
2

Automatic Discovery of Similar Words

Pierre Senellart and Vincent D. Blondel

Overview

The purpose of this chapter is to review some methods used for automatic extraction
of similar words from different kinds of sources: large corpora of documents, the
World Wide Web, and monolingual dictionaries. The underlying goal of these meth-
ods is in general the automatic discovery of synonyms. This goal, however, is most
of the time too difficult to achieve since it is often hard to distinguish in an automatic
way among synonyms, antonyms, and, more generally, words that are semantically
close to each others. Most methods provide words that are “similar” to each other,
with some vague notion of semantic similarity. We mainly describe two kinds of
methods: techniques that, upon input of a word, automatically compile a list of good
synonyms or near-synonyms, and techniques that generate a thesaurus (from some
source, they build a complete lexicon of related words). They differ because in the
latter case, a complete thesaurus is generated at the same time while there may not
be an entry in the thesaurus for each word in the source. Nevertheless, the purposes
of both sorts of techniques are very similar and we shall therefore not distinguish
much between them.

2.1 Introduction

There are many applications of methods for extracting similar words. For example, in
natural language processing and information retrieval, they can be used to broaden
and rewrite natural language queries. They can also be used as a support for the
compilation of synonym dictionaries, which is a tremendous task. In this chapter we
focus on the search of similar words rather than on applications of these techniques.

Many approaches for the automatic construction of thesauri from large corpora
have been proposed. Some of them are presented in Section 2.2. The interest of
such domain-specific thesauri, as opposed to general-purpose human-written syn-
onym dictionaries, will be stressed. The question of how to combine the result of
different techniques will also be broached. We then look at the particular case of the

26 P. Senellart and V.D. Blondel

World Wide Web, whose large size and other specific features do not allow it to be
dealt with in the same way as more classical corpora. In Section 2.3, we propose
an original approach, which is based on a monolingual dictionary and uses an algo-
rithm that generalizes an algorithm initially proposed by Kleinberg for searching the
Web. Two other methods working from a monolingual dictionary are also presented.
Finally, in light of this example technique, we discuss the more fundamental rela-
tions that exist between text mining and graph mining techniques for the discovery
of similar words.

2.2 Discovery of Similar Words from a Large Corpus

Much research has been carried out about the search for similar words in textual
corpora, mostly for applications in information retrieval tasks. The basic assumption
of most of these approaches is that words are similar if they are used in the same
contexts. The methods differ in the way the contexts are defined (the document, a
textual window, or more or less elaborate grammatical contexts) and the way the
similarity function is computed.

Depending on the type of corpus, we may obtain different emphasis in the re-
sulting lists of synonyms. The thesaurus built from a corpus is domain-specific to
this corpus and is thus more adapted to a particular application in this domain than
a general human-written dictionary. There are several other advantages to the use of
computer-written thesauri. In particular, they may be rebuilt easily to mirror a change
in the collection of documents (and thus in the corresponding field), and they are not
biased by the lexicon writer (but are of course biased by the corpus in use). Obvi-
ously, however, human-written synonym dictionaries are bound to be more liable,
with fewer gross mistakes. In terms of the two classical measures of information re-
trieval, we expect computer-written thesauri to have a better recall (or coverage) and
a lower precision (except for words whose meaning is highly biased by the applica-
tion domain) than general-purpose human-written synonym dictionaries.

We describe below three methods that may be used to discover similar words. We
do not pretend to be exhaustive, but have rather chosen to present some of the main
approaches, selected for the variety of techniques used and specific intents. Variants
and related methods are briefly discussed where appropriate. In Section 2.2.1, we
present a straightforward method, involving a document vector space model and the
cosine similarity measure. This method is used by Chen and Lynch to extract infor-
mation from a corpus on East-bloc computing [CL92] and we briefly report their
results. We then look at an approach proposed by Crouch [Cro90] for the automatic
construction of a thesaurus. The method is based on a term vector space model and
term discrimination values [SYY75], and is specifically adapted for words that are
not too frequent. In Section 2.2.3, we focus on Grefenstette’s SEXTANT system
[Gre94], which uses a partial syntactical analysis. We might need a way to com-
bine the result of various different techniques for building thesauri: this is the object
of Section 2.2.4, which describes the ensemble method. Finally, we consider the

2 Automatic Discovery of Similar Words 27

particular case of the World Wide Web as a corpus, and discuss the problem of find-
ing synonyms in a very large collection of documents.

2.2.1 A Document Vector Space Model

The first obvious definition of similarity with respect to a context is, given a collec-
tion of documents, to say that terms are similar if they tend to occur in the same doc-
uments. This can be represented in a multidimensional space, where each document
is a dimension and each term is a vector in the document space with boolean entries
indicating whether the term appears in the corresponding document. It is common
in text mining to use this type of vector space model. In the dual model, terms are
coordinates and documents are vectors in term space; we see an application of this
dual model in the next section.

Thus, two terms are similar if their corresponding vectors are close to each other.
The similarity between the vector i and the vector j is computed using a similarity
measure, such as cosine:

cos(i, j) =
i · j√

i · i× j · j
where i · j is the inner product of i and j. With this definition we have |cos(i, j)| ≤ 1,
defining an angle θ with cos θ = cos(i, j) as the angle between i and j. Similar terms
tend to occur in the same documents and the angle between them is small (they tend
to be collinear). Thus, the cosine similarity measure is close to ±1. On the contrary,
terms with little in common do not occur in the same documents, the angle between
them is close to π/2 (they tend to be orthogonal), and the cosine similarity measure
is close to zero.

