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ABSTRACT
Content-intensive websites, e.g., of blogs or news, present pages
that contain Web articles automatically generated by content man-
agement systems. Identification and extraction of their main content
is critical in many applications, such as indexing or classification.
We present a novel unsupervised approach for the extraction of
Web articles from dynamically-generated Web pages. Our system,
called FOREST, combines structural and information-based features
to target the main content generated by a Web source, and published
in associated Web pages. We extensively evaluate FOREST with
respect to various baselines and datasets, and report improved results
over state-of-the art techniques in content extraction.

1. INTRODUCTION
Context. Textual Web content on modern Web sites is, in the
overwhelming majority of cases, produced by dedicated content
management systems (CMSs). Such software generates Web pages
with news items, blog posts, wiki entries, forum messages, etc., by
filling a template with information fetched from databases. This
results in both structural and visual (i.e., presentation) similarities
across generated Web pages. In this automatic Web page generation
process, the original textual or structured content is turned into a full-
fledged HTML document, where the content is hidden among the
markup encoding of the site layout [17]. Such boilerplate content is
meant to ensure a common layout of the site, or to add contextual
information, navigation structure, and advertisements.

Structural similarities between pages generated within the same
site [11] can easily be seen at the level of the DOM tree, the tree
representation of the structure of an HTML document. Using struc-
tural similarities of pages, the “data region” delimiters can often be
identified by tracing the variable content within a fixed template.
Unfortunately, boilerplate changes from one page to another.

The challenge addressed in this paper is the identification of
structural patterns within CMS-generated Web pages that locate
informative content, rather than boilerplate.
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Proposal. In this paper we propose a fully automatic, unsuper-
vised, technique to derive a wrapper for the main content of a Web
page, exploiting similarities of pages of the same Web site or Web
source. We refers to this main content as a Web article.

Typically, Web page segmentation and template removal ap-
proaches for content extraction are usually performed at single-page
level, not taking advantage of the inherent structural patterns of
pages that share the same template and present the same function-
ality. Additionally, these approaches tend to employ methods that
heavily rely on quantitative analysis of text-related features and
HTML heuristics, rather than qualitative features that may involve
relevance analysis or cognitive measurements.

Our proposed method, called FOREST for Focused Object Re-
trieval by Exploiting Significant Tag paths, identifies the article
object that is dynamically generated by a Web source, and expressed
in associated pages. The location of the article is given by a wrapper
that is induced for each source, based on an unlabeled sample of
structurally-similar Web pages, that we further call sample pages.
We aggregate the similarities of sample pages. As structural analysis
on its own is not sufficient to identify the main content, we add a
novel ranking scheme that is based on the amount of informative
content that the instances of these patterns carry across sample input
pages. An advantage that specifically applies to FOREST is that,
once run on some sample pages containing Web articles, the result
can generalize to any Web page sharing the same functionality and
template, as long as the template of the source remains unchanged.

FOREST performs the following main steps per Web source:
(i) automatically acquires relevant keywords for each of the sample
pages; (ii) identifies from the sample tag trees significant structural
patterns; (iii) ranks structural patterns based on a relevance measure
based on information theory and statistics; (iv) infers a wrapper in
the form of a generic XPath expression that characterizes the main
content generation patterns of the source; (v) uses the wrapper to
extract the main content from Web pages generated by that source.

Contributions. We outline the following contributions of this
work: (i) a fully automatic method for identification of main content
generation patterns; (ii) a novel measure of content relevance that
assesses the informativeness of structural patterns; (iii) a new public
dataset called RED, semi-automatically created, and centered around
the notion of Web source, containing 1,000 Web annotated sample
pages from 90 Web sites; (iv) extensive experiments showing the
accuracy in terms of precision and recall, for our baselines and
FOREST, on various datasets.

We next discuss the related work, before presenting FOREST in
Section 3 and the evaluation experiments in Section 4. An extended
presentation of this material (additional experiments and baselines,
more detailed presentation of the algorithm) can be found in [28].



