
An Architecture for Selective Web Harvesting:
The Use Case of Heritrix?

Vassilis Plachouras1, Florent Carpentier2, Julien Masanès2, Thomas Risse3,
Pierre Senellart4, Patrick Siehndel3, and Yannis Stavrakas1

1 IMIS, ATHENA Research Center, Athens, Greece
2 Internet Memory Foundation, 93100 Montreuil, France
3 L3S Research Center, University of Hannover, Germany

4 Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI, Paris, France

Abstract. In this paper we provide a brief overview of the crawling
architecture of ARCOMEM and how it addresses the challenges arising
in the context of selective web harvesting. We describe some of the main
technologies developed to perform selective harvesting and we focus on
a modified version of the open source crawler Heritrix, which we have
adapted to fit in ACROMEM’s crawling architecture. The simulation
experiments we have performed show that the proposed architecture is
effective in a focused crawling setting.

Keywords: Web harvesting, focused crawling, web application crawling

1 Introduction

The objectives of the ARCOMEM project are to select and harvest the web
content that best preserves community memories for the future by exploiting
social media, as opposed to exhaustive web harvesting approaches. To achieve
these objectives, there are several challenges that need to be addressed. First, it
is necessary to integrate in the crawling process advanced and computationally-
intensive content analysis without reducing the efficiency of the crawler. Second,
it is important to guide the web harvesting with accuracy to discover and collect
relevant resources. Last, the above functionalities must be scalable in order to
process large amounts of data.

In this paper, we provide a brief description of the ARCOMEM’s crawling
architecture and some of the main technologies. One of its main features that
addresses the challenges mentioned above is the decoupling of the fetching from
the prioritization of resources. As a result, we can scale up both processes inde-
pendently, according to requirements and available resources.

In addition to using a large-scale distributed crawler, we have also investi-
gated to what extent Heritrix [5] can be adapted to the crawling architecture of
ARCOMEM. Heritrix implements a typical crawling process, and hence, we had
to modify it to support the features required by ARCOMEM.

? This work was funded by the European Commission under grant agreement n. 270239
(ARCOMEM).



2 Architecture for large-scale selective Web harvesting

The workflow of the crawling architecture is the following. The crawler fetches
web pages that are written to a document repository based on HBase. The
prioritization of web pages consists of two phases. The online phase runs as
a map-reduce job and processes newly-crawled web pages. During the online
phase, the Application-Aware Helper (Section 2.1) identifies the structure of
a web page. Then for each identified element and the whole document, online
analysis modules perform light-weight analysis of web pages and compute scores,
which are aggregated in a priority score for each URL (Section 2.2). The offline
analysis performs more computationally demanding processing of Web pages to
extract named entities and to refine the computed relevance scores, which can
also be integrated in the priority score of URLs. The scored URLs are finally sent
back to the crawler (for example the large-scale crawler described in Section 2.3)
to be fetched. Note that different runs of the online phase can send the same
URL with different priorities to the crawler. Hence, the crawler must support
the updating of the priorities for already scheduled URLs.

Additional links can be discovered through a social network API crawler [3].
The structured content and the computed scores are also stored in a large-scale
distributed triple store [7] for preservation and later use. The configuration of
the whole process, including the crawl’s scope, weights, relevant keywords and
entities, are given in the Intelligent Crawl Specification (ICS).

2.1 Application-Aware Helper

The goal of the Application-Aware Helper (AAH) is to make the crawler aware
of the particular kind of web application being crawled, in terms of general
classification of web sites (wiki, social network, blog, web forum, etc.), techni-
cal implementation (Mediawiki, Wordpress, etc.), and their specific instances
(Twitter, CNN, etc.).

For each crawled document, the AAH first tries to identify the corresponding
web application. If a matching application is found in a knowledge base of known
web applications, the system attempts to identify the kind of the web page given
the matched web application. Once the kind of a document has been established,
structured content in the form of web objects is extracted and passed on to the
online analysis modules for scoring. For example, if the AAH is processing a
document crawled from a forum, it can identify the discussion thread structure
even if posts span over several different web pages.

The AAH can also deal with two different cases of adaptation. First, when a
web application, or part of it, has been crawled before a template change and a
recrawl is carried out after that. Second, when crawling a new web application
that matches the Web application type detection patterns, but for which some
or all the actions are inapplicable. In addition to running the AAH as part of
the ARCOMEM architecture, it can also be employed as a link extractor for
Heritrix [5]. A detailed description of the AAH can be found in [2].



2.2 Online analysis

The prioritization module is used for focusing the crawler with respect to the
crawl specification. Its main task is the aggregation of scores provided by different
online and offline analysis modules to give URLs of relevant web pages a higher
score, so that these pages are crawled with a higher priority. The scoring is also
used to select the most relevant pages for creating the final archive.

