initializing proofs/theorems see [9] for more details;
on the other hand, all information extraction techniques work on
the unannotated PDF version of the papers, without access to the
source material, which reflects the fact that LATEX sources are rarely
available outside arXiv.

Some post-processing is required on the result of the LATEX-based
extraction of theorems and proofs (see Figure 2), in particular to
filter out footers or empty annotation boxes which are an artifact of
the LATEX instrumentation. This is currently done with a hard-coded
threshold that discards boxes with textual content such as page
numbers, empty boxes generated (due to the rendering process) see
Figure 2.

Depending on the approach used, PDF articles are then either
converted to bitmap images (for vision-based approaches) or pro-
cessed using pdfalto2, which turns a PDF document into an XML
file formed of a spatial index of all characters of the document
organized into hierarchical blocks of text (pages, vertical blocks of
lines, lines) along with styling information, as well as annotations
(hyperlinks, etc.), as shown on Figure 3.

Vision-Based Approach. Each page of the PDF image is rendered
as a PNG bitmap image with line-based annotations of the ground
truths corresponding to boxes. We then feed these bitmap images
with (upscaled) boxes labeling objects corresponding to theorems
and proofs to YOLOv4.

Previous versions of YOLO used Darknet53 as backbone network
along with residual layers after every few blocks of convolution
1https://arxiv.org/help/bulk_data
2https://github.com/kermitt2/pdfalto

Figure 2: Raw annotations resulting from the LATEX process-
ing of theorems and proofs

Figure 3: Result of the processing by pdfalto: (A) style
block (information about fonts); (B) page block; (C) charac-
ter string; (D) spacing information

operations alongside batch normalization after every layer to com-
bat gradient vanishing and internal covariance shift in the network.
However, in YOLOv4 the authors have identified and grouped a
range of different techniques that significantly increase the per-
formance of the network into categories described as either bag
of freebies (Cutmix, DropBlock, Mosaic Data Augmentation, la-
bel smoothing): applying these techniques increase the mAP of
the model without compromising on the inference time; or bag of
specials (Mish activation, Cross Stage Partial Connections, multi
weighted input residual connections): these techniques increase the
accuracy of detection with a small increase in the inference time.

The Intersection-over-Union (IoU) threshold kept for the selec-
tion of the boxes is 0.7. The problem is posed as a binary classifica-
tion problem dealing with the object of interest in either proofs or
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Figure 4: Loss function after 2000 iterations of YOLOv4

theorems if there exists a region of interest. The loss function can
be visualized in Figure 4 after training 2000 iterations of YOLOv4.

Language-Based Approaches. Textual information from each of
the lines is extracted and prepared for a binary classification task
of sequence prediction. We access and evaluate the performance
of several autoencoding-based models such as Bert base [5], Distil-
BERT base [14] and SciBERT [2]. These autoencoding-based models
are trained using a word masking mechanism (masking 15% of the
tokens), which we believe are well adapted to the task of theorem
and proof identification.

The success of transformer-based models is heavily dependent
on many crucial factors, some of them being: the quantity of data
used for pretraining the model, which can be extremely large for,
e.g., BERT; the number of data samples fed in for finetuning the
model; the nature of content provided (e.g., SciBERTwas specifically
trained on a scientific corpus of papers, mostly in the biomedical
domain); the size of the Encoder–Decoder stacks (BERT comes in
three variants: base/small/large); the type of pretraining used (e.g.,
GPT-based models see everything before the next token as part of
pretraining thus making them relevant for text generation tasks).

To contrast with these language models, we also trained a simple
LSTM model based on parallel positional encoding, using 100 cells.
This model serves as a baseline to evaluate the transformer-based
models in the task of identifying proofs and theorems.

Styling- and Sequence-Based Approaches. From the pdfalto out-
put we extract features that describe the document at different
hierarchical levels. <Page>-level features simply include the global
position in the document (begin, inside, end). <TextBlock> also has
spacing information: the distance with the last and next blocks are
computed, as well as the horizontal paddings. <TextLine> features
are used to detect the presence of tabulations (horizontal spacing
from the side of the container block) and patterns (a pre-existing
sequence of text, meaning that it occurred often in the document,
such as in the header or the footer section). <String> features in-
clude the normalized word, word-wise spacing information, detect
if the font is in italic or bold, font size, word-position in the sen-
tence, and the presence of digits and special characters. This small
set of features is normalized and standardized across the document
so that the model can focus on changes instead of values and be-
come robust to global style changes. We also expand the features

Table 1: Inference time

Approach Training time (h) Model size (MB)

YOLOv4 6.42 (2000 Epochs) 244

LSTM 0.05 (4 Epochs) 19.9
LSTM (unbalanced) 0.12 (4 Epochs) 19.9
DistilBERT-base cased 3.47 (1 Epoch) 263.3
SciBERT-base cased 6.07 (1 Epoch) 440.1
BERT-base cased 6.27 (1 Epoch) 438.2
DistilBERT-base uncased 3.44 (1 Epoch) 263.3
SciBERT-base uncased 4.24 (1 Epoch) 440.1
BERT-base uncased 6.23 (1 Epoch) 438.2

Linear-chain CRF 5 (300 iterations) 0.24
All trainings were made on a Tesla P100 GPU on Google Colaboratory with
15 GB of memory except for the CRF, trained on commodity hardware.

by computing for each token the difference between the current
value and the previous/next one: this is important to detect local
changes. Then, for a target resolution we derive the linear sequence
of features for the chosen document, meaning that coarser-grained
features are simply copied for each item (i.e., for each line in a page,
the page-level features are copied along with the individual line-
level features) and finer-grained features are aggregated using the
following methods: minimum value, maximum value, first value,
last value, mean value.