2. RELATED WORK
Automatic wrapper induction. Content extraction from Web
pages has often been formalized as a wrapper induction problem [1,
22, 25]. In unsupervised settings, wrapper induction makes use of
the common structure of various objects, either at single Web page
level [10], or across different Web pages [12] to identify occurrence
patterns [27]. Generally used for highly structured Web pages (e.g.,
the Deep Web, where pages are automatically generated by submit-
ting a Web form), wrapper induction methods often use inter-object
content changes as identification clues [1, 10]. These approaches do
not extend well to Web pages containing textual articles. Indeed,
they are typically less structured and, most importantly, incorporate
various logical components: related stories, comments, tag cloud,
etc., each having its own structural (therefore, change) patterns.

Web page segmentation. Template removal approaches filter
common DOM subtrees from sample pages by cross-page cluster-
ing [7,35]. But besides the existence of static template-specific parts,
a Web page presents multiple topically-disjunctive portions that may
change from page to page. Segmentation algorithms, that operate
at the level of a single page and perform the partition of a Web
page into blocks ranked based on their importance, have considered
the extraction of “informative blocks” [33], pagelets [2, 7], frag-
ments [32] or articles [20,31] from Web pages. This identification is
dependent on a palette of features: HTML heuristics [19, 30], visual
clues [6,26,37], or popular “shallow” text features (e.g., link density
or text length). Content features may be fed to a machine learning
algorithm, for either clustering [3, 4, 36], or classification [5, 33].

Other works [31] aim at extracting the Web article of a Web page
by relying on the text density in subsequent Web page segments.
Similarly, BOILERPIPE [20] employs densitometric features (e.g.,
average word length, absolute number of words, etc.) for the iden-
tification of rules that can classify text into content or boilerplate.
Belonging to a more recent type of techniques, CETR [36] computes,
per line of HTML code of the Web page, a tag ratio array. The result-
ing matrix is fed to a histogram clustering algorithm to identify the
positions of extraneous (i.e., boilerplate) data. We add the publicly
available BOILERPIPE and CETR state-of-the-art techniques to our
baselines to compare to in Section 4.

Keywords and Web feeds. The use of terms that appear with
a statistically unusual frequency in a text is a common practice in
information retrieval. Using keywords to rank Web blocks that con-
tain interesting content has been proposed in [30]. In contrast with
techniques considering all tag paths as equally important [27], the
use of keywords in defining informative structural patterns reduces
the exploration space [8]. The query terms occurring in search logs
have been proposed as a keywords in [8], with the aim of perform-
ing a structural clustering of the Web pages resulting from queries
to a search engine. However, the access to search logs is limited
to Web sites owners, or to search engines themselves. Keyword
search over XML documents [18, 34] assume the keywords given
in the input of the algorithm. The associated techniques are either
focused on finding the smallest lowest common ancestor (SLCA)
that contains all searched keywords [34], or are based on variations
of PageRank [18].

The use of Web feeds for main content extraction has been pro-
posed in [30], where linguistic clues and DOM heuristics have been
employed to identify the block where the main content resides. De-
spite their potential, Web feeds have just recently achieved more
attention in the content extraction task [9, 16]. First, due to the
intrinsic metadata about the main content that they provide, and
second, due to the type of Web pages that can be easily collected,
and on which automated wrapper induction can be made.

Tools and standards. Some tools, such as the open-source
Readability1 or similar browser plugins, aim at presenting the main
content of a Web page in a more readable way. These tools (at
least those whose code is available) use a combination of heuristics,
especially on tag names, site-specific parameters, and estimation of
text or link density. Several recent development of Web technologies
go in the direction of adding more semantics to the markup of a
Web page to clearly identify the main content of a Web page. The
HTML5 recommendation introduces the <article> tag to denote
a Web page’s or a section’s main content. This is not, however, used
consistently enough at the moment, to be of use for main content
extraction at scale.

3. METHODOLOGY
In this section, we present the method used to obtain significant

structural patterns from the tag-trees of sample pages, and the in-
formativeness measure used to rank these patterns. The input to
FOREST is a collection of n distinct sample HTML pages generated
using the same template. We first use HTMLCleaner2 to build a
DOM tree out of HTML tag soup; resulting documents are further
denoted d j, 1 6 j 6 n.

3.1 Marker Keywords
We use keywords as markers of where the main content of a Web

page may lie. As they can pinpoint potentially informative segments
in a Web page, they provide us with a basis for defining a notion
of content relevance at the level of DOM elements. In this article,
we choose to exploit keywords that are automatically identified. We
consider two different ways to do so: from a tf–idf analysis on
sample pages, and from an external metadata-source like a Web feed
(e.g., RSS or Atom) resource.

