Website Identification
DEA Internship Report

Pierre P. Senellart
Advisors: Serge Abiteboul and Grégory Cobéna

September 8, 2003

Abstract

I present in this paper a method to discover the set of webpages contained in a logical
website, based on the link structure of the Web graph. Such a method is useful to identify
the boundaries of what to crawl, in the context of Web archiving. For this purpose, I combine
the use of an online version of the preflow-push algorithm, an algorithm for the maximum flow
problem in traffic networks, and of the Markov CLuster (MCL) algorithm. The latter is used on
a crawled portion of the Web graph in order to build a seed of initial webpages, a seed which is
extended by the former. Experiments on subsites of the INRIA Website, which give satisfactory
results, are described.

1 Introduction

Although the notion of website is commonly understood, there is no simple formal definition of
it. The most obvious idea would be to define a logical website as the set of webpages hosted by
a given webserver. Although this is correct for many websites, this does not reflect the intuitive
notion of website:

e Some websites span over several webservers (e.g. most static pages of the INRIA Rocquen-
court Website are on www-rocq.inria.fr whereas dynamic pages are on osage.inria.
fr).

e Some webservers host different websites (e.g. www.geocities.com).
e The notion of webserver is also unclear:

— in the context of distributed (load-balanced) webservers or mirrors: different physical
machines may host the same website.

— in the context of virtual web hosting: the same physical machine may host different
webservers.

The idea to group webpages by domain name, which solves the problem of www-rocq.inria.
fr and osage.inria.fr, is not really better since completely unrelated websites may be hosted
on servers with the same domain name: for instance, each login.free.fr is a virtual host for
websites of people or associations which have nothing in common, except being customer of Free
Telecom.

There are other issues which show that the problem of website identification is not obvious.
On the one hand, some websites may be seen as a whole or as a collection of different websites
(e.g. the INRIA website regroups — between other — the websites of each research team).

Figure 1: Sample traffic network.

This raises the question of the scale at which websites are to be found. On the other hand, the
boundaries of a website are often fuzzy and subjective. It is for instance unclear what part of
the websites of its members the website of a research team should contain. That implies that no
automatic method for identifying logical websites will be entirely conform to everyone’s notion
of website. I can only aim at an automatic method which would correspond as much to one
person’s definition of website as one other person’s would.

My interest in discovering the boundaries between logical websites comes mainly from the
problem of Web archiving. The French National Library is considering the archiving of the
French Web, which consists of the identification, the continuous crawling and the storage of
relevant and interesting websites. Issues resulting of this approach are described in [ACMS02].
It is in particular important to be able to discover the boundaries of a website: it makes possible
to archive entire websites once webpages from them are selected.

The method for website identification I present in this paper heavily relies on the (directed)
graph structure of the Web, with webpages as nodes and hyperlinks as edges. The fundamental
assumption is that webpages in the same website are much more connected between them than
webpages from different websites. I use an adaptation and combination of two algorithms related
to flow simulation in traffic networks: a preflow-push algorithm by Goldberg [GT88] which solves
the maximum flow problem and the Markov CLuster algorithm (abbreviated as MCL) by van
Dongen [vD00], a graph clustering algorithm. MCL is used to cluster a part of the Web in
order to build seeds of websites, seeds which are extended to complete logical websites with
the preflow-push algorithm. The techniques used are not based on the concept of webservers,
domain names or other heuristics, like traditional website recognition methods, but on the link
structure of the Web graph and secondarily in the global form of the URLs. This addresses the
problems of traditional techniques described above.

I will show in Section 2 how flow simulation and the maximum flow problem may be used
to identify websites in the Web graph. We will notice that in many cases, the seed of webpages
the simulation starts from needs to be extended; I present in Section 3 a way to use MCL for
that purpose. Experiments of my technique will be presented in Section 4. Finally, I discuss
related works in Section 5. My contributions are mainly described in Sections 2.4, 3.2 and 4.

2 Flow simulation

In this section, after some necessary basics about traffic networks and the maximum flow /min-
imum cut problem, I will present the preflow-push algorithm and its online adaptation to the
Web. This algorithm will be the base of our website identification process, used in order to
extend a seed of webpages to a complete logical website.

Figure 2: Maximum flow.

2.1 Maximum flow

A traffic network is a 4-tuple T = (S, ¢, s,t) where S is a set of nodes, ¢ : S2 — R, is a capacity
function, s € S is the source and ¢t € S is the sink. I suppose furthermore that c(s,s) = 0 and
c(t,t) = 0. The underlying directed graph is (S, A) where A = {(u,v) € S?|c(u,v) > 0}. A
representation of a sample traffic network is shown on Figure 1.

A flow in 7 is a function f : S? — R, satisfying the following properties:

(i) (Symmetry) V(u,v) € S?, f(u,v) = —f(v,u): the flow going from u to v is the opposite of
the flow from v to u.

(ii) (Capacity constraint) V(u,v) € S%, f(u,v) < c(u,v): the flow from u to v cannot exceed
the capacity of the edge.

(ili) (Flow conservation) Yu € S\ {s,t}, >, cg f(u,v) = 0: the flow arriving to a node distinct
from the source or the sink is equal to the flow departing from this node.

