
ProApproX: A Lightweight Approximation
Query Processor over Probabilistic Trees

Pierre Senellart Asma Souihli
Institut Télécom; Télécom ParisTech; CNRS LTCI

46 rue Barrault, 75634 Paris, France
first.last@telecom-paristech.fr

ABSTRACT
We demonstrate a system for querying probabilistic XML
documents with simple XPath queries. A user chooses be-
tween a variety of query answering techniques, both exact
and approximate, and observes the running behavior, pros,
and cons, of each method, in terms of efficiency, precision of
the result, and data model and query language supported.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases;
G.3 [Probability and Statistics]: Probabilistic algorithms
(including Monte Carlo)

General Terms
Algorithms, Design

Keywords
Probabilistic Data, XML, Query Processing, Approximations

1. INTRODUCTION AND KEY IDEA
This demonstration paper presents the implementation of

a system for querying probabilistic XML data, the proba-
bilities expressing uncertainty about the stored information.
The primary goal of this work is to aid in exploratory tasks
by providing quick approximate query results and statistical
analysis with error bounds over discrete probabilistic XML
data models. EvalDP [2] is the main existing technique for
querying probabilistic XML. This polynomial-time, dynamic
programming, algorithm can only be used if the data only
involves local dependencies and if the query is a tree pattern
without value joins. In contrast, the system demonstrated,
based on the general framework of p-documents [1], a general-
ization of the different uncertain XML data models proposed
in the literature, is the first able to handle long-distance
dependencies and join queries.

P-documents are XML trees with ordinary and distribu-
tional nodes. The latter define the process of generating a
random XML instance following the specified distribution at
the level of each node. The model is a compact and complete
representation of a probabilistic space of documents (i.e., a
finite set of possible worlds, each with a particular probabil-
ity). Such probabilistic space can be queried with classical

Copyright is held by the author/owner(s).
SIGMOD’11, June 12–16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

tree query languages. A Boolean query over a probabilistic
space, and therefore over a p-document, returns a probability,
the probability that the query is true. The main idea behind
the system is to efficiently calculate the probability of a given
query directly on the probabilistic XML representation. This
computation is exact whenever possible, or approximated us-
ing Monte Carlo methods. Previous work [2] has shown that,
in general, computation is intractable under data complexity,
and approximation is intractable under combined complexity.
Nevertheless, several restrictions make the problem easier to
tackle and many optimizations reduce the running time cost.

We emphasize that we do not deal here with the ques-
tion of how a probabilistic document is obtained; this can
result from a data integration process (see, e.g., [4]), from an
XML warehousing application [3], from the computation of a
summary of an XML corpus, etc. We assume the probabilis-
tic document given, and we demonstrate how to efficiently
query it. We explain how to compute or approximate the
probability of a query using a simplified but efficient process:
rewriting the initial query into one that returns every match
on the underlying deterministic document as a sequence of
events (labeled probabilities related to the probabilistic nodes
of the p-document). These sequences are then deployed to
perform exact computation or approximations.

We start by introducing an example probabilistic tree
and then go into the definition of probabilistic XML and
probabilistic queries. In Section 4 we explain the basics of the
proposed system detailing the different evaluation methods,
their advantages and their drawbacks. We conclude with the
demonstration scenario. An accompanying video, showing
the implemented system in action and illustrating how part
of the demonstration will proceed, can be downloaded from
http://dbweb.enst.fr/proapprox.mpg.

2. MOTIVATING APPLICATION
Uncertainty comes along with data generated by imprecise

automatic tasks such as data extraction and integration,
data mining, or natural language processing. A measure of
this uncertainty may be induced from the trustworthiness
of the resources, the quality of the data mapping procedure,
etc. In many of these tasks, information is described in a
semi-structured model, because representation by means of a
hierarchy of nodes is natural, especially when the source (e.g.,
XML or HTML) is already in this form. We consider the
example of a document that may result from a probabilistic
data integration application such as [4].

Figure 1 shows a partial p-document, integrated from sev-
eral directories providing information about person addresses.



….

w3
w4
w5
w6
w7
w8

0.8
0.8
0.2
0.5

0.875
0.2

0.89
w2
w1

0.92

personperson

34 bis
Tavistock
Place

34
Tavistock
Place

3333

address

details

cie

w6

w8 ^¬ w7w7 cie

city

w1 ¬ w1

Ammon Hammon

w2

person…

details

Hammon

Phone

9999

cie
Chris

name

cie

w3

w4 w5

phone

cie

….

name

address

city

Ammon

cie

w1 ¬ w1

Figure 1: Portion of a probabilistic XML document
resulting from probabilistic data integration.

Information about the person “Chris” may be hidden in some
directories or public in some others (older or newer), which
is modeled by the probability 0.92 to find details about that
person. In these directories, “Chris” may be attached his
first phone number (with probability 0.8), his second (with
probability 0.2, independently), or both (with the probability
of the independent conjunction). There are directories that
assign him exclusively a first variant of his address (with
probability 0.2), while others mention a second variant (with
probability 0.7, mutually exclusive of the first case), or do not
present any details about the address (with probability 0.1).
Finally, information about Chris’s city follows a general rule
in the database indicating 89% of the available directories
spell the name of this same city with a “H”. A given directory
(a possible world of the probabilistic document) only uses
one of these spellings. We present in more detail in the next
section the cie nodes and event variables used to represent
such local and long-distance dependencies.