Our first method for acquiring keywords consists in applying a tf–
idf analysis on sample pages. The aim is to obtain for each sample
page its top-k weighted keywords. Towards this aim, after document
tag tree cleaning, we apply tokenization, stop words removal, and
stemming on the full text of each Web page. We index the resulting
terms and rank them according to the tf–idf measure.

The second method supposes the existence of a Web feed (i.e.,
RSS or Atom) linked to our data source. In our context, that of
CMS-enabled Web sites, e.g., news or blogs, this is very often the
case. Web feed items summarize Web pages’ “interesting” content
through typical metadata; in particular, title (the title of the entry)
and description (usually an excerpt of its text, automatically gen-
erated by the CMS) give us a direct hint about the main content
in that page. In contrast with the tf–idf method mentioned earlier,
without any global analysis on the textual content of sample pages,
we process the title and description of an item page to obtain repre-
sentative terms. In this process, possible HTML tags are stripped,
we perform tokenization, and rank the resulting terms according to
their frequency.

Whatever the origin of keyords, the top-k relevant terms for each
page are called markers of the respective page. In the experiments,
we fix the k threshold to 10 (but discuss other settings).

3.2 Structural Patterns Analysis
Our aim is to rank the various structural patterns of a publishing

source according to their likelihood they lead to the main content,
exploiting acquired keyword markers and the similarity across pages
of the same source.

For each document, we extract all textual leaf nodes whose con-
tent matches at least one keyword. We call these nodes significant

1http://lab.arc90.com/2009/03/02/readability/
2http://htmlcleaner.sourceforge.net/
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to make the distinction between the nodes worth exploring, and the
rest. All ancestors of a significant node are also deemed significant.
Indeed, if a textual leaf node is significant, that is, it contains one or
more keywords, then the same holds for all its ancestors. The higher
a node is in the tag tree hierarchy, the more keywords a node tends
to contain; at the same time, its density in keywords decreases due
to a larger amount of text.

Structural similarities across sample pages let us abstract out
unessential differences in the HTML “encoding” of content in node
elements. A DOM element is typically identified through a tag
name (such as div or li) and a list of attributes (id, style, class,
etc.). Their combination is however not always unique. Only the
id attribute can be considered unique, while class, for instance,
can be common to various elements in the tag tree. Paragraphs
or table elements (e.g., td, tr), are rarely identified by a unique
combination of attributes. We enforce the unicity of an element in a
document by adding to each node, at document-processing time, a
dfs and a level attribute. The dfs records the order of browsing of a
DFS (depth-first search) walk starting from the root, and the level
represents the depth of an element in the tag tree. This enforced
structure is serialized into an XML document.

Contrarily to what one would expect, modern CMSs do not always
generate Web pages with precisely the same HTML encoding. The
attribute values generated for HTML elements may slightly vary
from one sibling page to another. A simple example is that we could
find a <div> elements with a class attribute value of “post-43” in
one document, and “post-30” in another. We therefore abstract out
these differences in attribute values by removing numbers.

We associate a structural pattern to each element in the tag tree,
defined as an XPath expression constructed based on 〈t,atts〉, where
t is the tag name and atts is a set of key-value pairs of attributes, as
follows: (i) if the element has no other attributes than dfs then atts is
set to {dfs = l} where l is the dfs index of the current element; (ii) if
the element has attributes, atts is set to the collection of key-value
attribute pairs, excluding dfs. The structural pattern associated to the
element is then: //t[att1] . . .[attl] where atts = {att1, . . . ,attl}
(writing in the XPath expression a key-value pair (k,v) as k="v").

3.3 Content Relevance Measures
We tackle the main content identification issue by seeing it as

a ranking problem of structural patterns leading to significant el-
ements. We introduce next two content relevance measures that
estimate the importance of a structural pattern spi.
Statistical keywords density. We fix a significant node ele-
ment ei in a document d j. Let x be the number of keywords in ei’s
text, counted with their multiplicity. All other terms not identified as
keywords represent non-significant terms, be y their number. Then
N = x+ y is the total number of terms in the text of ei. We analo-
gously denote the number of significant and non-significnt terms in
the whole document d j in which ei occurs, as X , and Y respectively.