The flow value of f is defined as the sum of flows departing from the source or, equivalently,
as the sum of flows arriving to the sink:

IF1=> fls,u) =D flu,t)

ues uesS

(The equality between these two sums is a consequence of flow conservation and symmetry).

The mazimum flow problem is the problem of finding a flow function f such that |f]| is
maximal. A solution of the maximum flow problem for the traffic network of Figure 1 is shown
on Figure 2.

2.2 Minimum cut

A cut of 7 is a partition (S1,S2) of S with s € S1 and t € So. The minimum cut problem is to
find a cut whose capacity, defined by:

Z Z c(u,v)

u€S) vESy

is minimal.

There is an equivalence between the maximum flow problem and the minimum cut problem
(cf [CLR90]). The maximum flow value is also the minimum cut capacity. Furthermore, a
solution of the maximum flow problem can alternatively be seen as a solution of the minimum
cut problem, that is a cut of 7 whose capacity is minimal, in the following way:

1. Let f be a maximum flow in 7 = (S, ¢, s, 1)

2. Let Ef = {(u,v) € S? | c(u,v) > 0and c(u,v) < f(u,v)}

Figure 3: Minimum cut (plain and empty circles show the two parts of the partition).

3. Let S1 = {u € S| there exists a path from s to v in the graph (S, E¢)}
4. Let S :S\Sl
5. (S1,52) is a minimum cut of 7°

Conversely, if (S1,52) is a minimum cut of 7 and Ey = {(u,v) € S1 x Sa | c(u,v) > 0,
there exists a maximum flow in 7" whose set of saturated edges (the edges whose flow equals the
capacity) is E.

The demonstration of these results can be found in [CLR90] for instance.

Figure 3 represents the minimum cut corresponding to the maximum flow of Figure 2.

2.3 Preflow-push algorithm

The preflow-push algorithm, a solution to the maximum flow / minimal cut problem, is based
on the notion of preflow, which relaxes the flow conservation constraint. A preflow in a traffic
network 7 = (S, ¢, s,t) is a function f : S? — R which satisfies:

(i) (Symmetry) ¥(u,v) € §2, f(u,v) = —f(v,u)
(ii) (Capacity constraint) ¥(u,v) € S?, f(u,v) < c(u,v)
(ili) (Relaved flow conservation) Vu € S\ {s,t},> g f(u,v) <0

This definition means that a node u can have some overflow o(u) = =3 cq f(u,v) in a
preflow: it can receive more from the nodes it is pointed by than it sends to the nodes it points
to. The preflow-push algorithms, as well as other algorithms working with preflows, maintains
at each step a preflow in 7', converging finally toward a flow in 7 which is maximal.

All nodes are assigned a height (0 in the beginning for all nodes except the source). The
preflow is pushed from nodes with overflow to lower nodes. If there are no lower nodes to unload
a node with overflow, this node is raised. The algorithm ends when there are no nodes with
overflow any longer. A more formal description of the algorithm is in Figure 4.

This algorithm can be demonstrated to converge toward a maximum flow in 7 (cf [GT88]),
with a complexity of O(|S|?|A|) (|4 is the number of edges with non-zero capacity), whatever
the strategy for selecting nodes at step 4 of the algorithm may be. Specific strategies can be

devised to improve the complexity, up to O (]S || Allog (%))

2.4 Adaptation to the Web
2.4.1 A Web traffic network

I wrote in the introduction that the fundamental assumption of website identification based on
the graph structure of the Web is that webpages in the same website are much more connected
between them than webpages from different websites. If the Web is seen as a traffic network in
which some fluid flows from a set of source nodes in the same website, the bottleneck of the flow

4

Preflow-push algorithm
1. All nodes are assigned a height h:

h(s) :=|9]|
Vu e S\ {s},h(u) =0
2. For all (u,v) € §%, f(u,v) := 0.

3. For all w € S, if ¢(s,u) > 0 then f(s,u) := c(s,u) and f(u,s) :=

—c(s,u).

4. A node u € S\ {s,t} with overflow o(u) is selected. If none exists,
the algorithm ends.

5. If there exists v € S, ¢(u,v) > f(u,v) and h(v) = h(u)—1, the overflow
of u is pushed toward v

fu,v) = f(u,v) + min(c(u,v) — f(u,v),o(u))

Go to 4.

6. Else, u is raised:
h(u) :== 1+ min{h(v) |v € S and c(u,v) > f(u,v)}

Go to 4.

Figure 4: Preflow-push algorithm.

source

Figure 5: Web traffic network.

should not be inside the website, where there are many internal connections (and thus, a large
capacity) but between the website and the rest of the Web, where the connections are much
more sparse.

The idea behind using flow simulation to identify websites is that a clear cut should be visible
between a “source of seed webpages” of a site and a “sink for the remaining part of the Web”,
a cut which would match the borders of the website. This cut will be computed as a minimal
cut in a traffic network whose underlying graph is the Web graph. More formally, I assume
that I have a set of seed webpages Seed, characteristic of the website I would like to compute
the borders of, and a similarity function over webpages sim and I consider the traffic network
Tseed = (S, ¢, s,t) where:

e S is the set of webpages in the World Wide Web, along with two virtual nodes s (a virtual
source) and ¢ (a virtual sink).

e ¢ is defined as follows:

(i) For all (u,v) € (S\{s,t})?, c(u,v) = sim(u,v) if there is a link from u to v, c(u,v) = 0
otherwise.
(ii) For all u € Seed, c¢(s,u) = +0o0
(iii) For all w € S\ {s,t}, c(u,t) =¢

(The value of the capacity of an edge from s to a node u in Seed needs only be at least as
large as the sum of the capacity of other edges starting from u. € is a small value, much
smaller than average similarity values).