Cosine is a commonly used similarity measure. However, one must not forget
that the mathematical justification of its use is based on the assumption that the axes
are orthogonal, which is seldom the case in practice since documents in the collection
are bound to have something in common and not be completely independent.

Chen and Lynch compare in [CL92] the cosine measure with another measure,
referred to as the cluster measure. The cluster measure is asymmetrical, thus giving
asymmetrical similarity relationships between terms. It is defined by:

cluster(i, j) =
i · j
‖i‖1

where ‖i‖1 is the sum of the magnitudes of i’s coordinates (i.e., the l1-norm of i).
For both these similarity measures the algorithm is then straightforward: Once

a similarity measure has been selected, its value is computed between every pair of
terms, and the best similar terms are kept for each term.

The corpus Chen and Lynch worked on was a 200-MB collection of various
text documents on computing in the former East-bloc countries. They did not run
the algorithms on the raw text. The whole database was manually annotated so that
every document was assigned a list of appropriate keywords, countries, organization

28 P. Senellart and V.D. Blondel

names, journal names, person names, and folders. Around 60, 000 terms were ob-
tained in this way and the similarity measures were computed on them.

For instance, the best similar keywords (with the cosine measure) for the keyword
technology transfer were: export controls, trade, covert, export, import, micro-
electronics, software, microcomputer, and microprocessor. These are indeed related
(in the context of the corpus) and words like trade, import, and export are likely to
be some of the best near-synonyms in this context.

The two similarity measures were compared on randomly chosen terms with
lists of words given by human experts in the field. Chen and Lynch report that the
cluster algorithm presents a better recall (that is, the proportion of relevant terms
that are selected) than cosine and human experts. Both similarity measures exhibit
similar precisions (that is, the proportion of selected terms that are relevant), which
are inferior to that of human experts, as expected. The asymmetry of the cluster
measure here seems to be a real advantage.

2.2.2 A Thesaurus of Infrequent Words

Crouch presents in [Cro90] a method for the automatic construction of a thesaurus,
consisting of classes of similar words, with only words appearing seldom in the cor-
pus. Her purpose is to use this thesaurus to rewrite queries asked to an information
retrieval system. She uses a term vector space model, which is the dual of the space
used in previous section: Words are dimensions and documents are vectors. The pro-
jection of a vector along an axis is the weight of the corresponding word in the doc-
ument. Different weighting schemes might be used; one that is effective and widely
used is the “term frequency inverse document frequency” (tf-idf), that is, the number
of times the word appears in the document multiplied by a (monotonous) function of
the inverse of the number of documents the word appears in. Terms that appear often
in a document and do not appear in many documents have therefore an important
weight.

As we saw earlier, we can use a similarity measure such as cosine to characterize
the similarity between two vectors (that is, two documents). The algorithm proposed
by Crouch, presented in more detail below, is to cluster the set of documents, accord-
ing to this similarity, and then to select indifferent discriminators from the resulting
clusters to build thesaurus classes.

Salton, Yang, and Yu introduce in [SYY75] the notion of term discrimination
value. It is a measure of the effect of the addition of a term (as a dimension) to
the vector space on the similarities between documents. A good discriminator is a
term that tends to raise the distances between documents; a poor discriminator tends
to lower the distances between documents; finally, an indifferent discriminator does
not change much the distances between documents. Exact or even approximate com-
putation of all term discrimination values is an expensive task. To avoid this problem,
the authors propose to use the term document frequency (i.e., the number of docu-
ments the term appears in) instead of the discrimination value, since experiments
show they are strongly related. Terms appearing in less than about 1% of the doc-
uments are mostly indifferent discriminators; terms appearing in more than 1% and

2 Automatic Discovery of Similar Words 29

less than 10% of the documents are good discriminators; very frequent terms are
poor discriminators. Neither good discriminators (which tend to be specific to sub-
parts of the original corpus) nor poor discriminators (which tend to be stop words or
other universally apparent words) are used here.

Crouch suggests using low-frequency terms to form thesaurus classes (these
classes should thus be made of indifferent discriminators). The first idea to build
the thesaurus would be to cluster together these low-frequency terms with an ade-
quate clustering algorithm. This is not very interesting, however, since, by defini-
tion, one has not much information about low-frequency terms. But the documents
themselves may be clustered in a meaningful way. The complete link clustering al-
gorithm, presented next and which produces small and tight clusters, is adapted to
the problem. Each document is first considered as a cluster by itself, and, iteratively,
the two closest clusters—the similarity between clusters is defined as the minimum
of all similarities (computed by the cosine measure) between pairs of documents in
the two clusters—are merged together, until the distance between clusters becomes
higher than a user-supplied threshold.

When this clustering step is performed, low-frequency words are extracted from
each cluster, thus forming corresponding thesaurus classes. Crouch does not describe
these classes but has used them directly for broadening information retrieval queries,
and has observed substantial improvements in both recall and precision, on two clas-
sical test corpora. It is therefore legitimate to assume that words in the thesaurus
classes are related to each other. This method only works on low-frequency words,
but the other methods presented here do not generally deal well with such words for
which we have little information.

2.2.3 Syntactical Contexts

Perhaps the most successful methods for extracting similar words from text are based
on a light syntactical analysis, and the notion of syntactical context: For instance, two
nouns are similar if they occur as the subject or the direct object of the same verbs.
We present here in detail an approach by Grefenstette [Gre94], namely SEXTANT
(Semantic EXtraction from Text via Analyzed Networks of Terms); other similar
works are discussed next.