One of the most natural ways to determine whether a node is
interesting is to compute its density in keywords, i.e., x

N . However,
when N is small, this measure is imprecise, due to lack of observa-
tions: a node formed of a single keyword has poor chances to be
the most significant node of the document. In such context, we use
Jeffrey’s add-half rule [21] that represents a better statistical estima-
tor for the proportion of significant terms in a node. Furthermore,
when sampling N elements from a potentially larger set, we have a
margin of error on this estimation, given by the standard deviation√

f (1− f )
N [15]. Within an interval of one standard deviation, we

obtain a confidence of ≈ 70% [15].
We therefore define our statistical keyword density J, as the worst-

case estimator at 70% confidence of the density, including Jeffrey’s

add-half rule; if this value is less than 0, we fix it to 0:

J := max
(

0, 1
N+1

(
x+1/2−

√
(x+1/2)×(y+1/2)

N

))
.

For example, if x = 8 and y = 20, J(x,y) is comparable to that
of a node with x = 3 keywords and y = 5 regular terms: the lower
proportion ( 2

5 compared with 3
5 ) is compensated by the larger num-

ber of observations. Even more interestingly, when x = 1 and y = 0
we have a J ≈ 0.32, to be compared to the naïve density of 1: this
element is indeed dense, but due to the low (zero here) number of
non-significant terms, we cannot be sure of its importance.
Unexpectedness. Another approach to content relevance that
we study is derived from the notion of unexpectedness. Coming
from the cognitive model of simplicity theory [13] and information
theory in general, this measure relies on the observation that humans
tend to find a situation interesting when they perceive a discrepancy
in complexity. That is, a situation is unexpected if it is simpler to
describe than to generate. Assume a computation model given (say,
Turing machine encodings for a given universal Turing machine).
Given an object, we consider its generation complexity Cw (i.e.,
the size of the program that has generated it), and its description
complexity C (i.e., its Kolmogorov complexity, the minimum size of
a program that describes it); then the unexpectedness of this object is
the difference between the two (note that we always have C 6Cw).

We apply this to the simple setting of non-uniform binomial distri-
butions, that corresponds to our context. The generation complexity
corresponds (up to an additive constant) to the logarithm of the num-
ber of ways to draw x+ y elements out of a set of X +Y elements:
Cw := log(X +Y )x+y = (x+ y) log(X +Y ). The description com-
plexity, on the other hand, represents the complexity of describing
the content of the textual node, knowing that x terms are significant:
it is the logarithm of the number of ways of choosing exactly x sig-
nificant and y non-significant terms, that is: C := x logX + y logY.
The unexpectedness [13] is the difference between these two com-
plexities: U := (x+ y) log(X +Y )− x logX− y logY.

As a typical example, for a Web page with a total of 20 keywords
and 100 regular terms, a node with 10 keywords and 26 regular
terms will have an unexpectedness of 23 bits, which is definitely
higher than a node with 3 keywords and 1 regular term of 6 bits.
Informativeness. In preliminary experiments, we have tested
U and J separately, and combined into the global informativeness
measure, to observe their performance. The common pattern is
that J and U alone give less precise F1-measure than their combi-
nation (see [28] for details on the experiments). Unexpectedness
favors elements with a large amount of text content that is richer
in signifiers than the typical distribution of signifiers on the Web
page as a whole. This turns out to be complementary to the statisti-
cal density J, which generally favors nodes poor in non-significant
terms. Therefore, the content-based informativeness of a structural
pattern spi that represents nodei j in a document d j, is defined as:
I(spi,d j) := J(spi,d j)×U(spi,d j).

