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The purpose of my internship at Chalmers University of Technology was to study the possible
methods for checking the correctness of a multiplier, that is an electronic circuit which computes the
multiplication of two integer numbers.

1 Related works

Classical methods for automatic verification of circuits, such as the famous Binary Decision Diagrams
introduced in [Bry86] are very inefficient for verifying multipliers. Bryant proved in [Bry86] that
whatever the chosen ordering of the variables is, there exists an output of the multiplier whose BDD
representation has an exponential size, which is unsuitable for common-size (e.g. 32 or 64 bits) multi-
pliers. Several techniques have been proposed to deal with this issue. Kapur et al. showed in [DM96]
how to prove the correctness of a large family of common multipliers but their method heavily relies
on hand-made lemmas, whose automatically generation is only speculated. [SB98], [Sta99] and [CC01]
proposed different methods based on an inductive approach to the problem.

However, the most efficient approach for the time being seems to be the Multiplicative Binary
Moment Diagrams (*BMD) described in [BC95]. The first approach was a component-level one, which
required high level information, but Hamaguchi and al. suggested in [HMY95] a backward sweeping
method that allows to build the *BMD representation of a circuit in a completely automatic way. The
experimental results show an O(n3.5) asymptotic behaviour and Keim et al. proved in [KMB+97] an
asymptotic O(n4) bound for Wallace-tree-like multipliers.

2 *BMDs

2.1 BDDs

*BMDs are an extension to well-known (Ordered) Binary Decision Diagrams. An BDD is a directed
acyclic graph (DAG) which represents in unique way a function of booleans variables to a boolean value,
if an initial total ordering of the variables is assumed. The function value is computed by following a
path in the DAG, according to the values of the variables. Figure 1, for instance, reprensents the carry
of a full adder: continuous lines from a node must be followed if the corresponding variable is true,
dotted lines must be followed otherwise. The DAG structure often gives a concise representation of
the boolean function, which can be computed in linear time in the size of the BDD (these results are
proved in [Bry86]). Verifying a circuit is then as simple as computing the BDD of the boolean function
performed by the circuit and comparing it to the BDD of the specification function. This technique
works for a large class of circuits, in particular arithmetic adders, since the size of their BDDs is linear
in the number of variables. Unfortunately, Bryant also proved that for any ordering of the variables,
the BDD representation of some multiplier output will have a graph of exponential size: BDDs are
thus inefficient on multipliers.
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Figure 1: Binary Decision Diagram for the carry of a full adder
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Figure 2: BMD and *BMD of a function from booleans to integers

2.2 BMDs and *BMDs

Let f : {0, 1}n → N be a function from booleans to integers. Let fx̄i
and fxi

be defined as follows:

fx̄i
: {0, 1}n−1 → N

(x1, . . . , xi−1, xi+1, . . . , xn) 7→ f(x1, . . . , xi−1, 0, xi+1, . . . , xn)

fxi
: {0, 1}n−1 → N

(x1, . . . , xi−1, xi+1, . . . , xn) 7→ f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

If fẋi
= fxi

− fx̄i
, we have a decomposition of the function f :

f(x1, . . . , xn) = fx̄i
(x1, . . . , xi−1, xi+1, . . . , xn)

︸ ︷︷ ︸

constant moment

+xi fẋi
(x1, . . . , xi−1, xi+1, . . . , xn)

︸ ︷︷ ︸

linear moment

Binary Moment Diagrams (BMDs) are directed acyclic graphs based on this decomposition, instead
of the more direct decomposition (known as the Shannon decomposition) BDDs use. The difference
between BMDs and *BMDs (Multiplicative Binary Moment Diagrams) is that edges of the DAG may
be weighted with a value, which is a multiplying factor to be applied to the value of the function. An
example of BMD and *BMD is given in Figure 2.
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Figure 3: *BMDs of classical arithmetic operations

The important difference between BDDs and *BMDs is that *BMDs represent function from
booleans to integers whereas BDDs represent functions from booleans to booleans. *BMDs work as a
higher level than BDDs. A consequence is that *BMDs for classical arithmetic operations, included
multiplication, are of linear size in the number of variables (cf [BC95]), as illustrated on Figure 3.

Because BMDs are at a higher level than BDDs, Bryant’s original algorithm needed high-level
knowledge of the circuit: components of the circuits were both described at bit level and word (i.e.
integer) level, each component was checked at bit level against their word level interpretaion, and the
composition of the components was checked as word level against the word level specification of the
circuit. The direct construction of a *BMD of the entire circuit was impossible due to the size of
intermediate results.

3 Backward construction algorithm

The backward construction algorithm, proposed by Hamaguchi et al in [HMY95], is a method for
building the *BMD of a circuit which does not need high-level information and which is more efficient
than the direct construction. The idea is to move a cut from the outputs of the circuits to the inputs.
At the beginning of the algorithm, the cut crosses all the primary outputs. The *BMD of the word
level interpretation of the output is built. At each step, a gate just left to the cut is chosen (with the
condition that a gate may be chosen only if its ouput is only connected to input of gates that have
already been taken) and its output is substituted in the *BMD by the corresponding function of its
inputs. At any time, the *BMD expresses the word level representation of the output as a function
of the nets currently crossed by the cut. At the end of the algorithm, the cut crosses all primary
inputs. The *BMD expresses the word level representation of the output as a function of the inputs.
An illustration of this process is given on a sample in Figure 4.

Experimental results show good performances of the backward construction algorithm on multi-
pliers, with an apparent complexity of O(n3.5) (where n is the number of input bits) for a number of
multipliers. Keim et al. proved in [KMB+97] a bound of O(n4) for a large class of multipliers, known
as Wallace-tree like multipliers.
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Figure 4: Example of use of the backward construction algorithm
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Number of bits Time Add-step (s) Time Carry-save (s)

4 1 3
8 12 58
16 161 1115
32 2083

O(n3.7) O(n4.3)

Table 1: Execution times for checking classical multipliers with the backward construction algorithm
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Figure 5: Execution times for checking a regular parallel multiplier with the backward sweeping method

4 Implementation

I implemented *BMDs and the backward construction algorithm in Lava [Cla01], which is a functional
language for describing circuits embedded in Haskell. For this purpose, I used Chen’s BXD package
in C available at http://www-2.cs.cmu.edu/afs/cs/usr/yachen/www/bxd.html and Haskell Foreign
Function Interface. Experimental time results for two very classical multipliers are given in Table 1;
they reproduce more or less the behaviour stated by Hamaguchi et al. (the complexity was likely
increased by the use of Haskell garbage collector).

My implementation of the backward construction algorithm was also applied on a Lava specification
of a regular parallel multiplier [HE02], which showed the correctness of this multiplier for sizes from 1
to 32 bits, as well as 64 and 92 bits. A log-log chart of the times is given on Figure 5, which show a
complexity of about O(n3.8).
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