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Abstract. We present in this paper a method to discover the set of
webpages contained in a logical website, based on the link structure of the
Web graph. Such a method is useful in the context of Web archiving and
website importance computation. To identify the boundaries of a website,
we combine the use of an online version of the preflow-push algorithm,
an algorithm for the maximum flow problem in traffic networks, and of
the Markov CLuster (MCL) algorithm. The latter is used on a crawled
portion of the Web graph in order to build a seed of initial webpages, a
seed which is extended using the former. Experiments on subsites of the
INRIA Website are described.

1 Introduction

Although the notion of website is commonly understood, there is no
simple formal definition of it. The most obvious idea would be to define
a logical website as the set of webpages hosted by a given webserver.
Although this is correct for many websites, this does not reflect the
intuitive notion of website:

— Some websites span over several webservers.

— Some webservers host different websites.

— The notion of webserver is also unclear in the context of distributed
webservers, mirrors or virtual web hosting.

There are other issues which show that the problem of website identifi-
cation is not obvious. On the one hand, some websites may be seen as
a whole or as a collection of different websites (e.g. the INRIA website
regroups — between other — the websites of each research team). This
raises the question of the scale at which websites are to be found. On the
other hand, the boundaries of a website are often fuzzy and subjective. It
is for instance unclear what part of the websites of its members the web-
site of a research team should contain. That implies that no automatic
method for identifying logical websites will be entirely satisfactory. We
can only aim at an automatic method which would correspond as much
to one person’s definition of website as one other person’s would.

The problem of discovering the boundaries between logical websites oc-
curs in the topic of Web archiving [1]: once webpages are selected to be
archived, what is the boundary of the corresponding websites? To be able
to define websites could also lead to website importance computation: to
devise a SiteRank for websites, as PageRank [2] is defined for webpages.



The method for website identification we present in this paper heav-
ily relies on the (directed) graph structure of the Web, with webpages
as nodes and hyperlinks as edges. The fundamental assumption is that
webpages in the same website are much more connected between them
than webpages from different websites. We use an adaptation and combi-
nation of two algorithms related to flow simulation in traffic networks: a
preflow-push algorithm by Goldberg [3] which solves the maximum flow
problem and the Markov CLuster algorithm (abbreviated as MCL) by
van Dongen [4], a graph clustering algorithm. MCL is used to cluster a
part of the Web in order to build seeds of websites which are extended
to complete logical websites with the preflow-push algorithm. The tech-
niques used are not based on the concept of webservers, domain names
or other heuristics, like traditional website recognition methods, but on
the link structure of the Web graph and, secondarily, on the global form
of the URLs.

We show in Section 2 how flow simulation and the maximum flow prob-
lem may be used to identify websites in the Web graph. We notice that
in many cases, the seed of webpages the simulation starts from needs to
be extended. We present in Section 3 a way to use MCL for that purpose.
Experiments are presented in Section 4. Finally, we discuss related works
in Section 5.

2  Flow Simulation

In this section, after some necessary basics about traffic networks and
the maximum flow/minimum cut problem, we present the preflow-push
algorithm and its online adaptation to the Web. This algorithm is the
base of our website identification process, used in order to extend a seed
of webpages to a complete logical website.

Mazimum Flow A traffic network is a 4-tuple 7 = (S, ¢, s,t) where S
is a set of nodes, ¢: S? — Ry is a capacity function, s € S is the source
and t € S is the sink; s and ¢ verify: Vu € S,c(u,s) = c(t,u) = 0. The
underlying directed graph is (S, A) where A = {(u,v) € S?|c(u,v) > 0}.
A flow in 7 is a function f : S? — R, satisfying the following properties:

(i) (Symmetry) ¥(u,v) € §2, f(u,v) = —f(v,u)
(ii) (Capacity constraint) V(u,v) € S?, f(u,v) < c(u,v)
(ili) (Flow conservation) Yu € S\ {s,t},>, s f(u,v) =0

The mazimum flow problem is to find a flow function f such that the
maximum flow value |f| is maximal; |f| is being defined as the sum of
flows departing from the source or, equivalently, as the sum of flows
arriving to the sink:

=3 Fls,u) = 3 flu,t) (1)
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Fig. 1. Maximum flow and Minimum cut in a sample traffic network.
Plain and empty circles show the two parts of the partition.