The online phase of URL prioritization employs a range of modules to calcu-
late a priority for every URL found in the crawled web pages. There are modules
for updating the score of a URL when it matches user-specified regular expres-
sions, if the URL corresponds to a known web page type identified by AAH, if
the content of the page is written in a given language, or if the context of the
URL contains keywords from the ICS. During the online phase, the strict time
constraints do not allow us to run all modules for analyzing the content. We
instead rely on the final relevance filtering after the end of the offline phase to
eliminate web pages of ambiguous relevance, as we have more information and
fewer time constraints at this point.

To calculate a final score for each URL detected within an already-crawled
document, we have implemented a scoring function, which generates a linear
combination of the scores from the different modules based on a weight vector. By
using this method, we can manually change the weight of the different modules
on the final score. We are also developing a method to automatically adjust the
weight vector by comparing the actual relevance of a crawled document with the
scores predicted for the document’s URL with the different methods. Based on
this we adjust the weight of different modules to get more accurate relevance
predictions for the given ICS.

2.3 Large-scale crawler

The large-scale crawler is a distributed crawler, implemented by Internet Mem-
ory Foundation (IMF), that retrieves content from the web and stores it in an
HBase repository. It aims at being scalable: crawling at a fast rate from the start
and slowing down as little as possible as the amount of visited URLs grows to
billions, all while observing politeness conventions (rate regulation, robots.txt
compliance, etc.). This objective is achieved by incorporating recent develop-
ments in data structures and design options for crawlers [4, 1].

The IMF crawler can perform multiple crawls concurrently, supporting one
URL store and a configuration (scope functions, archival functions, etc.) for each
concurrent crawl, while having a single fetcher pool. This feature guarantees that
politeness is respected across all crawls while allowing to crawl concurrently as
many domains as possible.

The large-scale crawler also employs a full-fledged and extensible per-domain
configuration framework with parameters including budget, minimum and max-
imum delay between two fetches. Crawler fetchers subscribe to updates of pa-
rameter values and use the new configuration immediately.



3 Adapting Heritrix to the ARCOMEM architecture

In addition to the large-scale crawler, we have also investigated to what extent
Heritrix, an open source crawler [5], can be adapted to ARCOMEM’s crawling
architecture. Heritrix implements a typical centralized crawling process, where
a URL is prioritized only when it is added to the frontier. In order to adapt
Heritrix to the needs of ARCOMEM, we have implemented a frontier that sup-
ports updating the priorities of already scheduled URLs and receiving scored
URLs from external processes, possibly running on different servers. As a result,
Heritrix can be used as a fetching service for selective web harvesting. Overall,
we have extended Heritrix with a range of functionalities, regarding the storing
of crawled content, the extraction of anchor text with links, etc. All the modi-
fications are available in the releases of the ARCOMEM project. In this paper
we focus on the two main features mentioned above.

The default frontier of Heritrix employs a Berkeley DB backed hash table for
storing URLs, typically grouped according to the domain or host they belong
to. The key of a URL’s record in the frontier is computed based on its domain,
a flag indicating whether the URL should be crawled immediately, its priority
(or precedence in Heritrix terminology), and a counter, which increases for every
URL that is inserted in the frontier. The frontier implementation provides a next
method for obtaining the next URL to crawl from a given domain or host, but
there is no method to update the priority of an already scheduled URL.

To overcome this limitation, we have implemented a frontier that extends the
default frontier of Heritrix, adding a hash table that maps an already scheduled
URL to the key with which it was scheduled. When we need to update the priority
of an already scheduled URL, we use this hash table to locate the corresponding
record from the frontier, update its priority, recalculate a key and insert it in
the frontier data structure at a new position. The fact that Heritrix employs
an increasing counter to calculate the key for each URL ensures that there are
no collisions. In the frontier we have developed, when a URL u is scheduled for
crawling, first we have to check whether the hash table mapping URLs to entries
in the frontier contains an entry for u. If u is found, then we update the priority,
otherwise, we need to check whether u has already been crawled.

The second feature we discuss enables Heritrix to receive prioritized URLs
from other processes. Heritrix provides the action directory, where processes
having access to the same filesystem can write files with seeds or URLs to be
crawled. In order to fit Heritrix in the ARCOMEM crawling architecture and
receive URLs with priority scores from the map-reduce jobs of online analy-
sis phase, we have implemented a web service which receives scored URLs in
an ARCOMEM-specific JSON format. In the simplest case, the required infor-
mation is an identifier for the crawl, the URL, a score in the range [0, 1], and
optionally a flag indicating whether this URL should be blacklisted, i.e. not
crawled at all. The developed web service enables Heritrix to receive links from
any external process or even from other instances of Heritrix, facilitating the
distributed operation of the crawler.



4 Evaluating adaptive and batch prioritization

Since the ARCOMEM crawling architecture and our modifications of Heritrix
depart from the standard crawling architectures [6], it is important to evaluate
their impact on a focused crawler’s effectiveness. In this section we describe a set
of simulations experiments we have performed to assess the impact of adaptive
and batch prioritization on the crawler’s effectiveness.