The role of the virtual nodes s and ¢ is just to make practical the concepts of “source of
seed webpages” and “sink for the remaining part of the Web”. An illustration of this Web traffic
network is given in Figure 5.

The choice of the similarity function is important. The most simple choice would be to use
a constant function. In this case, however, a cut separating the seed webpages from the rest
would be most likely minimal. Its capacity would be in proportion to the total number of links
of the seed webpages pointing to other webpages; the number of these links would probably
grow if the cut is put farther away. A possible way to fix the problem would be to raise the
similarity of webpages near the source. It is an ad hoc solution, however, not very satisfying.
I could also use complex semantic similarity functions, based on the contents of the webpage.
Instead, I chose to use a function of the edition distance between the URLs of the webpages:
even if a website span over several webservers, the URLs of the pages tend to look similar

Edition distance and similarity between URLs
1. Let u and v be two URLs.

2. Let (uy,...,ux) (resp. (v1,...,v;)) be the list of maximal substrings
of u (resp. v) not containing the chars ‘/’, “:’ 7’ ‘=" ‘&', ‘#’, ordered
in the way they appear in u (resp. v).

3. ed(u,v) is the minimum number of modifications, additions and
deletions of list elements necessary to transform (ug,...,u;) into
(v1,...,v) (it can be computed by dynamic programming).

2

4. sim(u,v) = e =55~ where o is a typical standard deviation for the
edition distance over the set of considered URLs (the value of o was
determined experimentally by computing the standard deviation of
the edition distance between pairs of crawled URLs; I had o ~ 7.24).

Figure 6: Edition distance and similarity between URLs

(e.g. http://osage.inria.fr/verso/Gemo/PUBLI/index.php and http://www-rocq.inria.
fr/verso/Gemo/Projects/index.html are part of the same website). The edition distance
between URLs ed and the similarity function sim are then defined as shown in Figure 6.

sim does not need to be exactly the same as defined, of course, but the shape of the Gaussian
curve corresponds to what I was looking for: a maximum value in 0, with a slow decrease for

lower values, then (after o) a stronger attenuation toward 0. ¢ was assigned a matching heuristic
—502
value, in my case e 202 as 50 is much larger than typical values of edition distance between URLs.

2.4.2 On-line preflow-push

Off-line and on-line Classical graph and network algorithms are off-line: they require that
the entire matrix is stored, so that computations can be made on it. In the context of the Web,
on-line algorithms may be more interesting. An on-line algorithm on the Web graph is an
algorithm which does not require the storage of the entire matrix of the graph, and in which
computations are made progressively, at the same time webpages are crawled. For instance,
Google’s PageRank [PBMW098] is normally computed by an off-line algorithm: robots crawl the
Web regularly in order to build the Web matrix and once the crawling is done, computation is
performed. Abiteboul et al propose in [APCO03] an on-line algorithm to compute it. This has
several advantages, peculiarly using much less resources and being more reactive to the changes
of the Web.

The preflow-push algorithm has two features which makes possible to use an “on-line” version
of it, when browsing the Web:

e The strategy for selecting nodes with overflow is not imposed.

e There is no need to have the entire graph stored in memory; in particular, for some node
u, there is no need to know the set of nodes pointing to v when accessing u.

Thus, the preflow-push can be made on-line in a straightforward way: webpages with overflow
are progressively crawled and dealt with (pushed or raised). I have to maintain the height and
overflow of each node, as well as, for all edges where there is flow, the value of the flow through
this edge. The latter component can unfortunately grow quite large, potentially in proportion
of the number of edges in the graph. At the end of the algorithm, nodes on the same side of
the cut as the source are extracted: they form the logical website found by the process.

7

Crawling strategies Several strategies adapted to crawling can be chosen. I decided to use
a greedy one: the node with maximum overflow is selected at each step (a list of candidates
nodes ordered by their overflow is maintained). Minor modifications were made, which do not
ensure the correctness of the algorithm any longer but which did not have any noticeable impact
on it in the experiments I made: the height of the source is decreased (which accelerates the
rise of nodes that have to push flow toward the source) and the algorithm may stop before the
convergence is obtained (after a timeout or when all nodes overflow are under a threshold value).

Experimental results Applying this version of the preflow-push algorithm on a seed of
characteristic webpages of a website gives quite rood results on small or medium-sized, well-
organized, websites. When the website is too large or not well organized, however, the algorithm
only retrieves a small proportion of the webpages of the real website (cf Section 4.1 and Table 1).
The problem lies in the size of the seed, and in the small number of outgoing links in it. Thus,
I need a way to extend automatically the seed before carrying out the flow simulation.

3 Extension of the seed

MCL will be the tool needed to extend the seed used by the online push-preflow algorithm.
After presenting it, I will describe how it can be used in the context of the Web, and the role it
plays in the website identification process I present in this paper.