Lexical Analysis

Words in the corpus are separated using a simple lexical analysis. A proper name
analyzer is also applied. Then, each word is looked up in a human-written lexicon
and is assigned a part of speech. If a word has several possible parts of speech, a
disambiguator is used to choose the most probable one.

Noun and Verb Phrase Bracketing

Noun and verb phrases are then detected in the sentences of the corpus, using starting,
ending, and continuation rules. For instance, a determiner can start a noun phrase, a

30 P. Senellart and V.D. Blondel

noun can follow a determiner in a noun phrase, an adjective cannot neither start, end,
or follow any kind of word in a verb phrase, and so on.

Parsing

Several syntactic relations (or contexts) are then extracted from the bracketed sen-
tences, requiring five successive passes over the text. Table 2.1, taken from [Gre94],
shows the list of extracted relations.

Table 2.1. Syntactical relations extracted by SEXTANT

ADJ an adjective modifies a noun (e.g., civil unrest)
NN a noun modifies a noun (e.g., animal rights)

NNPREP a noun that is the object of a proposi-
tion modifies a preceding noun

(e.g., measurements along the crest)

SUBJ a noun is the subject of a verb (e.g., the table shook)
DOBJ a noun is the direct object of a verb (e.g., he ate an apple)
IOBJ a noun in a prepositional phrase mod-

ifying a verb
(e.g., the book was placed on the table)

The relations generated are thus not perfect (on a sample of 60 sentences Grefen-
stette found a correctness ratio of 75%) and could be better if a more elaborate parser
was used, but it would be more expensive too. Five passes over the text are enough
to extract these relations, and since the corpus used may be very large, backtracking,
recursion or other time-consuming techniques used by elaborate parsers would be
inappropriate.

Similarity

Grefenstette focuses on the similarity between nouns; other parts of speech are not
dealt with. After the parsing step, a noun has a number of attributes: all the words
that modify it, along with the kind of syntactical relation (ADJ for an adjective, NN
or NNPREP for a noun and SUBJ, DOBJ, or IOBJ for a verb). For instance, the
noun cause, which appears 83 times in a corpus of medical abstracts, has 67 unique
attributes in this corpus. These attributes constitute the context of the noun, on which
similarity computations are made. Each attribute is assigned a weight by:

weight(att) = 1 +
∑

noun i

patt,i log(patt,i)
log(total number of relations)

where
patt,i =

number of times att appears with i
total number of attributes of i

The similarity measure used by Grefenstette is a weighted Jaccard similarity
measure defined as follows:

2 Automatic Discovery of Similar Words 31

jac(i, j) =

∑
att attribute of both i and j weight(att)∑
att attribute of either i or j weight(att)

Results

Table 2.2. SEXTANT similar words for case, from different corpora

1. CRAN (Aeronautics abstract)
case: characteristic, analysis, field, distribution, flaw, number, layer, problem

2. JFK (Articles on JFK assassination conspiracy theories)
case: film, evidence, investigation, photograph, picture, conspiracy, murder

3. MED (Medical abstracts)
case: change, study, patient, result, treatment, child, defect, type, disease, lesion

Grefenstette used SEXTANT on various corpora and many examples of the re-
sults returned are available in [Gre94]. Table 2.2 shows the most similar words of
case in three completely different corpora. It is interesting to note that the corpus
has a great impact on the meaning of the word according to which similar words are
selected. This is a good illustration of the interest of working on a domain-specific
corpus.

Table 2.3. SEXTANT similar words for words with most contexts in Grolier’s Encyclopedia
animal articles

species bird, fish, family, group, form, animal, insect, range, snake
fish animal, species, bird, form, snake, insect, group, water
bird species, fish, animal, snake, insect, form, mammal, duck
water sea, area, region, coast, forest, ocean, part, fish, form, lake
egg nest, female, male, larva, insect, day, form, adult

Table 2.3 shows other examples, in a corpus on animals. Most words are closely
related to the initial word and some of them are indeed very good (sea, ocean, lake
for water; family, group for species. . .) There remain completely unrelated words
though, such as day for egg.

Other Techniques Based on a Light Syntactical Analysis

A number of works deal with the extraction of similar words from corpora with the
help of a light syntactical analysis. They rely on grammatical contexts, which can
be seen as 3-tuples (w, r, w′), where w and w′ are two words and r characterizes the
relation between w and w′. In particular, [Lin98] and [CM02] propose systems quite
similar to SEXTANT, and apply them to much larger corpora. Another interesting

32 P. Senellart and V.D. Blondel

feature of these works is that the authors try to compare numerous similarity mea-
sures; [CM02] especially presents an extensive comparison of the results obtained
with different similarity and weight measures.

Another interesting approach is presented in [PTL93]. The relative entropy be-
tween distributions of grammatical contexts for each word is used as a similarity
measure between these two words, and this similarity measure is used in turn for a
hierarchical clustering of the set of words. This clustering provides a rich thesaurus
of similar words. Only the DOBJ relation is considered in [PTL93], but others can
be used in the same manner.

2.2.4 Combining the Output of Multiple Techniques

The techniques presented above may use different similarity measures, different
parsers, or may have different inherent biases. In some contexts, using a combination
of various techniques may be useful to increase the overall quality of lists of similar
words. A general solution to this problem in the general context of machine learn-
ing is the use of ensemble methods [Die00]; these methods may be fairly elaborate,
but a simple one (Bayesian voting) amounts to performing some renormalization
of the similarity scores and averaging them together. Curran uses such a technique
in [Cur02] to aggregate the results of different techniques based on a light parsing;
each of these uses the same similarity measure, making the renormalization step use-
less. Another use of the combination of different techniques is to be able to benefit
from different kinds of sources: Wu and Zhou [WZ03] extend Curran’s approach to
derive a thesaurus of similar words from very different sources: a monolingual dictio-
nary (using a method similar to the distance method of Section 2.3.3), a monolingual
corpus (using grammatical contexts), and the combination of a bilingual dictionary
and a bilingual corpus with an original algorithm.