The informativeness of a structural pattern spi, 1 6 i 6 m (where
m is the total number of structural patterns that are shared by our
sample pages), is then given by the sum of the products between the
unexpectedness and the statistical keyword density of a document
node that presents the structural pattern spi in document d j. In
terms of the number qi of occurrences of a pattern spi across all
documents, we set: R(spi) := ∑

n
j=0 I(spi,d j)×qi× level(spi). The

role of the qi factor is clear, since we want to give a bigger weight
to structural patterns that are not only informative, but also very
frequent. In addition, the level factor is a heuristic favoring nodes
that are deeper in the DOM tree. The primary reason for this addition
is that elements that are too high in the hierarchy (e.g, <body>) are



more unlikely to effectively identify the target article object because
they are not discriminative. A similar decay factor has also been
introduced in other works [18, 23], varying from a constant to a
probability-like value.
Coverage of high-weighted keywords. Intuitively, the node
which contains the main content of an article would be the smallest,
lowest common ancestor [34] that has a maximal coverage of the
keywords. Recall that we have computed with tf–idf the top-k
weighted keyword representative for each sample document d j . The
coverage of a node selected by a pattern spi can be then defined
as the sum of tf–idf weights w(u) of the keywords u occurring in
its textual content, normalized by the total number of keywords
occurring in the text of that node. Aggregating the coverage of
nodes selected by spi across all documents gives the following:

Cov(spi) =
n

∑
j=1

∑
nbKeywords(spi(d j))
p=0 w(keywordp)

totalNbOfKeywords(d j)

We can therefore rank the structural patterns with this coverage
relevance measure in a new method that we dub FORESTCov, and
include it as a baseline. The objective is to assess whether taking
into account the weights of keywords is more beneficial than using
their simple presence in the informativeness measure.

In a final step, the best ranked pattern (by informativeness or
coverage) is selected. In evaluation settings, the corresponding
XPath expression is applied on the sample documents generated by
a Web source in order to extract their main content.

4. EXPERIMENTS
We next evaluate the FOREST system that implements the pro-

posed technique. We include multiple technique variations that are
meant to show the motivation for the algorithmic choices made
in FOREST, and their possible use in various scenarios. With the
online availability of state-of-the-art content extraction techniques
such as CETR [36] and BOILERPIPE [20], we are given the opportu-
nity to directly compare to these methods. We also include a basic
DESCRIPTION baseline.

4.1 Methods and Baselines
FOREST. Our system has been implemented in Java. We test FOR-
EST using two sources of keywords: extracted from the Web pages
themselves using tf–idf, or from Web feed items metadata. For the
case in which we have automatically identified some representative
terms for each of the sample pages using tf–idf, we propose two
measures of content relevance, yielding FORESTinfo based on infor-
mativeness with respect to markers of occurrence, and FORESTCov
based on weighted coverage. In the case of keywords extracted from
Web feeds, we name the method FORESTfeed.
ABSELEMS and ABSPATHS. These two baselines are meant to
give an insight into the algorithmic choices that will finally con-
duct to best extraction efficiency. They follow the same logic of
decomposing significant paths and rank structural patterns from the
content point of view, with some differences in the way the structural
patterns are chosen. ABSPATHS takes as structural pattern the full
XPath expression associated with a root-to-leaf DOM path leading
to a significant node. Therefore, the structural patterns are asso-
ciated with tag tree paths rather than with elements. ABSELEMS,
on the other hand, considers for the selection of structural patterns
only significant leaf nodes. The goal behind this choice is to ver-
ify if it is necessary to associate structural patterns to all ancestor
nodes, or it would be sufficient to do so only for the significant leaf
nodes. For both ABSPATHS and ABSELEMS baselines, we have

as many structural patterns as significant leaf nodes in the page.
In contrast, FORESTinfo and FORESTCov gather structural patterns
from all ancestor nodes of a significant leaf node.
DESCRIPTION. In the RSS specification3, each item has three com-
pulsory elements: title, link, and description. While the title of an
item gives the name of the Web article as it appears on the refer-
enced Web page (pointed to by the link URL), the description often
represents the first lines of the content of interest in that page. Some-
times, though, the description may contain the whole article content,
often encoded in HTML. It becomes therefore important to verify if
this is a prevalent situation. The DESCRIPTION baseline consists in
just returning a Web feed title and description, to evaluate the cases
when this information is enough for Web article extraction.
CETR. CETR [36] extracts main content based on the idea that a
Web article is usually less segmentated than other regions, leveraging
therefore the observation that consequently, the article would contain
more text than HTML tags. For the comparison with the CETR
clustering-based algorithm, we use the public implementation and
dataset available online4.
BOILERPIPE. [20] uses quantitative linguistics to identify frag-
mented, short text in blocks of a document as boilerplate, and re-
move it to obtain the article content of a Web page. In theory,
BOILERPIPE extractors need to be trained for different types of
content templates, in order to obtain adapted rules. However, the
publicly available implementation5 contains extractors that have
all been trained for blogs and news Web pages, the precise context
in which FOREST and the other baselines operate. Preliminary re-
sults showed that the ArticleExtractor gives the best results for our
extraction task, thus it is selected to represent BOILERPIPE in the
evaluation process.