Minimum Cut A cut of T is a partition (S1,S52) of S with s € S1 and
t € S2. The minimum cut problem is to find a cut whose capacity, defined
by > es, 2oves, ¢(u;v) is minimal.

There is an equivalence between the maximum flow problem and the min-
imum cut problem (cf [5]). The maximum flow value is also the minimum
cut capacity. Furthermore, a solution of the maximum flow problem can
alternatively be seen as a solution of the minimum cut problem, in the
following way, as illustrated in Fig. 1: edges saturated by the maximum
flow define the minimum cut.

Preflow-Push Algorithm The preflow-push algorithm, a solution to the
maximum flow/minimum cut problem, is based on the notion of preflow,
which relaxes the flow conservation constraint. A preflow in a traffic
network 7 = (S, ¢, s,t) is a function f : S — R which satisfies:

(i) (Symmetry) ¥(u,v) € S?, f(u,v) = —f(v,u)

(ii) (Capacity constraint) V(u,v) € S2, f(u,v) < c(u,v)
(iii) (Relazed flow conservation) Yu € S\ {s,t},> cq f(u,v) <0

This definition means that, in a preflow, a node u can have some overflow
o(u) = =3 cg f(u,v): it can receive more from the nodes it is pointed
by than it sends to the nodes it points to. The preflow-push algorithm,
as well as other algorithms working with preflows, maintains at each step
a preflow in 7, converging finally toward a flow in 7 which is maximal.
All nodes are assigned a height (0 in the beginning for all nodes except
the source). At each iteration, the preflow is pushed from a node with
overflow to a lower node. If there are no lower nodes to unload a node
with overflow, this node is raised. The algorithm ends when there are no
nodes with overflow any longer.

This algorithm can be demonstrated to converge toward a maximum flow
in 7 (cf [3]), with a complexity of O(|S|?|A|) (JA| is the number of edges
with non-zero capacity), whatever the strategy for selecting nodes with
overflow may be.

Adaptation to the Web The fundamental assumption of website iden-
tification based on the graph structure of the Web is that webpages in
the same website are much more connected between them than webpages
from different websites. If the Web is seen as a traffic network in which



some fluid flows from a set of source nodes in the same website, the
bottleneck of the flow should not be inside the website, where there are
many internal connections (and thus, a large capacity), but between the
website and the rest of the Web, where the connections are much more
sparse.

The idea behind using flow simulation to identify websites is that a clear
cut should be visible between a “source of seed webpages” of a site and
a “sink for the remaining part of the Web”, a cut which would match
the borders of the website. This cut is computed as a minimum cut
in a traffic network whose underlying graph is the Web graph. More
formally, let Seed be a set of seed webpages, characteristic of the website
we would like to compute the borders of, and sim a similarity function
over webpages. We consider the traffic network ZTgeeq = (S, ¢, s,t) where:

— S is the set of webpages in the World Wide Web, along with two
virtual nodes s (a virtual source) and ¢ (a virtual sink).
— c is defined as follows:
(i) For all (u,v) € (S\ {s,t})?, c(u,v) = sim(u,v) if there is a link
from u to v, ¢(u,v) = 0 otherwise.
(ii) For all u € Seed, c(s,u) = +o0
(iii) For all u € S\ {s,t}, c(u,t) =€
(e is a small value, much smaller than average similarity values).

The choice of the similarity function is important. The most simple choice
would be to use a constant function. In this case, however, a cut sepa-
rating the seed webpages from the rest would be most likely minimal.
Instead of an ad hoc solution raising the similarity of webpages near the
source or a complex semantic similarity function, we chose to use a func-
tion of the edit distance between the URLs of the webpages: even if a
website span over several webservers, the URLSs of the pages tend to look
similar. If ed(u, v) is the edit distance between URLs v and v and o is a
typical standard deviation for the edit distance over the set of considered
URLs, the similarity function sim is defined empirically to be:

_ed(u,v)?
sim(u,v) =e 202 (2)

On-line Preflow-Push Classical graph and network algorithms are off-
line: they require that the entire matrix is stored, so that computations
can be made on it. In the context of the Web, on-line algorithms may be
more interesting. An on-line algorithm on the Web graph is an algorithm
which does not require the storage of the entire matrix of the graph,
and in which computations are made progressively, at the same time
webpages are crawled.