2.2.5 How to Deal with the Web

The World Wide Web is a very particular corpus: Its size simply cannot be compared
with the largest corpora traditionally used for synonym extraction, its access times
are high, and it is also richer and more lively than any other corpus. Moreover, a
large part of it is conveniently indexed by search engines. One could imagine that its
hyperlinked structure could be of some use too (see the discussion in Section 2.3.7).
And of course it is not a domain-specific source, though domain-specific parts of
the Web could be extracted by restricting ourselves to pages matching appropriate
keyword queries. Is it possible to use the Web for the discovery of similar words?
Obviously, because of the size of the Web, none of the above techniques can apply.

Turney partially deals with the issue in [Tur01]. He does not try to obtain a list of
synonyms of a word i but, given a word i, he proposes a way to assign a synonymy
score to any word j. His method was validated against synonym recognition ques-
tions extracted from two English tests: the Test Of English as a Foreign Language
(TOEFL) and the English as a Second Language test (ESL). Four different synonymy

2 Automatic Discovery of Similar Words 33

scores are compared, and each of these use the advanced search capabilities of the
Altavista search engine (http://www.altavista.com/).

score1(j) =
hits(i AND j)

hits(j)

score2(j) =
hits(i NEAR j)

hits(j)

score3(j) =
hits ((i NEAR j) AND NOT ((iOR j) NEAR not))

hits (j AND NOT(j NEAR not))

score4(j) =
hits ((i NEAR j) AND context AND NOT ((iOR j) NEAR not))

hits (j AND context AND NOT(j NEAR not))

In these expressions, hits(·) represents the number of pages returned by Altavista
for the corresponding query, AND, OR, and NOT are the classical boolean opera-
tors, NEAR imposes that the two words are not separated by more than ten words,
and context is a context word (a context was given along with the question in ESL,
the context word may be automatically derived from it). The difference between
score2 and score3 was introduced in order not to assign a good score to antonyms.

The four scores are presented in increasing order of quality of the corresponding
results: score3 gives the right synonym for 73.75% of the questions from TOEFL
(score4 was not applicable since no context was given) and score4 gives the right
synonym in 74% of the questions from ESL. These results are arguably good, since,
as reported by Turney, the average score of TOEFL by a large sample of students is
64.5%.

This algorithm cannot be used to obtain a global synonym dictionary, as it is too
expensive to run for each candidate word in a dictionary because of network access
times, but it may be used, for instance, to refine a list of synonyms given by another
method.

2.3 Discovery of Similar Words in a Dictionary

2.3.1 Introduction

We propose now a method for automatic synonym extraction in a monolingual dic-
tionary [Sen01]. Our method uses a graph constructed from the dictionary and is
based on the assumption that synonyms have many words in common in their defi-
nitions and are used in the definition of many common words. Our method is based
on an algorithm that generalizes the HITS algorithm initially proposed by Kleinberg
for searching the Web [Kle99].

Starting from a dictionary, we first construct the associated dictionary graph G;
each word of the dictionary is a vertex of the graph and there is an edge from u to
v if v appears in the definition of u. Then, associated to a given query word w, we
construct a neighborhood graph Gw that is the subgraph of G whose vertices are
those pointed to by w or pointing to w. Finally, we look in the graph Gw for vertices
that are similar to the vertex 2 in the structure graph

34 P. Senellart and V.D. Blondel

1 −→ 2 −→ 3

and choose these as synonyms. For this last step we use a similarity measure between
vertices in graphs that was introduced in [BGH+04].

The problem of searching synonyms is similar to that of searching similar pages
on the Web, a problem that is dealt with in [Kle99] and [DH99]. In these references,
similar pages are found by searching authoritative pages in a subgraph focused on the
original page. Authoritative pages are pages that are similar to the vertex “authority”
in the structure graph

hub −→ authority.

We ran the same method on the dictionary graph and obtained lists of good hubs
and good authorities of the neighborhood graph. There were duplicates in these lists
but not all good synonyms were duplicated. Neither authorities nor hubs appear to
be the right concept for discovering synonyms.

In the next section, we describe our method in some detail. In Section 2.3.3, we
briefly survey two other methods that are used for comparison. We then describe
in Section 2.3.4 how we have constructed a dictionary graph from 1913 Webster’s
dictionary. We compare next the three methods on a sample of words chosen for
their variety. Finally, we generalize the approach presented here by discussing the
relations existing between the fields of text mining and graph mining, in the context
of synonym discovery.

2.3.2 A Generalization of Kleinberg’s Method

In [Kle99], Jon Kleinberg proposes the HITS method for identifying Web pages that
are good hubs or good authorities for a given query. For example, for the query
“automobile makers,” the home pages of Ford, Toyota and other car makers are good
authorities, whereas Web pages that list these home pages are good hubs. To identify
hubs and authorities, Kleinberg’s method exploits the natural graph structure of the
Web in which each Web page is a vertex and there is an edge from vertex a to vertex
b if page a points to page b. Associated to any given query word w, the method first
constructs a “focused subgraph” Gw analogous to our neighborhood graph and then
computes hub and authority scores for all vertices of Gw. These scores are obtained
as the result of a converging iterative process. Initial hub and authority weights are all
set to one, x1 = 1 and x2 = 1. These initial weights are then updated simultaneously
according to a mutually reinforcing rule: The hub score of the vertex i, x1

i , is set
equal to the sum of the authority scores of all vertices pointed by i and, similarly,
the authority scores of the vertex j, x2

j , is set equal to the sum of the hub scores of
all vertices pointing to j. Let Mw be the adjacency matrix associated to Gw. The
updating equations can be written as(

x1

x2

)
t+1

=
(

0 Mw

MT
w 0

)(
x1

x2

)
t

t = 0, 1, . . .

