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We propose several algorithms able to solve:

© routing information when information is present
(e.g., road closures, uncertain travel time);

Q relevant paths; or

© accessibility under

by computing semiring-based of graph queries.

Each of these algorithms yields a tradeoff between and
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We propose several algorithms able to solve:

@ routing information when probabilistic information is present
(e.g., road closures, uncertain travel time);
@ top-k relevant paths; or

© accessibility under security restrictions;
by computing semiring-based provenance of graph queries.

Each of these algorithms yields a tradeoff between generality and
time complexity.

Conclusion
oo
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Graph Database with Provenance Indication

Definition (Graph Database)

A graph database G over ¥ is a pair (V, E), where V is a finite set
of nodeidsand EC V x X x V.
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of nodeidsand EC V x X x V.

Annotations are given by a weight function, w : E — S for
(S,®,®,0,1) a semiring.
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An element a € K is idempotent if a® a = a. K is said to be
idempotent when all elements are.

Definition (k-closed Semiring)
Let k > 0 be an integer. A semiring (K, ®,®,0,1) is k-closed if

k+1 K
VaeK, P a"= P a"
n=0 n=0

N,

Definition (Star semiring)

A star semiring is a semiring (K, ®, ®,0, 1) with an additional
unary operator * verifying:
Vaek, a*=1@(a® a"),
a* =10 (a* ® a).
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Tropical: T = (R4 U {oo},min, +, 00,0) to compute shortest-distance.

Ty is the set of k-tuples in (R, U {oo})¥ ordered for the
natural order of R U {o0}):
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T ={(a, -, ak) € Ry Ufoo) : 0 < ar <--- <y}

ad®i b= mink((a,-),- U (bj)j) and a®y b = mink((a,- + bj),jj)
used to compute

Spis then ({0,...,n+ 1},min, max, n + 1,0). Integers

correspond to levels such as Top Secret, Secret, Restricted,
etc... to compute under

(N U {o0}) together with a star operation:
0* =1 and Va € N, a* = oo to compute
between two nodes.
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Tropical: T = (R4 U {oo}, min, +, 00,0) to compute shortest-distance.

kTropical: Ty is the set of k-tuples in (R; U {oo})¥ ordered for the
natural order of R U {o0}):

_H_k:{(al,...,ak)E(R+U{oo})k;OSQIS...Sak}.

adr b= mink((a,-),- U (bj)j) and a®, b= mink((a,- + bj),',j)
used to compute top-k shortest-distance.
Security: S, is then ({0,...,n+ 1},min, max, n 4+ 1,0). Integers

correspond to levels such as Top Secret, Secret, Restricted,
etc... to compute under security restrictions.

Counting: (N U {oc}) together with a star operation:
0* =1 and VYa € N, a* = oo to compute number of paths
between two nodes.
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Regular Path Queries

Querying graph databases with Regular Path Queries (RPQ).

Definition (Regular Path Query)

RPQs have the form RPQ(s, t) = (s, L, t)

L = a*b

a,b

a,2
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Concept of Provenance

For an answer to a query we want to be able to answer to such
questions:
@ How is this answer produced?
@ What score should this answer receive given initial annotations
over edges?
We consider the following problem: given a graph database G with

annotations over K, a RPQ Q and s and t the source and target
nodes, compute the provenance of the RPQ.

Definition (Provenance of an RPQ)

prov(G)(s, t) == @ wir].
WEPst(G),
p(m)Elq
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Shortest-path and Shortest-distance Problems

Shortest-path: initially with tropical semiring, without any label.

Can be generalized for star-semirings and is then called
Shortest-distance, still not using labels.

Shortest-distance is precisely provenance with Lo = X*.
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Partial values we compute are defined as follows

/I-(J-k) = @ w(r]
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Generalized Floyd-Warshall Algorithm

Partial values we compute are defined as follows

k
/I-(J-):: @ wr]
=eP{(G)

Partial values can be computed recursively

(9= (B o (0 0 7).

y )

And the initialisation is

0 _ [ A)) it i,
i 1o X(i,j) ifi=j]

The complexity of this approach is O(|V[3(Tg + Tg + Ta.)).

If K is a k-closed semiring, T, < k x (Tg + Tg).
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Mohri's Algorithm

Generalization from Mohri [1998] of the classical relaxation
technique used in Bellman—Ford algorithm.

Modifications to work with non-idempotent semirings. All k-closed
semirings.

No polynomial bound over the number of relaxations of a vertex.
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Idea: reduce the problem of provenance of RPQ to the
shortest-distance problem, eliminate the RPQ and the labels.

Product of the initial graph and a deterministic automaton Lg
representing the language of the RPQ.

5
a,b ab a e
SO0 & ® D

ab a2



Preliminaries Provenance of an RPQ Experiments Conclusion
0000000000 0®000000 00000 oo
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Idea: the label of a valid path leads to an accepting state starting
from the initial one.
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provni)(G)(X,y) = QEF PVOVu'z(PGxAQ)((& 50)7(y’5F))
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Applying Mohri's Algorithm

We apply it on the product graph to compute single-source
provenance. The semiring needs to be k-closed.
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We apply it on the product graph to compute single-source
provenance. The semiring needs to be k-closed.

Size of the product graph bounded by n- |G| (n size of the
automaton).

Theoretical complexity exponential.