We assume a baseline crawler implementing a best-first crawling strategy,
where the priority of a URL u is computed as the average of: a) the cosine
similarity between the content of web page p in which u was found and the
topic vector and b) the cosine similarity between the anchor text of the link
and the topic vector. An adaptive crawler can update the score of an already
scheduled web page using a function such as MAX, SUM, AVG. For example,
the function MAX updates the priority of an already scheduled web page if
the new priority was higher than the existing one. The function LAST always
updates the score to the most recently computed one and the function FIRST
is equivalent to the baseline crawler. A crawler supporting batch prioritization
schedules links for crawling only after having downloaded a batch of web pages.
In such a case, a URL can be discovered in many web pages, so the cosine
similarities are computed between the topic vector and the sum of the vectors of
web pages in which the URL was found, or the sum of the anchor text vectors
associated with links pointing to the URL. In this setting, we also simulate a
crawler that fetches the top-k highest priority pages from each domain, instead
of fetching just one web page with the highest priority.

To evaluate the focused crawler architectures, we perform simulated crawls
on datasets created with three topics of DMOZ. We create three random samples
of 20 seeds for each of the topics and the results we obtain for each configuration
are the average of 9 simulations. For each set of seeds, we simulate a crawl of
10000 web pages. The topic vector we use to compute similarities between each
topic and the crawled web pages corresponds to the sum of the seed vectors.
For the evaluation of the results, we employ three measures: a) harvest ratio:
the number of Web pages having cosine similarity with topic vector greater than
0.333, b) average similarity of crawled pages and 3) fraction of DMOZ subtopics
with at least one crawled page.

Table 1 shows the evaluation results for adaptive prioritization with different
priority update functions. The highest harvest ratio is achieved with the AVG
function, while LAST achieves the highest fraction of DMOZ subtopics.

We have also evaluated batch prioritization where the priorities of link are
computed after crawling a batch of web pages. The evaluation results show that
batch prioritization may reduce slightly the effectiveness of an adaptive crawler
using the function AVG (harvest ratio drops from 0.3609 to 0.3556). If a crawler
does not strictly fetch the web pages with the highest priority first, but crawls
more pages from each domain (similar to the effect of the parameter balance-
per-queue in Heritrix), then batch prioritization improves the harvest ratio (from
0.3200 to 0.3347 when crawling 5 web pages from each domain).



Table 1. Results of simulated adaptive crawls.

Update function Harvest ratio Average Similarity DMOZ topics

FIRST 0.3317 0.2945 0.4979
AVG 0.3609 0.3024 0.5779
MAX 0.3388 0.2967 0.5270
SUM 0.2679 0.2759 0.4650
LAST 0.3404 0.2961 0.5985

5 Concluding Remarks

In this paper, we have provided an overview of ARCOMEM’s crawling architec-
ture and we have briefly described the technologies for some of its components.
We have also described how we have modified Heritrix to fit the proposed crawl-
ing architecture, enabling the adaptive prioritization of URLs and the scheduling
of prioritized URLs via a Web service. The results of our simulation experiments
show that the adaptive prioritization improves crawling effectiveness, while batch
prioritization improves effectiveness when URLs are also crawled in batches.

Overall, we have seen that ARCOMEM’s crawling architecture is scalable
both for fetching and processing content, while it allows the use of either a
large-scale distributed crawler or an appropriately adapted version of Heritrix.

References

1. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: UbiCrawler: a scalable fully dis-
tributed web crawler. Softw. Pract. Exper. 34(8) (July 2004) 711–726

2. Faheem, M., Senellart, P.: Intelligent and Adaptive Crawling of Web Applications
for Web Archiving. In: Procs. of Intl. Conf. on Web Engineering (ICWE). (2013)

3. Gouriten, G., Senellart, P.: API Blender: A Uniform Interface to Social Platform
APIs. In: Procs. of WWW Conf., Developer Track. (2012)

4. Lee, H.T., Leonard, D., Wang, X., Loguinov, D.: IRLbot: Scaling to 6 billion pages
and beyond. ACM Trans. Web 3(3) (July 2009) 1–34

5. Mohr, G., Stack, M., Ranitovic, I., Avery, D., Kimpton, M.: An Introduction to
Heritrix: An open source archival quality web crawler. In: Procs. of 4th Intl. Web
Archiving Workshop (IWAW’04). (2004)

6. Olston, C., Najork, M.: Web Crawling. Found. Trends Inf. Retr. 4(3) (2010) 175–246
7. Papailiou, N., Konstantinou, I., Tsoumakos, D., Koziris, N.: H2RDF: adaptive query

processing on RDF data in the cloud. In: Procs. of WWW Conf., Companion. (2012)