4.2 Performance Metrics
The goal of FOREST is to select the best wrapper that describes

the location of the main content in pages generated by a Web source.
Specifically, FOREST-like methods output a wrapper (i.e, an XPath
query) that targets one or various XML subtree(s) in the document.
On the other hand, some of our baselines, like BOILERPIPE and
DESCRIPTION, extract text directly. To normalize the outputs for
all considered methods, we evaluate the wrappers learned by CETR
and FOREST-like to produce text.

Methods are evaluated with respect to the amount of keywords
shared with the gold standard (as in the analysis of CETR and
BOILERPIPE). Having as reference the set of normalized tokens
of the gold standard, and the textual output of each method to be
compared, we compute the classic precision and recall of the main
text extraction: Precision(G,S) = |G∩S|

|S| ,Recall(G,S) = |G∩S|
|G| . Pre-

cision and recall are further summarized by their harmonic mean,
the F1 measure. Note that the precision we compute is exactly the
ROUGE-N [24] measure used when comparing the performance of
text summarization techniques.

4.3 Datasets
Most state-of-the-art techniques for article extraction operate at

single Web page level. As a consequence, public datasets such
as CleanEval6 provide benchmarking support at single page level.
FOREST however needs various sample pages generated by a Web
source. We describe next the two datasets that we use.

3http://cyber.law.harvard.edu/rss/rss.html
4http://www.cse.nd.edu/~tweninge/cetr/
5http://code.google.com/p/Boilerpipe/
6http://liste.sslmit.unibo.it/pipermail/sigwac/
2011-May/000093.html
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CYAN. We include in the evaluation process the public dataset
curated by [36], but initially provided by [31]. This dataset has been
used in various related work techniques as a reference. It includes
CleanEval-annotated pages, but also provides Web pages grouped
in collections from various news Web sites. The CleanEval subset
does not provide different Web pages for the same website, but
rather disparate Web pages that are annotated, without a particular
reference to their source. Luckily, besided CleanEval, the authors
include 9 news and blog websites (bbc, myriad40, reuters, tribune,
techweb, suntimes, nytimes, nypost, freep) that can be considered as
sources in our context because they are grouping annotated pages.

We name the set of sources provided by [36] and directly down-
loaded from the CETR Web site7 CYAN, for “CETR: Yet Another
News” dataset. We randomly sample from CYAN sources a number
of Web pages (typically, 10) that are structurally similar, property
verified in a pre-processing phase using a structural fingerprinting.

RED. The public CYAN dataset provided by [36] contains only 9
news Web sources, so we created RED, for “RSS-based Experimen-
tal Dataset”. For RED, we also annotate sample pages per source,
and provide 91 blogs and news Web sites for the evaluation process.
This dataset is publicly available for further usage8.

RED is constructed using Web feeds, that are abundant in our
news and blogs context. Feeds of Web sites are acquired in an semi-
automatic manner by scraping the results of a feed meta-search
engine like Search4RSS9, in response to a keyword-based query.
Another source of selection was technorati10, where top-ranked
blogs and news RSS were selected to get a coverage of popular
sites. We have thus accumulated a total of 91 Web sources, and over
1,000 sample Web pages. RED is, to the best of our knowledge,
the first feed-based dataset for Web article content extraction. Note
that, although we use feeds to collect structurally-similar Web pages
presenting Web articles, the presence of Web feeds is not a condition
for the use of FORESTinfo or FORESTCov.

To verify the effectiveness of each tested methods on the RED
dataset, we manually created a gold standard annotation for each
of the sample pages. Web feeds have different number of items
produced by their channel, therefore we have annotated between
2 and 20 Web pages depending on the feed’s number of exposed
items (knowing that the typical number of items in a feed is 10 [30]).
An annotation of at least the half of the typical number of items
belonging to the Web feed of a source is useful in the analysis of
the number of pages that are necessary to reach a top extraction
efficiency. The annotation is a particularly time-consuming process,
since more than 1,000 Web pages have been manually annotated.