3. PROBABILISTIC DATA AND QUERIES
XML data is modeled as unranked, labeled, unordered

trees. Formally, a probabilistic XML document P̃ is a tree
that consists of two types of nodes: ordinary nodes and dis-
tributional nodes. Distributional nodes are fictive nodes that
specify how their children can be randomly selected. This
general framework, studied in [1], is designed as a general-
ization of previously proposed models for PXML. Given the
criteria of dependency between elements, we distinguish two
types of data representation models. In the local dependency
model, choices made for different nodes are independent or
locally dependent, i.e., a distributional node chooses one
or more children independently from other choices made at
other levels of the tree. In the long-distance dependency
model, which ProApproX uses to process a query, the gen-
eration at a given distributional node might also depend
on different conditions (i.e., probabilistic choices) related
to other parts of the tree. This model, more general than
the local dependency model, is based on one distributional
node, cie (for conjunction of independent events): nodes of
this type are associated with a conjunction of independent
(possibly negated) random Boolean variables 𝑤1 . . . 𝑤𝑚 called
events; each event has a global probability 𝑝(𝑤𝑖) that 𝑤𝑖 is

true. Note that different cie nodes share common events, i.e.,
choices can be correlated. Given a p-document P̃, we denote
by P the tree random variable obtained by following the
random process for selecting children of each distributional
node of the tree and keeping only the resulting ordinary
nodes (descendant of removed nodes are also removed).

We deal with tree-pattern queries. For instance, given
the p-document of Figure 1, we can search addresses of
Chris with //person[name=’Chris’]//address in XPath
notation. We also allow value joins such as in the query
//person[name=.//city] to get all persons whose name is
the same as that of their city. The semantics of such queries
is standard over deterministic documents. We define the
match of a query as the minimal subtree containing all nodes
of a document that are mapped to a node of the query. A
Boolean query over a probabilistic document returns the
probability that the query is true, or, in other words, the
sum of probabilities of all possible worlds in which the query
is true. One fundamental observation, due to the positive,
or locally monotone [3], nature of the query language, is that

the probability of a query over a p-document P̃ is the proba-
bility that one of the match of the query over the underlying
deterministic document remains in P. However, since the
matches are not independent, the probability of a query is
not the sum of the probabilities of all matches.

4. A PROBABILISTIC XML SYSTEM
Our system evaluates queries over a given probabilistic

XML document either with an exact calculation when some
form of independence between query matches is detected, or
by running approximation algorithms elsewhere. We compare
the approach to the exact EvalDP algorithm [2] (whose
implementation has been kindly provided by the authors)
that is very efficient but does not support either long-distance
dependencies or value joins. Approximation techniques are
an effective way to handle long-distance dependencies and
value joins, if they can be made to run fast. This is exactly the
purpose of our system, dealing effectively with local or long-
distance dependencies and tree-pattern queries with joins.
We have the possibility of taking as input a p-document in the
local dependency model, with ind – standing for independent
choice of each child – and mux nodes – standing for mutually
exclusive choice of at most one child. As noted in [1], ind and
mux can be tractably translated into cie nodes. We appeal
to these theoretical studies to perform efficient translations,
as encoding matches with conjunctions of all events involved
simplify the computation and approximation processes.

Encoding the Matches. Consider now the following query:
//person[name=’Chris’]//address/text() over the prob-
abilistic document of Figure 1. We can actually discard
the cie nodes and integrate each event 𝑤𝑖 as an attribute
attached to its corresponding XML node. We rewrite a query
to form another query that retrieves the concatenation of
all events appearing along a match, e.g., the address query
can be rewritten to return all possible matches: ⟨𝑤2, 𝑤6, 𝑤7⟩,
⟨𝑤2, 𝑤6, 𝑤8,¬𝑤7⟩. We run approximations directly over these
event conjunctions. To evaluate the rewritten query and re-
trieve the different matches, the system features efficient,
index-based, XQuery processing using Saxon as a Java class
library.



Additive Approximation. The simplest way to implement
an additive Monte Carlo approximation technique, as men-
tioned in [2], is to generate random instances from the p-
document, evaluate the query over them, and get the approx-
imated probability as the proportion of samples that make
the query true. We implemented this technique but perfor-
mance was very low due to the cost of generating a sample
of a potentially very large database, and the resulting I/O
operations. Additive approximation is reconsidered by draw-
ing random values for the 𝑤𝑖’s belonging to the path of each
mapping, in this way getting rid of the instance generation.
This gives much more acceptable running time. However,
because of the very nature of additive approximation, the
convergence is slow for low values of probabilities.