3.1 MCL (Markov CLuster algorithm)

MCL is a graph clustering algorithm by van Dongen, described in detail in [vDO0O]. I briefly
present it here, as long as several other interesting results found in this reference.

3.1.1 Presentation

Let G be a (possibly weighted) directed graph and Mg its associated matrix (the (7,) element
of Mg is 0 if there is no edge from i to j, the weight of the edge otherwise).

Let Mg be the matrix obtained from the transpose of Mg by normalizing each column. If
d is the diagonal matrix containing the sum of the values of each column, M is defined as:

Mg=MEL -d*

M is a column stochastic matrix, that is, each column of Mg sums to 1. In the context
of a random walk on G, Mg can be seen as the transition matrix of the corresponding Markov
chain: the jth column of Mg contains the probabilities of transition from j to each different
node.

The first successive powers MZ%,, M?,... (which are also column stochastic) present interest-
ing behaviors: the (7, ;) element, which corresponds to the transition probabilities in multiple
steps, is all the higher as ¢ and j are in the same dense region. Such feature is very interesting for
devising a graph clustering algorithm, but this trend disappears afterwards. Basics of Markov
theory say that, if M is irreducible (which happens if G is undirected and connected) and has
non-zero values on the diagonal (loops can be added to G for this purpose), the limit matrix
limg— 4 oo M’& exists and has identical columns (which corresponds, by the way, to the PageR-
ank values [PBMWO98]). Thus, at the limit, local heterogeneity of the values of the matrix,
corresponding to local density of the graph, disappears. The basic idea of MCL is to amplify
the behavior which appears for the first powers of the matrix, by alternating expansion (matrix
multiplication) with inflation (rescaling with a power coefficient greater than 1, to increase the
heterogeneity of the values).

MCL algorithm
1. Add loops (edges from a node to itself) to every node in G.

2. Build M = Mg, the Markov matrix associated to G.

3. Do
(a) M := M?
(b) M =T, M

While M is not idempotent under both expansion and inflation

4. Interpret M as a clustering of GG in the following way: the clusters are
the maximal subgraphs of G containing a strongly connected compo-
nent C' of G and all nodes = from which there is a path in G to a node
in C. These clusters may overlap.

Figure 7: MCL algorithm.

The inflation operator I', on square matrices of dimension n is defined for every r > 1 as:

(Np.g)"
>im1(NEg)
r is called the inflation parameter. The farther r is to 1, the more heterogeneity is introduced.
A typical value is 2.

V(p,q) € [L.n]?, (Do N)pg =

3.1.2 Algorithm

The MCL algorithm on graph G is then a simple alternation of expansion and inflation (cf
Figure 7).

There are some variations to this algorithm: the inflation parameter, as well as the expansion
power, may be different (but always greater than 1) at each iteration. In the following, however,
the expansion power will always be 2, and the inflation parameter will be a constant, usually 2
when not specified differently.

Note that this algorithm is not guaranteed to converge. There are even examples of non-
convergence. However, on most real-life examples (in particular if the graph is undirected),
experiments show the convergence. There are two important theoretical results in respect to
this:

e The MCL process with standard parameters converges quadratically in the neighborhood
of each nonnegative idempotent column stochastic matrix for which every column has one
entry equal to 1 and all others equal to 0.

o If Mg is diagonally similar to a symmetric matrix (this is in particular the case if G is
undirected), the iterands of the MCL process with standard parameters are eventually
diagonally similar to a positive semi-definite matrix. This property gives the means to
associate an overlapping clustering to each iterand, in a way described in [vDO00].

Figure 8 gives an example of a graph clustering with MCL, on a simple undirected graph.

Overlaps can happen, which is not really annoying in the case of website identification (some
webpage may well belong to different websites), but it is fairly rare and it never happened in
the experiments described in section 4.

Figure 8: Example of graph clustering with MCL, taken from [vD00].

3.1.3 Scaling

The complexity of the MCL algorithm, as it is presented above, is O(k|S|?) where |S| is the
number of nodes in G and k is the number of iterations. Typically, k is somewhere between
10 or 100 and thus can be considered as a constant. A complexity of O(|S|?) is of course not
adapted to very large graphs, but different optimizations can be made, specially by making the
iterands of the process sparse. Simple pruning of each column of the matrix may drastically
lower the complexity to O(|S|i?) if [is the pruning constant (the number of non-zero values
kept in each column). The convergence and results of the algorithm are naturally affected by
pruning, but experiments show that changes are not very significant and clustering results are
still satisfactory.

3.2 Flow simulation from MCL clusters

Ideally, a graph clustering algorithm such as MCL would be applied to the Web graph “as
is”, thus discovering the different logical websites, each as a different cluster. Clusters could
then be clustered furthermore, to extract potential subsites. But MCL is an off-line algorithm.
Applying it to the Web would require to have the entire Web graph retrieved and stored,
which is impracticable, or at least to have a large portion of it stored, which is feasible but
much resource consuming. The process itself would require huge computing power, even if
its complexity can be made linear. It takes roughly a day for a 100,000 nodes graph on a
typical personal computer; it would need at least 50,000 times as much computing power for
the entire Web graph. Furthermore, MCL only gives good results (and has sound mathematical
foundations) on undirected or almost undirected graphs. It is not at all the case of the Web
graph, which is essentially directed. For all these reasons, I will not use MCL to extract the
logical websites, but to extend the seed the on-line preflow-push will work from.