The preflow-push algorithm can be made on-line in a straightforward
way: webpages with overflow are progressively crawled and dealt with
(pushed or raised). We have to maintain the height and overflow of each
node, as well as, for all edges where there is flow, the value of the flow
through this edge. The latter component can unfortunately grow quite
large, potentially in proportion of the number of edges in the graph. At
the end of the algorithm, nodes on the same side of the cut as the source
are extracted: they form the logical website found by the process.



Several strategies adapted to crawling can be chosen. We decided to use
a greedy one: the node with maximum overflow is selected at each step (a
list of candidates nodes ordered by their overflow is maintained). Minor
modifications were made, which do not ensure the correctness of the
algorithm any longer but which did not have any noticeable impact in
the experiments we made: the height of the source is decreased (which
accelerates the rise of nodes that have to push flow toward the source)
and the algorithm may stop before the convergence is obtained (after a
timeout or when all nodes overflow are under a threshold value).
Applying this version of the preflow-push algorithm on a seed of char-
acteristic webpages of a website gives quite good results on small or
medium-sized, well-organized, websites. When the website is very large
or not well organized, however, the algorithm only retrieves a small pro-
portion of the webpages of the real website (cf Table 1). The problem is
that a small seed is not sufficient to discover the entire website. Thus,
we need a way to extend automatically the seed before carrying out the
flow simulation.

3 Extension of the Seed

We use MCL, a graph clustering algorithm by van Dongen [4], to extend
the seed used by the online push-preflow algorithm. After presenting it
very briefly, we describe how it can be used in the context of the Web,
and the role it plays in the website identification process we present in
this paper.

MCL (Markov CLuster Algorithm) Let G be a (possibly weighted)
directed graph and Mg its associated matrix. Let Mg be the matrix
obtained from the transpose of Mg by normalizing each column. Mg is
a column stochastic matrix. In the context of a random walk on G, Mg
can be seen as the transition matrix of the corresponding Markov chain.
The first successive powers MZ, M%.. .. (which are also column stochas-
tic) present interesting behaviors: the (7, ) element, which corresponds
to the transition probabilities in multiple steps, is all the higher as 7 and
j are in the same dense region. Such feature is very interesting for obtain-
ing a graph clustering algorithm, but is not sufficient in itself. The basic
idea of MCL is to amplify the behavior which appears for the first pow-
ers of the matrix, by alternating expansion (matrix multiplication) with
inflation (rescaling with a power coefficient greater than 1, to increase
the heterogeneity of the values).

Note that this algorithm is not guaranteed to converge. There are even
examples of non-convergence. However, if M¢ is diagonally similar to
a symmetric matrix (this is in particular the case if G is undirected),
the iterands of the MCL process are eventually diagonally similar to a
positive semi-definite matrix. This property gives the means to associate
an overlapping clustering to each iterand, in a way described in [4].
The complexity of the MCL algorithm, as it is presented above, is O(]S|*)
where |S| is the number of nodes in G. Simple pruning of each column of
the matrix may drastically lower the complexity to O(|S|). Experiments



show no significant effect of the pruning on the convergence and results
of the algorithm.

Flow Simulation from MCL Clusters Ideally, a graph clustering algo-
rithm such as MCL would be applied to a large portion of the Web graph
“as is”, thus discovering the different logical websites of the whole Web,
each as a different cluster. Clusters could then be clustered furthermore,
to extract potential subsites. But MCL is an off-line algorithm. Apply-
ing it to the Web would require to have the entire Web graph retrieved
and stored, which is impracticable, or at least to have a large portion of
it stored, which is feasible but much resource consuming. Furthermore,
MCL only gives good results (and has sound mathematical foundations)
on undirected or almost undirected graphs. It is not at all the case of
the Web graph, which is essentially directed. For all these reasons, we do
not use MCL to extract the logical websites, but to extend the seed the
on-line preflow-push starts from. The entire process is shown on Fig. 2.

Process for Identifying a Website W

1. Find a superset S of a large part of W (S may be, for instance, the set
of webpages hosted by the main webserver for W); crawl and build the
corresponding subgraph Gs of the Web graph.

2. Cluster Gs using MCL on the underlying undirected graph G5 (there is
an edge (u,v) in G if and only if either (u,v) or (v,u) is in Gg).