After a round of quality assurance to check that the guidelines
were well understood, the annotation task is intuitive enough to
reach a high-level of inter-annotator agreement: the precision from
one annotator to another was 97%.

4.4 Experimental Results
For each Web source, results are given for the setting of a maxi-

mum 10 keywords and sample pages, unless otherwise specified.

Results on CYAN. As the output of all baselines has been nor-
malized to plain text, we do the necessary parsing to extract the
textual content of CYAN’s gold standard. For that, we strip the
HTML tags from the annotation, and apply typical normalization in
both the gold standard and the extracted text to be compared with.

Table 1 presents the aggregated results for all relevant techniques

7http://www.cse.nd.edu/~tweninge/cetr/
8http://dbweb.enst.fr/software/
9http://www.search4rss.com/

10 http://technorati.com/blogs/top100/

Table 1: Mean precision, recall (%)
CYAN RED

Prec. Rec. Prec. Rec.

ABSELEMS 65 68 87 93
ABSPATHS 58 64 72 74
FORESTinfo 87 99 88 98
FORESTfeed 86 98
FORESTCov 78 89 88 98
BOILERPIPE 94 97 89 90
CETR 65 95 67 93
DESCRIPTION 92 31

included in the evaluation. We see that the winner on the CYAN
dataset is BOILERPIPE. Indeed, its classifiers have been trained
on news Web pages, the exact type of resource that we test here.
Regarding CETR, we were unfortunately unable to reproduce th
same results as in [36], on the same news sources from their dataset.
One cause might be the fact that our gold standard considers only
the text stripped out of HTML tags. Detailed verifications on the
difference have also shown that, for the same input Web page as for
the other techniques, CETR tends to throw more parsing exceptions.
CETR gives however quite robust results, even though not as precise
as those of BOILERPIPE.

FORESTinfo has performance almost comparable to that of BOILER-
PIPE, and better than CETR. Indeed, recall is even higher than
for BOILERPIPE, at the expense of a significantly lower recall.
FORESTCov achieves relatively good performance, but lower than
that of FORESTinfo. ABSPATHS and ABSELEMS have widely vary-
ing performance, resulting in a low average precision and recall on
this dataset. CYAN does not provide the necessary test conditions
for DESCRIPTION and FORESTfeed.

Results on RED. We show in Table 1 the mean precision and
recall on RED. We note that, since we have a dataset consisting
of 90 independent Web souces and values of the order of 90%, the
confidence interval at 95% probability (1.96 standard deviation) [15]
is ±0.06. To better understand the statistical significance of the
results on RED, we show in Figure 1 a box plot of the F1 measure
of FOREST and its baselines, investigating the precise shape of
the result distribution. On this graph, we show the 9th and 91th
percentile (whiskers), 1st and 3rd quantile (box), as well as the
median of the distribution of F1 for each method.

Globally, we observe that FORESTinfo and FORESTCov outper-
form the baselines, with a global F1 measure of 92%. The similar
performance of FORESTinfo and FORESTCov suggests that, whatever
their source, keywords can be put to use in the task of content ex-
traction: whether weights are used, like in FORESTCov, or not, like
in FORESTinfo. FORESTfeed manage a slightly lesser F1 than the
previous variants of FOREST, although only the source of keywords
is different. Performing a tf–idf analysis seems therefore to be more
useful than having the keywords given through the items metadata.
FORESTfeed still achieves a higher F1 measure than BOILERPIPE,
but functions in the same time in a more restrictive context, since
it assumes sample pages are linked to a Web feed in order to have
the metadata available. We note that all FOREST variants, excepting
FORESTfeed, have the advantage of being independent of the Web
feeds presence.

BOILERPIPE achieves a lower score than FOREST variants, de-
spite the fact that the Web pages of our dataset (e.g., blog posts,
news articles) match the kind of pages the ArticleExtractor is trained
to work on. The explication that we find is related to the fact that
the RED dataset contains not only news articles and blog posts, but

http://www.cse.nd.edu/~tweninge/cetr/
http://dbweb.enst.fr/software/
http://www.search4rss.com/
http://technorati.com/blogs/top100/
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Figure 1: Box chart of F1 measure on RED: 9th and 91th percentile (whiskers), 1st and 3rd quartile (box), median (horizontal rule)
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Figure 2: Evolution of the F1 measure in function of the (maxi-
mum) number of sample pages (above) and keywords (below)

also and any other types of articles that were connected to a source
through a Web feed. This results on a more template-generic dataset
than the one on which BOILERPIPE was originally evaluated.