The entire process for discovering the borders of a website W is shown on Figure 9.

Tasks 2 and 3 are the most time-expensive ones, but the obtained clustering may be reused
for various sites which have a large part in the webpages crawled. For example, if the webpages
hosted by a webserver with the inria.fr domain name are crawled and clustered, the output
can be used for identifying the different sites associated with INRIA.

4 Experiments

In this section, I will describe some experiments on subsites of the INRIA website used to
validate our website identification process.

I implemented a multi-threaded crawler (used for flow simulation and for the Web graph
extraction) and an on-line version of the preflow-push algorithm in Java 1.4; I used van Dongen’s
MCL implementation in C, available at http://micans.org/mcl/; finally, Perl and shell scripts
and XSLT stylesheets were written to format the inputs to the programs and to parse and
analyze the results. Experiments were run on a Pentium IIT 600 MHz PC running Linux, with

10

Website identification process
1. Identify a superset S of a large part of W. S may be, for instance,
the set of webpages hosted by the main webserver for W (or the set
of webpages hosted by webservers with the same domain name).

2. Crawl S and build the corresponding subgraph Gg of the Web graph.

3. Cluster Gg using MCL on the underlying undirected graph G’ (there
is an edge (u,v) in G if and only if either (u,v) or (v,u) is in Gg).
If some of the resulting clusters are too large, MCL can be applied
recursively on them, with different values of the parameters.

4. Find the obtained cluster K which is the most relevant to W. It
may be identified as the one which contains a characteristic webpage
of W (but preferably not the entry point to the website which may
be classified in another cluster, given that it is “at the border” of
the website). It may also be identified by finding the cluster which
contains the largest number of URLs containing some given keyword.

5. Use the on-line preflow-push algorithm with K as a seed. The resulting
set of pages is the logical website for W found by the process.

Figure 9: Website identification process.

1 Gb RAM and a broadband access to the Internet. The time bottleneck for flow simulation
came from the response times of the webservers (all the more so since I avoided multiple quick
successive requests to the same webserver, in order not to overload it).

4.1 The Gemo website

4.1.1 Description of the experiment

My main experiment was on the website of my research team at INRIA, GEMO. Its entry point
is http://www-rocq.inria.fr/verso/ (VERSO is the former name for GEMO) and it spans
over several webservers, of the inria.fr domain and of other domains (for the personal pages
of its members who have several affiliations, for instance).

A large part of the webpages hosted on webservers of the inria.fr domain was crawled
(a breadth-first crawl was performed during 3 days, starting from http://www.inria.fr; the
last pages to be crawled were at a distance of 7). The resulting subgraph of the Web graph
contained 87,140 nodes and 709, 371 directed edges (that is, on average, 8.14 internal links per
webpage). Following the process described in Section 3.2, a MCL clustering was performed
on the underlying undirected graph (it took about a day of computation). The most relevant
cluster was identified as the one with the largest number of URLs containing “verso”. Finally,
flow simulation with preflow-push gave the resulting logical GEMO website (in a few hours).

Table 1 shows some data about the website found by the algorithm, along with results of
other simpler methods:

e Flow simulation: direct on-line preflow-push, starting from http://www-rocq.inria.
fr/verso/

e MCL 1.2, MCL 2.0: clusters from MCL, without flow simulation, for two values of the
inflation parameter

11

Size | Prec. | Recall | THESUS keywords
Flow Simulation 8 | 87.5% | 1.3% | xml, web, project
MCL 1.2 320 | 99.7% | 33.0% | gemo, report, server
MCL 1.2 + Flow Simulation 788 | 90.4% | 86.4% | gemo, report, server
MCL 2.0 249 | 99.6% | 24.9% | report, gemo, server
MCL 2.0 + Flow Simulation 285 | 94.4% | 27.1% | server, report, gemo
http://www-rocq.inria.fr/verso/* 221 | 100% | 44.4% | diapositive, texte, suivant
http://{www-rocq, osage}.inria.fr/verso/* | 683 | 100% | 68.6% | report, diapositive, gemo

Table 1: GEMO website, according to different methods.

¢ MCL 1.2 + Flow Simulation, MCL 2.0 + Flow Simulation: process described

above, for two values of the inflation parameter

http://www-rocq.inria.fr/verso/*: “naive” recursive crawl of the hierarchy of URLs
starting from http://www-rocq.inria.fr/verso/

http://{www-rocq,osage}.inria.fr/verso/*: recursive crawl of the hierarchy of URLs
starting from http://www-rocq.inria.fr/verso/ and from http://osage.inria.fr/
verso/. This method use the human knowledge that osage.inria.fr hosts the dynamic
pages of the INRIA website; therefore, it is not entirely fair to compare it to automatic
methods.