2 Automatic Discovery of Similar Words 35

It can be shown that under weak conditions the normalized vector x1 (respec-
tively, x2) converges to the normalized principal eigenvector of MwM

T
w (respec-

tively, MT
wMw).

The authority score of a vertex v in a graphG can be seen as a similarity measure
between v in G and vertex 2 in the graph

1 −→ 2.

Similarly, the hub score of v can be seen as a measure of similarity between v in G
and vertex 1 in the same structure graph. As presented in [BGH+04], this measure
of similarity can be generalized to graphs that are different from the authority-hub
structure graph. We describe below an extension of the method to a structure graph
with three vertices and illustrate an application of this extension to synonym extrac-
tion.

Let G be a dictionary graph. The neighborhood graph of a word w is constructed
with the words that appear in the definition of w and those that use w in their defi-
nition. Because of this, the word w in Gw is similar to the vertex 2 in the structure
graph (denoted P3)

1 −→ 2 −→ 3.

For instance, Figure 2.1 shows a part of the neighborhood graph of likely. The
words probable and likely in the neighborhood graph are similar to the vertex 2 in
P3. The words truthy and belief are similar to, respectively, vertices 1 and 3. We say
that a vertex is similar to the vertex 2 of the preceding graph if it points to vertices
that are similar to the vertex 3 and if it is pointed to by vertices that are similar to the
vertex 1. This mutually reinforcing definition is analogous to Kleinberg’s definitions
of hubs and authorities.

invidious

truthy

verisimilar

likely

probable

adapted

giving

belief

probably

Fig. 2.1. Subgraph of the neighborhood graph of likely.

The similarity between vertices in graphs can be computed as follows. To every
vertex i of Gw we associate three scores (as many scores as there are vertices in the
structure graph) x1

i , x
2
i , and x3

i and initially set them equal to one. We then iteratively
update the scores according to the following mutually reinforcing rule: The score x1

i

is set equal to the sum of the scores x2
j of all vertices j pointed by i; the score x2

i

36 P. Senellart and V.D. Blondel

is set equal to the sum of the scores x3
j of vertices pointed by i and the scores x1

j of
vertices pointing to i; finally, the score x3

i is set equal to the sum of the scores x2
j

of vertices pointing to i. At each step, the scores are updated simultaneously and are
subsequently normalized:

xk ← xk

‖xk‖
(k = 1, 2, 3).

It can be shown that when this process converges, the normalized vector score x2

converges to the normalized principal eigenvector of the matrix MwM
T
w +MT

wMw.
Thus, our list of synonyms can be obtained by ranking in decreasing order the entries
of the principal eigenvector of MwM

T
w +MT

wMw.

2.3.3 Other Methods

In this section, we briefly describe two synonym extraction methods that will be
compared to ours on a selection of four words.

The Distance Method

One possible way of defining a synonym distance is to declare that two words are
close to being synonyms if they appear in the definition of many common words and
have many common words in their definition. A way of formalizing this is to define
a distance between two words by counting the number of words that appear in one of
the definitions but not in both, and add to this the number of words that use one of the
words but not both in their definition. LetA be the adjacency matrix of the dictionary
graph, and i and j be the vertices associated to two words. The distance between i
and j can be expressed as

d(i, j) = ‖(Ai,· −Aj,·)‖1 + ‖(A·,i −A·,j)T ‖1

where ‖ · ‖1 is the l1-norm. For a given word i we may compute d(i, j) for all j and
sort the words according to increasing distance.

Unlike the other methods presented here, we can apply this algorithm directly
to the entire dictionary graph rather than on the neighborhood graph. However, this
gives very bad results: The first two synonyms of sugar in the dictionary graph
constructed from Webster’s Dictionary are pigwidgeon and ivoride. We shall see in
Section 2.3.5 that much better results are achieved if we use the neighborhood graph.

ArcRank

ArcRank is a method introduced by Jannink and Wiederhold for building a thesaurus
[JW99]; their intent was not to find synonyms but related words. The method is based
on the PageRank algorithm, used by the Web search engine Google and described
in [BP98]. PageRank assigns a ranking to each vertex of the dictionary graph in the

2 Automatic Discovery of Similar Words 37

following way. All vertices start with identical initial ranking and then iteratively
distribute it to the vertices they point to, while receiving the sum of the ranks from
vertices they are pointed to by. Under conditions that are often satisfied in practice,
the normalized ranking converges to a stationary distribution corresponding to the
principal eigenvector of the adjacency matrix of the graph. This algorithm is actually
slightly modified so that sources (nodes with no incoming edges, that is words not
used in any definition) and sinks (nodes with no outgoing edges, that is words not
defined) are not assigned extreme rankings.

ArcRank assigns a ranking to each edge according to the ranking of its vertices.
If |as| is the number of outgoing edges from vertex s and pt is the page rank of vertex
t, then the edge relevance of (s, t) is defined by

rs,t =
ps/|as|
pt

Edge relevances are then converted into rankings. Those rankings are computed
only once. When looking for words related to some word w, one selects the edges
starting from or arriving to w that have the best rankings and extract the correspond-
ing incident vertices.