Another interesting feature shown in Figure 1 is related to ABS-
ELEMS and ABSPATHS. ABSELEMS and ABSPATHS give high
median and F1 measures, but are not as robust as the previous vari-
ants of FOREST. Compared with FORESTinfo for instance, these
results suggest the usefulness of considering in the acquisition of
structural patterns all tag tree elements that are members of signifi-
cant terminal paths.

CETR applied on RED gives most F1 scores between 0.63 and
0.88, with a median F1 of 0.76, which is somewhat poor.

As can be observed, DESCRIPTION performs very poorly, with
a F1 score greater than 50% on less than 25% of the corpus; its
low precision suggests that a feed item description does not contain
all text annotated as main content. Also, judging by the abysmal
recall, we conclude that feed item descriptions are most often in-
complete versions of the main content in a Web page. It is generally
known [14] that for practical (e.g., the article can be very long) or
commercial purposes (i.e., to attract site visitors), the majority of
feed generators cut the item description to a couple of lines, repre-
senting the beginning of the main content. Indeed, a typical item
description has a dedicated link to the unabridged version of the
content that is being “advertised” through the feed.
Influence of the number of pages and keywords. To un-
derstand the impact of the number of sample pages and keywords on
the effectiveness of FOREST, we plot in Figure 2 the F1 measure for
our baselines, depending on these parameters. Note that this only
makes sense for FOREST, ABSELEMS, and ABSPATHS. Since the
performance of ABSPATHS is quite low, we omit it from the figures.

Observe that as soon as there are at least two sample pages in the
input (or three for FORESTfeed), FOREST reaches an F1 score that is

already above that of BOILERPIPE. Therefore, despite the fact that
FOREST requires various sample pages, their number is rather small,
which allows an easier and faster acquisition. The overall gain in
using pattern reinforcement in ranking through a reduced number
of sample pages is important since it avoids the need for specific
training (as is the case for BOILERPIPE).

It is worth noting that FOREST requires at least two sample pages
as input: this is helpful for the acquisition of discriminative key-
words (e.g., for the tf-idf weightening), and, in general, allows the
exploitation of the common template (it makes the structural pat-
terns more conducive). FOREST efficiency keeps improving as the
number of Web pages increases up to 6–8 pages, to reach a plateau
around 8–10 pages. We also observe in Figure 2 (below) the im-
pact that an incremental number of keywords per page has on the
efficiency of our baselines. We note that as long as the number of
keywords exceeds 5, the quality of the extraction is not affected. We
also note that FORESTfeed tends to have worse performance if the
number of keywords is increased beyond 7-8, indicating that there
are only so many relevant keywords in feed descriptions.
Scalability. Experiments on time efficiency (see [28]) show that
BOILERPIPE takes the lowest time, followed by CETR, and then
by FOREST variants. FOREST takes roughly four times more than
BOILERPIPE in average on the sample pages. However, the advan-
tage of FOREST is scalability. FOREST output characterizes the main
content-related generation patterns of the source through an article
wrapper. Once this wrapper has been obtained, content extraction
will be reduced to a single operation, that of applying an XPath
query on a Web document. This will eventually save time at each
content request from Web pages pertaining to that source.

5. CONCLUSION
We presented in this paper FOREST, a robust and efficient un-

supervised technique for the extraction of the main content from
dynamically-generated Web pages. Our algorithm mingles wrapper
induction with content analysis, for a sample of structurally-similar
Web pages that are source-specific. We have successfully applied
an adaptation of FOREST for the extraction of data records from
deep Web [29]. For that, we used as sample pages the Web pages
obtained in response to the submission of a Web form (e.g., Ama-
zon advanced search form for books), and as keywords the terms
employed during form submission. This demonstrates the flexibility
of our approach, since sample pages can be easily obtained, and
keywords can come from a large variety of contexts.
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