3. Find the obtained cluster K which is the most relevant to W. It may
be identified by finding the cluster which contains the largest number of
URLs containing some given keyword.

4. Use the on-line preflow-push algorithm with K as a seed. The resulting
set of pages is the logical website for W found by the process.

Fig. 2. Website identification process.

4  Experiments

In this section, we describe some experiments on subsites of the INRIA
website used to validate our website identification process.

The GEMO Website Our main experiment was on the website of our
research team, GEMO. Its entry point is http://www-rocq.inria.fr /verso/
(VERSO is the former name for GEMO) and it spans over several web-
servers, of the inria.fr domain and of other domains (for the personal
pages of its members who have several affiliations, for instance).

A large part of the webpages hosted on webservers of the inria.fr do-
main was crawled. Following the process described in Fig. 2, a MCL
clustering was performed on the underlying undirected graph. The most




relevant cluster was identified as the one with the largest number of URLs
containing “verso”. Finally, flow simulation with preflow-push gave the
resulting logical GEMO website.

Table 1 shows some data about the website found by the algorithm, along
with results of other simpler methods:

Table 1. GEMO website, according to different methods.

Number of Pages|Precision|Recall
Flow Simulation 8| 87.5%| 1.3%
MCL 320 99.7%|33.0%
MCL + Flow Simulation 788 90.4%)86.4%
http://www-rocq.inria.fr/verso/* 221 100%|44.4%
http://*.inria.fr /verso/* | 683 100%|68.6%

— Flow Simulation: direct on-line preflow-push, starting from the
website entry page.

— MCL: clusters from MCL, without flow simulation

— MCL + Flow Simulation: process described above

— http://www-rocq.inria.fr/verso/*: “naive” recursive crawl of the hi-
erarchy of URLs starting from the website entry page.

— http://*.inria.fr/verso/*: recursive crawl of the hierarchy of URLs
starting from /verso/ on every webserver of the inria.fr domain.
This method use the human knowledge that dynamic and static
webpages of the GEMO website are hosted on different webservers.

Precision and recall, as presented in Table 1, are defined as follows:

number of relevant webpages in W

W]

number of relevant webpages in W

®3)

precision(W) =

W) =
recall(W) total number of relevant webpages

(4)
The notion of relevant webpages is somewhat subjective, therefore a
100% precision or recall is not a realistic objective.

As noted in Section 2, flow simulation alone retrieves a very small por-
tion of the relevant webpages, whereas MCL effectively retrieves many
more webpages, which are nearly all relevant (that is, the precision is very
high). The recall for MCL clusters is still low, however; this is why the on-
line preflow-push is applied afterwards. The complete process, however,
still gives a good precision (over 90%) and especially gives a high recall,
much higher than all the other methods. This shows the interest of the
combination of flow simulation and graph clustering techniques, over each
technique alone. The naive technique naturally has a perfect precision
(since every webpage of the hierarchy http://www-rocq.inria.fr/verso/*
is part of the GEMO website) but a rather low recall: there is indeed a
need for more elaborate website identification methods, such as the one
we used. Even ad hoc techniques like the last one (proposed by a member
of the group) do not retrieve as much relevant webpages.



The results of our experiment on the GEMO cluster are thus very satis-
factory. It is to be noted, though, that this does not represent the relative
performance of the different techniques on every website. On smaller or
more organized ones, the online preflow-push algorithm alone may be
sufficient. On many websites, the naive recursive crawl of the hierarchy
of URLs may even be perfect. Still, a large part of the Web is composed
of not-so-well organized websites, spanning over several webservers, like
the GEMO website.

Another important point is that our method is entirely dependent of
the clustering obtained by MCL, in particular if there is no clear “most
relevant cluster” for a website (either because the website is split into
many clusters or because it is merged with other logical websites). We
had this issue on the GEMO website on another crawl of the inria.fr
domain, one year later: due to server reconfigurations, a large proportion
of the GEMO website was disallowed to crawlers. The remaining webpages
did not form a distinct MCL cluster. Still, human merging and splitting
of a few MCL clusters would be enough to obtain a proper seed on which
flow simulation can be run.

Flow Simulation from Random MCL Clusters Another interesting
experiment is to look at the clusters found by MCL in order to see if
each of them, after flow simulation, corresponds more or less to a logical
website. We first applied MCL to the 147,784 nodes INRIA subgraph
as before. As the main cluster was huge (43,811 nodes), we clustered
it furthermore. We obtained 4, 303 clusters, whose size went from 1 to
16,941 pages.