2.3.4 Dictionary Graph

Before proceeding to the description of our experiments, we describe how we con-
structed the dictionary graph. We used the Online Plain Text English Dictionary
[OPT], which is based on the “Project Gutenberg Etext of Webster’s Unabridged
Dictionary,” which is in turn based on the 1913 U.S. Webster’s Unabridged Dictio-
nary. The dictionary consists of 27 HTML files (one for each letter of the alphabet,
and one for several additions). These files are available from the Website http:
//www.gutenberg.net/. To obtain the dictionary graph, several choices had to
be made.

• Some words defined in Webster’s dictionary are multi-words (e.g., All Saints,
Surinam toad). We did not include these words in the graph since there is no
simple way to decide, when the words are found side-by-side, whether or not
they should be interpreted as single words or as a multi-word (for instance, at
one is defined but the two words at and one appear several times side-by-side in
the dictionary in their usual meanings).

• Some head words of definitions were prefixes or suffixes (e.g., un-, -ous), these
were excluded from the graph.

• Many words have several meanings and are head words of multiple definitions.
For, once more, it is not possible to determine which meaning of a word is em-
ployed in a definition, we gathered the definitions of a word into a single one.

• The recognition of inflected forms of a word in a definition is also a problem. We
dealt with the cases of regular and semiregular plurals (e.g., daisies, albatrosses)
and regular verbs, assuming that irregular forms of nouns or verbs (e.g., oxen,
sought) had entries in the dictionary. Note that a classical stemming here would

38 P. Senellart and V.D. Blondel

not be of use, since we do not want to merge the dictionary entries of lexically
close words, such as connect and connection).

The resulting graph has 112,169 vertices and 1,398,424 edges, and can be down-
loaded at http://pierre.senellart.com/stage maitrise/graphe/.
We analyzed several features of the graph: connectivity and strong connectivity, num-
ber of connected components, distribution of connected components, degree distrib-
utions, graph diameter, etc. Our findings are reported in [Sen01].

We also decided to exclude stop words in the construction of neighborhood
graphs, that is words that appear in more than L definitions (best results were ob-
tained for L ≈ 1, 000).

2.3.5 Results

To be able to compare the different methods presented above (Distance, ArcRank,
and our method based on graph similarity) and to evaluate their relevance, we ex-
amine the first ten results given by each of them for four words, chosen for their
variety.

disappear a word with various synonyms such as vanish.
parallelogram a very specific word with no true synonyms but with some similar

words: quadrilateral, square, rectangle, rhomb. . .
sugar a common word with different meanings (in chemistry, cooking, di-

etetics. . .). One can expect glucose as a candidate.
science a common and vague word. It is hard to say what to expect as syn-

onym. Perhaps knowledge is the best option.

Words of the English language belong to different parts of speech: nouns, verbs,
adjectives, adverbs, prepositions, etc. It is natural, when looking for a synonym of a
word, to get only words of the same kind. Websters’s Dictionary provides for each
word its part of speech. But this presentation has not been standardized and we
counted no less than 305 different categories. We have chosen to select five types:
nouns, adjectives, adverbs, verbs, others (including articles, conjunctions, and inter-
jections), and have transformed the 305 categories into combinations of these types.
A word may of course belong to different types. Thus, when looking for synonyms,
we have excluded from the list all words that do not have a common part of speech
with our word. This technique may be applied with all synonym extraction methods
but since we did not implement ArcRank, we did not use it for ArcRank. In fact,
the gain is not huge, because many words in English have several grammatical na-
tures. For instance, adagio or tete-a-tete are at the same time nouns, adjectives, and
adverbs.

We have also included lists of synonyms coming from WordNet [Wor], which is
human-written. The order of appearance of the words for this last source is arbitrary,
whereas it is well defined for the distance method and for our method. The results
given by the Web interface implementing ArcRank are two rankings, one for words
pointed by and one for words pointed to. We have interleaved them into one ranking.

2 Automatic Discovery of Similar Words 39

We have not kept the query word in the list of synonyms, since this has not much
sense except for our method, where it is interesting to note that in every example we
have experimented with, the original word appeared as the first word of the list (a
point that tends to give credit to the method).

To have an objective evaluation of the different methods, we asked a sample of
21 persons to give a mark (from 0 to 10, 10 being the best one) to the lists of syn-
onyms, according to their relevance to synonymy. The lists were of course presented
in random order for each word. Tables 2.4, 2.5, 2.6, and 2.7 give the results.

Table 2.4. Proposed synonyms for disappear

Distance Our method ArcRank WordNet
1 vanish vanish epidemic vanish
2 wear pass disappearing go away
3 die die port end
4 sail wear dissipate finish
5 faint faint cease terminate
6 light fade eat cease
7 port sail gradually
8 absorb light instrumental
9 appear dissipate darkness

10 cease cease efface
Mark 3.6 6.3 1.2 7.5

Std dev. 1.8 1.7 1.2 1.4

Concerning disappear, the distance method (restricted to the neighborhood
graph) and our method do pretty well. vanish, cease, fade, die, pass, dissipate,
faint are very relevant (one must not forget that verbs necessarily appear without their
postposition). dissipate or faint are relevant too. However, some words like light
or port are completely irrelevant, but they appear only in 6th, 7th, or 8th position. If
we compare these two methods, we observe that our method is better: An important
synonym like pass takes a good ranking, whereas port or appear go out of the top
ten words. It is hard to explain this phenomenon, but we can say that the mutually
reinforcing aspect of our method is apparently a positive point. On the contrary, Arc-
Rank gives rather poor results with words such as eat, instrumental, or epidemic
that are out of the point.