As we obtain a tagged linear sequence of features, it can be used
to train a linear-chain CRF. This class of probabilistic graphical mod-
els is very good for model sequences and has efficient inference
algorithms. We use sklearn-crfsuite to perform the training. How-
ever, when dealing with a large number of features, the training
time can remain high, and contrary to neural networks does not
yet benefit from GPU acceleration. Feature selection methods (such
as L1-regularization) are therefore mandatory to reduce training
time and reduce overfitting.

Finally, we also implemented a simple baseline that used some
simple information from the document, along with sequential infor-
mation, referred to in the following as the naïve algorithm: simply
look for a set of target words (“Proof”, “Theorem”, etc.) in bold or
italic at the beginning of a line and set the label of this line and all
subsequent lines until the end of a “block” accordingly.

3 DATASET AND EXPERIMENTS
The dataset3 is formed of 4,400 PDF articles from the CS-CC cate-
gory of arXiv (namely, Computer Science – Computational Com-
plexity) category from 2010 to 2020.

In experiments, we compare the training time (see Table 1) and
performance (see Tables 2, 3, 4) of our various approaches.

We stress that those are preliminary experiments with the goal
to simply explore what kind of performance levels can be reached
by straightforward methods. In particular, note that none of the ap-
proaches based on computer vision or natural language can capture
real sequence-based information (i.e., that the label of a line is heav-
ily correlated with that of the previous and the following line) but
attempt to label visual objects or individual lines separately. Also,
note that each class of approaches exploits a different segment of

3See https://github.com/PierreSenellart/theoremkb for links to individual papers; we
cannot redistribute the entire dataset publicly because of licensing issues.
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Table 2: Performance: Computer vision

Approach Loss mAP/Accuracy

YOLOv4 8.68 0.416

Table 3: Performance: Natural language

Approach Loss mAP/Accuracy

LSTM 0.9620 0.4625
LSTM (unbalanced) 1.2571 0.4183
BERT-base cased 0.8232 0.6316
SciBERT-base cased 0.8165 0.6327
DistilBERT-base cased 0.8267 0.6302
Bert base-uncased 0.8222 0.6313
SciBERT-base uncased 0.8151 0.6357
DistilBERT-base uncased 0.8275 0.6287

All results for natural language techniques were run on under-sampled
versions of the input (to avoid class imbalance), unless “unbalanced” is stated.
The learning rate used is 2 · 10−5.

Table 4: Performance: Styling

Approach Precision Recall F1

Linear-chain CRF 0.800 0.834 0.816
Naive Algorithm 0.832 0.370 0.487

understanding to decide on labels. A robust classifier would make a
cumulative decision based on all features including vision, text, and
styling information while also utilizing the sequence information
across multiple lines.

4 DISCUSSION & FUTUREWORK
Discussion of results. By far the most effective approach tested

in this work is training the linear-chain CRF classifier, even though
this approach only utilizes sequence-based styling information at
every line level. Results from Table 4 clearly indicates that styling-
based semantics such as the font used and the ratio of bold or
italic characters are alone a very strong indicator along with other
styling-based features and sequence information. Another strong
indicator of this fact is the not-too-bad performance of the naïve
algorithm.

It may be surprising to see (Table 3) that language models such as
Bert and SciBERT taking only information at an individual line level
and disregarding any information about lines in the sequence can
maintain a validation accuracy around 0.63 on undersampled data.
Their main disadvantage however is the huge training time and
space associated (see Table 1). A popular alternative we explored
in this paper is DistilBERT [14] which is 40% smaller in size while
retaining 97% of its language processing capabilities and being 60%
faster than Bert. In our model experimentation, we find very similar
performance while detecting theorems and proofs to Bert-based
models. Casing (distinguishing between lowercase and uppercase
characters) seems to have little effect. Usage of the Scibert specific
vocabulary generally improves the performance on scientific cor-
pora, though this is fairly marginal even though special vocabulary
adds an extra layer of information for the classifiers. Due to the
large amount of training time required for each model, a single
epoch of fine-tuning was run; continuing the evaluation on more
epochs could improve accuracy.

The least desirable results are generated from using a computer-
vision based approach; though raw results as observed by a human
being are sometimes acceptable, these techniques suffer from the
evaluation metric, where the IoU score plays an important role in
determining the mAP; for the line identification task, this means
precisely identifying the exact edges around proofs and theorems.

Perspectives. This work is an initial step made in the direction of
extracting mathematical structures from scientific articles in PDF
form.We plan to perform amore comprehensive study investigating
the following future directions leading to potential performance
improvements: Capturing sequential information based on several
text lines instead of considering independently every individual line;
Cumulatively building classifiers on the features extracted by each
of the three approaches; Further training models for a large number
of epochs to ensure convergence. Finally, note that, in vision-based
approaches, building ensembles [4] of several different types of
techniques each acting as an individual weak learner can enhance
mean average precision significantly especially with transformer-
based vision techniques [7] topping the leaderboards on object
detection datasets.
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