For each method, Table 1 shows:

e the number of pages in the website;

e the precision and recall of the result W, defined as follows:

number of relevant webpages in W

(W

precision(W) =

number of relevant webpages in W

Uw) =
recall(W) total number of relevant webpages

The notion of relevant webpages is somewhat subjective, therefore a 100% precision or re-
call is not a realistic objective. The concepts of precision and recall come from information
retrieval, where it is considered that, in most cases, values of 80% or 90% are very good,
since they correspond to the relative precisions or recalls between the judgments of two
human beings.

the three most frequent keywords for the set of URLs given by THESUS. THESUS, pre-
sented in [HNVVO03], is a project for the semantic characterization and clustering of sets
of Web documents, which exploits the text around webpages’ incoming hyperlinks. An
on-line demo can be found at http://www.db-net.aueb.gr/thesus/services. jsp. The
list of keywords provided by THESUS should describe the set of documents. Agreement
between the semantic keywords of THESUS and the topic of the website delimited by my
structural website identification technique would be a kind of cross-validation between the
two methods.

4.1.2 Discussion of the results

As noted in Section 2.4.2, flow simulation alone retrieves a very small portion of the relevant
webpages, whereas MCL effectively retrieves many more webpages, which are nearly all relevant
(that is, the precision is very high). The recall for MCL clusters is still low, however; this is why

12

the online preflow-push is applied afterwards. For an inflation parameter of 1.2, the complete
process still gives a good precision, over 90%, and especially gives a high recall, much higher
than all the other methods. This shows the interest of the combination of flow simulation and
graph clustering techniques, over each technique alone. The naive technique naturally has a
perfect precision (since every webpage of the hierarchy http://www-rocq.inria.fr/verso/*
is of course part of the GEMO website) but a rather low recall: there is indeed a need for more
elaborate website identification methods, such as the one I used. Even ad hoc techniques like the
last one, which uses human knowledge, do not retrieve as much relevant webpages. THESUS
keywords also tend to validate the process, since gemo appears in the top position (report and
server are also good keywords for the GEMO website, since a large part of is is composed of a
publication server which lists GEMO reports).

The results of my experiment on the GEMO cluster are thus very satisfactory. It is to be
noted, though, that this does not represent the relative performance of the different techniques
on every website. On smaller or more organized ones, the online preflow-push algorithm alone
may be sufficient. On many websites, the naive recursive crawl of the hierarchy of URLs may
even be perfect. Still, a large part of the Web is composed of not-so-well organized websites,
spanning over several webservers, like the GEMO website. For those, the use of the process
described here may be very useful.

4.2 Flow simulation from random MCL clusters
4.2.1 Description of the experiment

Another interesting experiment is to look at the clusters found by MCL in order to see if each
of them, after flow simulation, corresponds more or less to a logical website. We first applied
MCL (with inflation parameter 1.2) to the 87,140 nodes INRIA subgraph as before. As the
main cluster was huge (49,170 nodes), I clustered it furthermore, with an inflation parameter
of 2.0. I obtained 5,247 clusters, whose size went from 1 to 8,126. The distribution is shown on
Figure 10 on a log-log scale. It follows more a less a Zipfian law: the probability that a cluster
has size s is proportional to S% for some a. There are some outliers to this law, mostly for very
big clusters (perhaps that means that those clusters could be clustered furthermore).

5 clusters were then chosen at random among clusters whose size is greater than 50 (too
small clusters often do not have much interest). The preflow-push algorithm was applied to

each of them, resulting in 5 sets of URLs described in table 2 by:

e their size;

e the most common URL prefixes;

e the three most frequent THESUS keywords;

e a title, manually selected by looking at the set of URLs;

e the precision and the recall in regard to the title, as far as it could be manually computed;
the previous remark about the subjectivity of these notions holds.

4.2.2 Discussion of the results

First, the very high precision values are in part artificial: the title was chosen by looking at
the results of the website identification process; therefore, it is normal that most webpages fit
closely to the description given by the title. However, the title itself is in all but one case a label
for a natural subsite of the INRIA website. In the remaining case (the fourth one), two natural
subsites are merged. Precision values are thus an indication of the coherence of the results all
the same.

13

V1

Size | Common URL prefixes THESUS | Title (human-generated) Prec. | Recall
1083 | http://cdserv4.inria.fr/Volumes/DISC001/out/ data Digital Symposium Collection 2000 | 99.9% | 78.8%
query
database
126 | http://www-sop.inria.fr/croap/CFC/stalmarck/ intros Letouzey’s Stalmarck proof in Coq | 100% | 100%
auto
ha
99 | http://www-rocq.inria.fr/scilab/doc/Scilabpratique/ previous | Scilab par la pratique 100% | 100%
les
matrice
236 | http://www-sop.inria.fr/mimosa/fp/Bigloo/ class 1. Manuel Serrano 99.1% | 51.0%
http://www-sop.inria.fr/mimosa/personnel/Manuel.Serrano/ | scribe 2. MiMosA Reactive Programming
http://www-sop.inria.fr/mimosa/rp/ public
51 | http://www.inria.fr/rrrt/ rr 1988 research reports 96% 27%
rapport
recherche

Table 2: Sets of URLs obtained by applying the preflow-push algorithm to five random MCL clusters.