Because the neighborhood graph of parallelogram is rather small (30 vertices),
the first two algorithms give similar results, which are not absurd: square, rhomb,
quadrilateral, rectangle, and figure are rather interesting. Other words are less rel-
evant but still are in the semantic domain of parallelogram. ArcRank, which also
works on the same subgraph, does not give as interesting words, although gnomon
makes its appearance, since consequently and popular are irrelevant. It is interest-
ing to note that WordNet here is less rich because it focuses on a particular aspect
(quadrilateral).

40 P. Senellart and V.D. Blondel

Table 2.5. Proposed synonyms for parallelogram

Distance Our method ArcRank WordNet
1 square square quadrilateral quadrilateral
2 parallel rhomb gnomon quadrangle
3 rhomb parallel right-lined tetragon
4 prism figure rectangle
5 figure prism consequently
6 equal equal parallelepiped
7 quadrilateral opposite parallel
8 opposite angles cylinder
9 altitude quadrilateral popular
10 parallelepiped rectangle prism

Mark 4.6 4.8 3.3 6.3
Std dev. 2.7 2.5 2.2 2.5

Table 2.6. Proposed synonyms for sugar

Distance Our method ArcRank WordNet
1 juice cane granulation sweetening
2 starch starch shrub sweetener
2 cane sucrose sucrose carbohydrate
4 milk milk preserve saccharide
5 molasses sweet honeyed organic compound
6 sucrose dextrose property saccarify
7 wax molasses sorghum sweeten
8 root juice grocer dulcify
9 crystalline glucose acetate edulcorate

10 confection lactose saccharine dulcorate
Mark 3.9 6.3 4.3 6.2

Std dev. 2.0 2.4 2.3 2.9

Once more, the results given by ArcRank for sugar are mainly irrelevant (prop-
erty, grocer. . .) Our method is again better than the distance method: starch, su-
crose, sweet, dextrose, glucose, and lactose are highly relevant words, even if the
first given near-synonym (cane) is not as good. Its given mark is even better than for
WordNet.

The results for science are perhaps the most difficult to analyze. The distance
method and ours are comparable. ArcRank gives perhaps better results than for other
words but is still poorer than the two other methods.

As a conclusion, the first two algorithms give interesting and relevant words,
whereas it is clear that ArcRank is not adapted to the search for synonyms. The vari-
ation of Kleinberg’s algorithm and its mutually reinforcing relationship demonstrates
its superiority on the basic distance method, even if the difference is not obvious for
all words. The quality of the results obtained with these different methods is still
quite different from that of human-written dictionaries such as WordNet. Still, these
automatic techniques show their interest, since they present more complete aspects

2 Automatic Discovery of Similar Words 41

Table 2.7. Proposed synonyms for science

Distance Our method ArcRank WordNet
1 art art formulate knowledge domain
2 branch branch arithmetic knowledge base
3 nature law systematize discipline
4 law study scientific subject
5 knowledge practice knowledge subject area
6 principle natural geometry subject field
7 life knowledge philosophical field
8 natural learning learning field of study
9 electricity theory expertness ability

10 biology principle mathematics power
Mark 3.6 4.4 3.2 7.1

Std dev. 2.0 2.5 2.9 2.6

of a word than human-written dictionaries. They can profitably be used to broaden a
topic (see the example of parallelogram) and to help with the compilation of syn-
onym dictionaries.

2.3.6 Perspectives

A first immediate improvement of our method would be to work on a larger subgraph
than the neighborhood subgraph. The neighborhood graph we have introduced may
be rather small, and therefore may not include important near-synonyms. A good ex-
ample is ox, of which cow seems to be a good synonym. Unfortunately, ox does not
appear in the definition of cow, neither does the latter appear in the definition of the
former. Thus, the methods described above cannot find this word. Larger neighbor-
hood graphs could be obtained either as Kleinberg does in [Kle99] for searching sim-
ilar pages on the Web, or as Dean and Henzinger do in [DH99] for the same purpose.
However, such subgraphs are not any longer focused on the original word. That im-
plies that our variation of Kleinberg’s algorithm “forgets” the original word and may
produce irrelevant results. When we use the vicinity graph of Dean and Henzinger,
we obtain a few interesting results with specific words: For example, trapezoid ap-
pears as a near-synonym of parallelogram or cow as a near-synonym of ox. Yet
there are also many degradations of performance for more general words. Perhaps a
choice of neighborhood graph that depends on the word itself would be appropriate.
For instance, the extended vicinity graph may be used either for words whose neigh-
borhood graph has less than a fixed number of vertices, or for words whose incoming
degree is small, or for words who do not belong to the largest connected component
of the dictionary graph.

One may wonder whether the results obtained are specific to Webster’s dictio-
nary or whether the same methods could work on other dictionaries (using domain-
specific dictionaries could for instance generate domain-specific thesauri, whose
interest was mentioned in Section 2.2), in English or in other languages. Although the
latter is most likely since our techniques were not designed for the particular graph

42 P. Senellart and V.D. Blondel

we worked on, there are undoubtedly differences with other languages. For example,
in French, postpositions do not exist and thus verbs do not have as many different
meanings as in English. Besides, it is much rarer in French to have the same word for
the noun and for the verb than in English. Furthermore, the way words are defined
vary from language to language. Despite these differences, preliminary studies on a
monolingual French dictionary seem to show equally good results.