4 clusters were then chosen at random among clusters whose size is
greater than 10 (too small clusters often do not have much interest).
The preflow-push algorithm was applied to each of them, resulting in 4
sets of URLSs described in Table 2 by their size, a title (manually selected
by looking at the set of URLs) and the precision and recall in regard to
the title, manually computed (as precisely as it could be).

Table 2. Sets of URLs obtained by flow simulation on random MCL clusters.

Size|Title (human-generated) Precision| Recall
24|Presentation of the RAP Project Proposition| 100.0%{100.0%
37|Praxitele Transportation System 94.6%| 97.2%

262|Ocaml - Practices and Principles 99.6%| 95.6%
56|OSCAR 2004 Workshop 94.6%(100.0%

The very high precision values are in part artificial: since the title was
chosen by looking at the results of the website identification process,
it is normal that most webpages fit closely to the description given by
the title. The high recall values give a good validation that our process
effectively returns (nearly) complete logical websites.



5 Related Work

In most works where the notion of website appears, it is taken to be the
pages hosted by a given webserver, or a lexical hierarchy of URLs (e.g.
the set of URLs that share a common prefix), in addition to heuristics
such as the recognition of /~user/ part in an URL. Links between pages
are usually only taken into account in an elementary way, such as in [6]
where clan graphs are introduced to find closely connected pages. In that
paper, websites are still assumed to be on a single webserver and much
importance is given in the form of the URLs. In [7], Mathieu proposes a
way to partition the Web by using the fact that the matrix of the Web
graph in which URLs are lexically ordered is nearly block diagonal. Each
block seems to correspond to a logical website, heavily connected inside
and sparsely connected with other webpages.

The maximum flow problem in traffic networks is a classical and much
studied algorithmic problem. Karzanov developed the notion of preflow
[8] and Goldberg invented the preflow-push algorithm [3], which works
better in this respect. Flake et al [9] use a modified version of the preflow-
push algorithm on the Web graph in a similar way as we do, for identi-
fying Web communities. Beside the purpose, our approach differs in the
on-line adaptation of the preflow-push algorithm, in the choice of the
capacity of the edges and in the use of an extended seed.

Graph clustering (the discovery of heavily connected subsets of nodes in
graphs) is a rather young subfield of cluster analysis (the discovery of
“natural” subsets of a set of elements). [10] and [11] propose different
algorithms for graph clustering, based on strong local properties which
do not seem to fit well to the case of the Web graph, since websites are
seldom strictly tightly connected. MCL (Markov CLuster algorithm) [4],
presented in Section 3, does not require such conditions.

6 Conclusion

We presented in this paper a website identification process, based on a
combination of flow simulation and graph clustering. The preflow-push
algorithm, which solves the maximum flow problem in a traffic network,
was adapted to the case of the World Wide Web. Logical websites are dis-
covered by computing the minimum cut between a set of seed webpages
and the rest of the Web, a seed which is computed using the Markov
CLuster algorithm. The experiments realized on this process show quite
satisfactory results. In particular, the technique presented here showed
to be superior to naive methods and to either graph clustering or flow
simulation techniques alone.

The first obvious perspective on this topic would be to improve the per-
formance of the process, both in its execution time and in the quality
of its results. Currently, the graph clustering needs to be computed on
an off-line, crawled, subgraph of the Web, which can take a few days for
a large graph, in order not to overload the corresponding webservers. It
would thus be very useful to be able to realize an on-line computation of
MCL. The adaptation is not obvious, especially because of the behavior
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of the inflation operator, which cannot be easily expressed in terms of
classical linear algebra operators. Other improvements could be made on
the online preflow-push algorithm, in particular with the choice of an
efficient crawling strategy. Finally, a semi-automatic method, with the
possibility of splitting and merging selected MCL clusters, would allow
a more precise selection of the website to identify.

The process we described in this paper is purely structural, based on the
graph structure of the World Wide Web (and, for a lesser part, on the
form of the URLs). Even if this can give good results in a large variety
of cases, it is likely that no entirely structural methods will succeed in
discovering the boundaries of every website. The use of semantic meth-
ods, based for instance on the content of the webpages, would probably
be an efficient complement of the process presented here.
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