10000 — T T T T T —T T T —T
n
1000]
» +
o +
a +
© +
n
ks 100 T+]
8 ++
£ o
2 +++
Y I
T
10 + T E
T
i
-
"
H++ o+
W
1,)))) PO ccsimats S o s n i e R A S R S
1 10 100 1000 10000
Size

Figure 10: Distribution of the size of the clusters found by MCL.

The second and third clusters correspond perfectly to two logical websites. This is not very
surprising, since these websites are much organized; here, a simple naive recursive crawl would
have been enough. The first cluster is almost as satisfying, although the recall is a bit smaller
than 80%. The fourth cluster is composed of two independent parts of the MIMOSA project
website, the webpage of a researcher (along with the programs he developed) and the webpage
on Reactive Programming. The explanation of the phenomenon is quite simple: the original
MCL cluster contained webpages from the two websites. With flow simulation, the two websites
were (nearly) independently extended. It is a limitation of my process: flow simulation can
only add webpages to the seed provided by MCL. If there was an incoherence in the MCL
cluster, it remains in the extended set of webpages. A likely consequence of the presence of two
different websites, not heavily linked between one another, is the low recall score. Finally, the
last cluster, on 1998 INRIA research reports, has a very low recall: it is due to the organization
of the corresponding website, with one index page linking to all other research reports pages,
which are not linked between them. Such a website can thus easily be broken into different
MCL clusters that flow simulation will not merge. Perhaps this raises the need of a way to
merge closely related MCL clusters, a topic I did not have the time to study.

THESUS keywords are here almost always irrelevant. This comes from the fact that THE-
SUS looks for keywords also around incoming links which are internal to the website, thus the
keywords intros, previous which are purely navigational. It would be interesting in this case
to be able to take into account external incoming hyperlinks only. I did not have the chance to
access the internals of THESUS to test how that would modify the results.

Despite the aforementioned limitations of my process this experiment on random MCL clus-
ters shows, it is rather satisfactory too. In particular, the high precision values corresponding
to the high coherence of the websites found, which are almost always natural subsites of the
INRIA website, is a proof of the relevance of MCL clusters in the problem of website identifica-
tion. The problems raised suggest interesting directions to improve the quality of the website
identification process.

The experiments presented here were only made on subsites of the INRIA website, simply
because we had a direct access to it and the crawl did not require too much time and resources.

15

Further validation of the process would require to apply it to other websites. Still, the large
number of crawled webpages and their variety is already a sign that the process may be used
successfully on a large part of the World Wide Web.

5 Related works

5.1 Website identification

In most works where the notion of website appears, it is taken to be the pages hosted by a given
webserver, or a lexical hierarchy of URLs (e.g. the set of URLs that share a common prefix), in
addition to heuristics such as the recognition of /~user/ part of an URL. Links between pages
are usually only taken into account in an elementary way, such as in [THA99] where clan graph
are introduced to find closely connected pages. In that paper, websites are still assumed to be on
a single webserver and much importance is given in the form of the URLs. In [MV02], Mathieu
and Viennot look at the matrix of the Web graph in which URLs are lexically ordered; this
matrix is nearly block diagonal. Each block seems to correspond to a logical website, heavily
connected inside and sparsely connected with other webpages. The authors do not suggest a way
to exploit this observation and such a way would probably impose that websites are composed
of contiguous URLs.

The topic of community identification (identifying sets of webpages which deal with the same
topic) on the Web presents similarities with website identification. However, most approaches
to the former [GKR98],[DH99] focus on authorities in the community. A good authority, as
defined by Kleinberg in [Kle99] is a web page linked by many good hubs, which in turn are web
pages pointing to many good authorities. Kleinberg proposes the HITS algorithm to compute
the authority and hub scores of webpages. Whereas the notion of authority is relevant to the
identification of communities, where individual interesting webpages are looked for, it is not
the case for website identification, where all webpages of a website, even the least authoritative
ones, are looked for. Another community identification technique, based on flow simulation, is
discussed below.

5.2 Flow simulation

The maximum flow problem in traffic networks is a classical and much studied algorithmic
problem. See for instance [CLR90] for a general presentation of the question. The most famous
algorithm to solve it is the Fold-Fulkerson method [FF62] but it is not the most efficient one
and it is not convenient to adapt it to work on-line, as I need. Karzanov developed the notion of
preflow [Kar74] and Goldberg invented the preflow-push algorithm [GT88], which works better
in this respect. Flake and al [FLGC02, FLGO0O] use a modified version of the preflow-push
algorithm on the Web graph in a similar way as I do, for identifying web communities. Beside
the purpose, my approach differs in the on-line adaptation of the preflow-push algorithm (Flake
and al use a fixed-depth crawl whereas I do a progressive crawl with no a priori limits) and in
the choice of the capacity of the edges (a constant capacity or a function of the edition distance
between URLSs). Since the goals are not the same, I cannot either compare the efficiency of the
two methods.