2.3.7 Text Mining and Graph Mining

All three methods described for synonym extraction from a dictionary use classi-
cal techniques from text mining: stemming (in our case, in the form of a simple
lemmatization), stop-word removal, a vector space model for representing dictio-
nary entries. . . But a specificity of monolingual dictionaries makes this vector space
very peculiar: Both the dimensions of the vector space and the vectors stand for the
same kind of objects—words. In other words, rows and columns of the correspond-
ing matrix are indexed by the same set. This peculiarity makes it possible to see the
dictionary, and this vector space model, as a (possibly weighted) directed graph. This
allows us to see the whole synonym extraction problem as a problem of information
retrieval on graphs, for which a number of different approaches have been elaborated,
especially in the case of the World Wide Web [BP98, DH99, Kle99]. Thus, classical
techniques from both text mining (distance between vectors, cosine similarity, tf-idf
weighting. . .) and graph mining (cocitation count, PageRank, HITS, graph similarity
measures. . .) can be used in this context. A study [OS07] on the Wikipedia on-line
encyclopedia [Wik], which is similar to a monolingual dictionary, compares some
methods from both worlds, along with an original approach for defining similarity in
graphs based on Green measures of Markov chains.

A further step would be to consider any text mining problem as a graph min-
ing problem, by considering any finite set of vectors (in a finite-dimensional vector
space) as a directed, weighted, bipartite graph, the two partitions representing respec-
tively the vectors and the dimensions. Benefits of this view are somewhat lower, be-
cause of the very particular nature of a bipartite graph, but some notions from graph
theory (for instance, matchings, vertex covers, or bipartite random walks), may still
be of interest.

2.4 Conclusion

A number of different methods exist for the automatic discovery of similar words.
Most of these methods are based on various text corpora, and three of these are
described in this chapter. Each of them may be more or less adapted to a specific
problem (for instance, Crouch’s techniques are more adapted to infrequent words
than SEXTANT). We have also described the use of a more structured source—a
monolingual dictionary—for the discovery of similar words. None of these methods
is perfect and in fact none of them favorably competes with human-written dictionar-
ies in terms of liability. Computer-written thesauri, however, have other advantages

2 Automatic Discovery of Similar Words 43

such as their ease to build and maintain. We also discussed how different methods,
with their own pros and cons, might be integrated.

Another problem of the methods presented is the vagueness of the notion of
“similar word” that they use. Depending on the context, this notion may or may
not include the notion of synonyms, near-synonyms, antonyms, hyponyms, etc. The
distinction between these very different notions by automatic means is a challenging
problem that should be addressed to make it possible to build thesauri in a completely
automatic way.

Acknowledgment

We would like to thank Yann Ollivier for his feedback on this work.

References

[BGH+04] V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren. A mea-
sure of similarity between graph vertices: applications to synonym extraction and
Web searching. SIAM Review, 46(4):647–666, 2004.

[BP98] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[CL92] H. Chen and K.J. Lynch. Automatic construction of networks of concepts charac-
terizing document databases. IEEE Transactions on Systems, Man and Cybernet-
ics, 22(5):885–902, 1992.

[CM02] J.R. Curran and M. Moens. Improvements in automatic thesaurus extraction. In
Proc. ACL SIGLEX, Philadelphia, July 2002.

[Cro90] C.J. Crouch. An approach to the automatic construction of global thesauri. Infor-
mation Processing and Management, 26(5):629–640, 1990.

[Cur02] J.R. Curran. Ensemble methods for automatic thesaurus extraction. In Proc. Con-
ference on Empirical Methods in Natural Language Processing, Philadelphia, July
2002.

[DH99] J. Dean and M.R. Henzinger. Finding related pages in the world wide web. In
Proc. WWW, Toronto, Canada, May 1999.

[Die00] T.G. Dietterich. Ensemble methods in machine learning. In Proc. MCS, Cagliari,
Italy, June 2000.

[Gre94] G. Grefenstette. Explorations in Automatic Thesaurus Discovery. Kluwer Acad-
emic Press, Boston, MA, 1994.

[JW99] J. Jannink and G Wiederhold. Thesaurus entry extraction from an on-line dictio-
nary. In Proc. FUSION, Sunnyvale, CA, July 1999.

[Kle99] J.M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46(5):604–632, 1999.

[Lin98] D. Lin. Automatic retrieval and clustering of similar words. In Proc. COLING,
Montreal, Canada, August 1998.

[OPT] The online plain text English dictionary. http://msowww.anu.edu.au/
∼ralph/OPTED/.

[OS07] Y. Ollivier and P. Senellart. Finding related pages using Green measures: An illus-
tration with Wikipedia. In Proc. AAAI, Vancouver, Canada, July 2007.

44 P. Senellart and V.D. Blondel

[PTL93] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of english words. In
Proc. ACL, Columbus, OH, June 1993.

[Sen01] P. Senellart. Extraction of information in large graphs. Automatic search for syn-
onyms. Technical Report 90, Université catholique de Louvain, Louvain-la-neuve,
Belgium, 2001.

[SYY75] G. Salton, C.S. Yang, and C.T. Yu. A theory of term importance in automatic text
analysis. Journal of the American Society for Information Science, 26(1):33–44,
1975.

[Tur01] P.D. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In
Proc. ECML, Freiburg, Germany, September 2001.

[Wik] Wikipedia. The free encyclopedia. http://en.wikipedia.org/.
[Wor] WordNet 1.6. http://wordnet.princeton.edu/.
[WZ03] H. Wu and M. Zhou. Optimizing synonym extraction using monolingual and bilin-

gual resources. In Proc. International Workshop on Paraphrasing, Sapporo, Japan,
July 2003.