Conclusion
oo
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Computing only one time the star for each vertex we can obtain a
worst-case complexity in O(|V| T, + |V|3(Tg + Tg)).
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Node Elimination Algorithm (2)

Computing only one time the star for each vertex we can obtain a
worst-case complexity in O(|V| T, + |V|3(Tg + Tg)).

Using heuristics and sparsity we can improve practical complexity.

Can handle multiple source/targets.

18/30
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Study of Dijkstra Algorithm

Natural order: a <k b:=a® b = ais an order when @ is
idempotent.

0-closedness implies idempotence.

In the following we restrict to 0-closed semirings with <y being a
total order.

Including for instance tropical and security semirings.

19/30
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Study of Dijkstra Algorithm (2)

We show Dijkstra’s algorithm for shortest path can be generalized
to semirings having these specific properties.
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Study of Dijkstra Algorithm (2)

We show Dijkstra’s algorithm for shortest path can be generalized
to semirings having these specific properties.

Hofner and Maller [2012] already generalized this algorithm but not
giving explicitely these requirements.

Idea:

3
)

¢ ® (c ® e) = ¢ because of 0-closedness.
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Study of Dijkstra Algorithm (3)

We used Fibonacci Heap in the implementation, which give a total
complexity in O(Tg|V|log|V|) + |E|(Te + Tg).

21/30



Preliminaries Provenance of an RPQ Experiments
0000000000 0000000e 00000

Study of Dijkstra Algorithm (3)

Conclusion
oo

We used Fibonacci Heap in the implementation, which give a total
complexity in O(Tg|V|log|V|) + |E|(Te + Tg).

Counter example where the natural order is not total:

consider the semiring (D30, A, V, 30, 1) of the divisors of 30.

21/30



Preliminaries Provenance of an RPQ Experiments
0000000000 0000000e 00000

Study of Dijkstra Algorithm (3)

Conclusion
oo

We used Fibonacci Heap in the implementation, which give a total
complexity in O(Tg|V|log|V|) + |E|(Te + Tg).

Counter example where the natural order is not total:

consider the semiring (D30, A, V, 30, 1) of the divisors of 30.

21/30



o Preliminaries

@ Formal Definitions
@ Known Algorithms

g Provenance of an RPQ
@ Graph Transformation
@ Algorithms

Experiments
@ STIF Network
@ Results

0 Conclusion

@ Conclusion

22/30



Public transit data for trains, buses, subways, and trams within the
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Extraction of the Data

Use tables stops, stop times, trips, and routes.

Labels are lines type and numbers.

Extracted graph contains 16,369 nodes and 41,448 edges.
Subway subgraph contains 302 nodes and 705 edges.
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Mohri's Algorithm
Graph: full graph,
Semiring: k-Tropical,
Request: paths of length mod 2, 3 and 4,
Nodes: s, t random,

Avg. of 3 runs.
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Mohri's Algorithm
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Comparison between Mohri and Node Elimination

Graph: subway graph,

Semiring: k-Tropical with description,
Request: reachability query,

Nodes: s, t random,

Avg. of 3 runs.
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Comparison between Mohri and Node Elimination

A Mohri /‘

10%] = Node Elimination
— |

o 103F 1
£ [ 1
.qE_J 102 E g
] F 1
L .

10t | 4

s ]

L | | | 1

1 2 3 4 5

coefficient of closedness

Time (in milliseconds) to compute single-source provenance with
Mohri (blue) and Node Elimination (red) depending on the
coefficient of closedness.
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Comparison between Mohri and Dijkstra

For this purpose we used a graph with random security numbers
(0-1000) over edges.

Graph: full graph,

Semiring: Security,

Request: paths of length mod 2, 3, 4 and 5,
Nodes: s, t random,

Avg. of 3 runs.
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Comparison between Mohri and Dijkstra

2.5 - T
—o— Dijkstra

—=— Mohri

time in seconds

size of the automaton

Time (in s) to compute single-source provenance with Mohri (red)
and Dijkstra (blue) depending on the size of the product graph.
Numbers in the x-axis represent the size of the automaton

encoding the query).
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Conclusion

We reduced the computation of the provenance of an RPQ to the
computation of shortest-distance by using a graph product.
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Conclusion

We reduced the computation of the provenance of an RPQ to the
computation of shortest-distance by using a graph product.

We sum-up different algorithms proposed:

Name Framework Complexity

Floyd-Warshall star O(IV]3(Te + Tg + Tu))
Mobhri k-closed Exp.

Node Elimination star O(|V|T. + V3 (Ts + Tg))
Dijkstra O-closed total ordered  O(Tg|V|log|V/|

+E|(To + Tg))
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o Understand practical efficiency of these algorithms.

@ Use graph structures and specific properties of
to improve efficiency:

contraction hierarchies,
low

low

Thank you for your attention!
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Perspectives

@ Understand practical efficiency of these algorithms.

@ Use graph structures and specific properties of transport
networks to improve efficiency:
e contraction hierarchies,
o low treewidth,
e sparsity,
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Perspectives

@ Understand practical efficiency of these algorithms.

@ Use graph structures and specific properties of transport
networks to improve efficiency:

contraction hierarchies,

low treewidth,

sparsity,

low highway dimension.
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Perspectives

@ Understand practical efficiency of these algorithms.

@ Use graph structures and specific properties of transport
networks to improve efficiency:
e contraction hierarchies,
o low treewidth,
e sparsity,
o low highway dimension.

Thank you for your attention!
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