5.3 Graph clustering

Graph clustering (the discovery of heavily connected subsets of nodes in graphs) is a rather young
subfield of cluster analysis (the discovery of “natural” subsets of a set of elements). Traditional
cluster analysis techniques use a vector representation of the elements, in which each coordinate
represent a characteristic, and tend to draw boundaries in the corresponding vector space (which

16

may or may not be a metric space). Graphs, however, are not described naturally in terms of
vectors of characteristic but rather in terms of connectivity, paths between nodes, etc. That is
why there is a need for original techniques for graph clustering. [Mat72] and [HS00] propose
different algorithms for graph clustering, based on strong local properties which do not seem to
fit well to the case of the Web graph, since websites are seldom strictly tightly connected. MCL
(Markov CLuster algorithm) [vD00] does not require such conditions. Clusters in the graph
are identified as the limit of a Markov process on the graph matrix, which corresponds to an
alternation of flow expansion and flow inflation in a corresponding traffic network. It is to be
noted that all these graph clustering algorithms only deal with undirected graphs (or, in the
case of MCL, nearly undirected graphs), whereas the Web is intrinsically directed. I am not
aware of any graph clustering algorithms designed to work on directed graphs. Still, as I use
MCL in combination with direct flow simulation, which takes into account the fact that the fact
is directed, I do not lose this information.

6 Conclusion

I presented in this paper a website identification process, based on a combination of flow sim-
ulation and graph clustering. The preflow-push algorithm, which solves the maximum flow
problem in a traffic network, was adapted to the case of the World Wide Web. Logical websites
are discovered by computing the minimum cut between a set of seed webpages and the rest of
the Web, a seed which is computed using the Markov CLustering algorithm. The experiments
realized on this process show quite satisfactory results. In particular, the technique presented
here is at least in some cases superior to naive methods and to either graph clustering or flow
simulation techniques alone.

The first obvious perspectives on this topic would be to improve the performance of the
process, both in its execution time and in the quality of its results. Currently, the graph
clustering needs to be computed on an off-line, crawled, subgraph of the Web, which can take
a few days for a large graph, in order not to overload the corresponding webservers. It would
thus be very useful to be able to realize an on-line computation of MCL. The adaptation is
not obvious, especially because of the behavior of the inflation operator, which cannot be easily
expressed in terms of classical linear algebra operators. Other improvements could be made on
the online preflow-push algorithm, in particular with the choice of an efficient crawling strategy.
As for the quality of the logical websites found by the process, several directions were suggested
in Section 4.2.2: merging of related MCL clusters, removing of irrelevant webpages from the
clusters.

The process I described in this paper is purely structural, based on the graph structure
of the World Wide Web (and, for a lesser part, on the form of the URLs). Even if this can
give good results in a large variety of cases, it is likely that no entirely structural methods will
succeed in discovering the boundaries of every website. The use of semantic methods, based
for instance on the content of the webpages, would probably be an efficient complement of the
process presented here.

References

[ACMS02] Serge Abiteboul, Grégory Cobéna, Julien Massanes, and Gerald Sadrati. A first
experience in archiving the French Web. In Proceedings of the European Conference
on Digital Libraries, 2002.

[APCO3] Serge Abiteboul, Mihai Preda, and Grégory Cobéna. Adaptive on-line page im-
portance computation. In Proceedings of the 12th international World Wide Web
Conference, Budapest, Hungary, 2003.

17

[CLR0]

[DHYY]

[FF62]

[FLGO00]

[FLGC02]

[GKR9S]

[GT88]

[HNVV03]

[HS00]

[Kar74]
[K1e99)]
[Mat72]
[MV02]

[PBMWOS]

[THA99]

[vDOO]

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Electrical Engineering and Computer Science Series. The
MIT Press / McGraw-Hill Book Company, 1990.

Jeffrey Dean and Monika R. Henzinger. Finding related pages in the World Wide
Web. In Proceedings of the 8th international World Wide Web Conference, Toronto,
Canada, 1999.

Lestor R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

Gary Flake, Steve Lawrence, and C. Lee Giles. Efficient identification of Web com-
munities. In Sizth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 150-160, Boston, MA, August 20-23 2000.

Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans Coetzee. Self-
organization of the Web and identification of communities. IEEE Computer,
35(3):66-71, 2002.

David Gibson, Jon M. Kleinberg, and Prabhakar Raghavan. Inferring Web commu-
nities from link topology. In Proceedings of the 9th ACM Conference on Hypertext
and Hypermedia, pages 225-234, Pittsburgh, Pennsylvania, June 1998.

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow
problem. Journal of the ACM, 35(4):921-940, October 1988.

Maria Halkidi, Benjamin Nguyen, Iraklis Varlamis, and Michalis Vazirgiannis.
THESUS: Organizing web document collections based on semantics and cluster-
ing. VLDB Journal Special Issue on the Semantic Web, September 2003.

Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity.
Information Processing Letters, 76(4-6):175-181, December 2000.

A. V. Karzanov. Determing the maximal flow in a network by the method of
preflows. Soviet Mathematics Doklady, 15:434-437, 1974.

Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46(5):604-632, 1999.

David W. Matula. k-components, clusters, and slicings in graphs. SIAM Journal
on Applied Mathematics, 22(3):459-480, May 1972.

Fabien Mathieu and Laurent Viennot. Structure intrinseque du Web. Research
Report 4663, INRIA, December 2002.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

Loren Terveen, Will Hill, and Brian Amento. Constructing, organizing, and vi-
sualizing collections of topically related Web resources. ACM Transactions on
Computer-Human Interaction, 6(1):67-94, 1999.

Stijn Marinus van Dongen. Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, May 2000.

18