Multiplicative Approximation. The probability of query 𝑄
being true in a random instance P can be computed [2] by:∑︀𝑛

𝑖=1 Pr(𝑚𝑖�P)×Pr
(︁⋀︀𝑖−1

𝑗=1 ¬(𝑚𝑗 � P) | 𝑚𝑖 � P
)︁

, where

Pr(𝑚𝑖 �P) is the probability that a match 𝑚𝑖 of 𝑄 remains
in P. The first term is easy to compute by just gathering the
probabilities of all events involved in the match; the second
term can be approximated by conducting biased draws to con-
siderate the probability that none of the preceding matches
exists in the random document P, given that a current
match 𝑚𝑖 appears in that same document. The evaluation
leads to very good accuracy. Nevertheless, the convergence
guarantee [2] that is obtained from Hoeffding’s inequality
requires a running time growing in 𝑂(𝑛3 ln𝑛) in the number
of matches to the query (which is, itself, potentially expo-
nential in the size of the query). However, the cases with
high number of matches are, empirically, mostly those for
which the probability of the query is high, and consequently
when additive approximation gives good results. Therefore,
our system yields processing of queries with high number of
matches to the additive approximation algorithm and with
low number of matches to the multiplicative approximation.

Independent Computation. Of course, a query that only
involves independent matches does not require a complex
process; this case often appears in practice. It suffices to
note the independence between patterns to the query and
to compute the result based on the principle of inclusion-
exclusion. Exploring the set 𝑆 of patterns to the query, we
are able to detect independence up to intersection by simply
verifying the following property (given that 𝑛 is the size
of 𝑆, and 𝑚𝑘 is a match in 𝑆): patterns to the query are
independent up to intersection if

⋂︀𝑛
𝑖=1 𝑚𝑖 = 𝑚𝑢 ∩𝑚𝑣 for all

1 ≤ 𝑢 < 𝑣 ≤ 𝑛. It suffices then to compute the global result
based on the principle of inclusion-exclusion, e.g., for two
independent mappings 𝑚1 and 𝑚2 to a given query 𝑄 and
a random document P: Pr(P |= 𝑄) = 1 − (1 − 𝑃𝑟(𝑚1)) ×
(1 − 𝑃𝑟(𝑚2)) .

Optimizations. Several optimizations are implemented, ap-
plied mainly to multiplicative approximation. A first pre-
processing removes mappings that are always true or false,
the second goes along with the main treatment and decides
to stop the computation and returns the result when the
contribution of remaining mappings is considered to be very
low (given a sorted input of mappings according to their
probability in the tree).

We implemented an XPath parser that generates the query

yielding the sequence of events for every matching pattern. In
order to compare the performance of our system with EvalDP,
we use the same dataset and queries as in [2]. First results
show that we are able to perform faster evaluation with
acceptable precision guarantees, for most of these queries.
We also noticed that for some query, the implementation of
the EvalDP algorithm leads to a wrong value, which may be
attributed to the relatively high intricacy of implementation
of this dynamic programming algorithm. We stress that
our system allows us to process a wider range of queries
(especially, join queries), over a wider range of models (long-
distance dependencies).

5. DEMONSTRATION SCENARIO
We describe here the structure of the user interface for

interacting with the system, as we intend to demonstrate it.

Input. The user can select a p-document from a default
collection (including the dataset from [2] and an extension of
the example of Figure 1), or upload an external one. She can
specify an XPath query or choose to run a preset query from
a proposed list related to the current internal p-document.
Regarding the evaluation method, settings can be custom-
made: the user can choose to run one or more algorithms
(näıve evaluation, EvalDP, independent exact computation,
approximations), or run the default configuration that picks
an adequate method for the given query as explained in
Section 4. We also give the possibility to personalize the
number of samples needed for additive and multiplicative
approximations, in one of the following three ways: (i) by
calculating, using Hoeffding’s inequality, a suitable number of
trials given a tolerated error under a probabilistic guarantee;
(ii) by empirically stopping the sampling once the estimated
probability has not deviated more than a given value over
a given number of consecutive trials; (iii) by giving a fixed
number of trials.

Output. Different results are displayed, namely the proba-
bility of the query for each method run, running times, and
probabilistic guarantees given by Hoeffding’s inequality for
approximation techniques. Additionally, the user can choose
to plot the evolution of the estimated probability of approxi-
mation techniques and corresponding error intervals, to get
a better grasp on the precision obtained by these techniques.
When a technique is not applicable to a given p-document
or query, the user is also informed of this fact.

6. REFERENCES
[1] S. Abiteboul, B. Kimelfeld, Y. Sagiv, and P. Senellart.

On the expressiveness of probabilistic XML models.
VLDB J., 18(5):1041–1064, 2009.

[2] B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query
evaluation over probabilistic XML. VLDB J.,
18(5):1117–1140, 2009.

[3] P. Senellart and S. Abiteboul. On the complexity of
managing probabilistic XML data. In Proc. PODS,
Beijing, China, June 2007.

[4] M. van Keulen and A. de Keijzer. Qualitative effects of
knowledge rules and user feedback in probabilistic data
integration. VLDB J., 18(5):1191–1217, 2009.


