Optimisation des approximations de
probabilité des requétes en XML probabiliste

Asma Souihli Pierre Senellart
Institut Mines—Télécom Institut Mines—Télécom
Télécom ParisTech; CNRS LTCI  Télécom ParisTech; CNRS LTCI
asma.souihli@telecom-paristech.fr pierre.senellart@telecom-paristech.fr

XML probabiliste est un modele probabiliste pour les bases de données incertaines
semi-structurées, avec des applications telles que l'intégration incertaine de données,
I'extraction d’informations ou le controle probabiliste de versions. Nous explorons dans
ce travail une solution efficace pour I’évaluation des requétes tree-pattern avec jointures
sur ces documents, ou, plus précisément, pour 'approximation de la probabilité d’une
requéte booléenne sur un document probabiliste. L’approche repose sur, d’une part, la
production de la provenance probabiliste de la requéte posée, et, d’autre part, la recherche
d’une stratégie optimale pour estimer la probabilité de cette provenance. Cette deuxieme
partie s’inspire des approches des optimiseurs de requétes : ’exploration de différents plans
d’évaluation pour différentes parties de la formule et I'estimation du cout de chaque plan,
suivant un modele de cotit établi pour les algorithmes de calcul utilisés. Nous démontrons
efficacité de cette approche sur des jeux de données utilisés dans des travaux précédents
sur 'interrogation des bases de données XML probabilistes, ainsi que sur des données
synthétiques.

1 Introduction

Uncertainty comes along with data generated by imprecise automatic tasks such as data extraction
and integration, data mining, or natural language processing. A measure of this uncertainty may be
induced from the trustworthiness of the resources, the quality of the data mapping procedure, etc.
Often, information is described in a semistructured manner because representation by means of a
hierarchy of nodes is natural, especially when the source (e.g., XML or HTML) is already in this form.
One possible way, among the most natural, to represent this uncertainty is through probabilistic
databases, and probabilistic XML [23] in particular.

Probabilistic documents or p-documents [3,20] are a general representation system for probabilistic
XML, based on probabilistic XML trees with ordinary and distributional nodes. The latter define the
process of generating a random XML instance following the specified distribution at the level of each
node. The model is a compact and complete representation of a probabilistic space of documents
(i.e., a finite set of possible worlds, each with a particular probability).

Probabilistic documents have been used in various applications [23], such as uncertain data
integration [35], XML warehousing [30], uncertain version control systems [1], or Web information
extraction. We do not deal here with obtaining probabilistic documents; we assume the p-document
given and investigate how to efficiently query it. To simplify the presentation, we consider Boolean
queries. Over a deterministic XML document, a Boolean query returns true or false. Over a
p-document, a Boolean query returns the probability that the query is true, i.e., the sum of the
probabilities of all possible worlds where the query is true.



In contrast with existing work [20-22] that has proposed algorithms for tractable subcases and
characterized the complexity of the problem, we consider in this work a very general form of p-
documents (involving arbitrary correlations between nodes of the tree) together with a large class of
queries (tree-pattern queries with joins, with results extensible to the even more general class of locally
monotone [30] queries) and aim at a practical solution for querying p-documents. Computing the
exact probability of a Boolean query over a p-document is #P-hard [21], but, under data complexity,
there are fully polynomial-time randomized approximation schemes [21]: we thus focus on efficiently
approximating the probability of a query. Indeed, for many applications, one simply needs a good
estimate of the probability value, i.e., an approximation to a multiplicative factor of the correct
probability, with high confidence. Approximations to an additive factor are of lesser interest, since
they make it hard to distinguish between, say, probabilities of 1072 and of 107°.

Following ideas from [21,30], we reduce the problem of approximating the probability of query @
over p-document & to approximating the probability of a propositional formula ¢ in disjunctive
normal form (DNF). We first rewrite the initial (XPath) query @ into an XQuery query @’ that
returns, for every match of @) over the deterministic document underlying &2, the conjunction of events
conditioning this match (labeled probabilities related to the probabilistic nodes of the p-document).
This rewritten query is then evaluated by a standard XQuery processor, allowing the use of all
standard XML indexing techniques. This step can be done in time polynomial in the size of &2.
The disjunction of all conjunctions of events associated to matches to the query constitutes the
propositional lineage ¢ of the query. Note that computing the probability of a propositional formula
relates to computing the number of satisfying assignments of the formula, a problem known to be
#P-complete [34].

Our system, ProApproX, has the characteristic of not relying on a single algorithm to evaluate the
probability of a lineage formula but of deciding on the algorithm to be used based on a cost model of
the various potential evaluation algorithms. In addition, the formula is compiled into an evaluation
plan, different evaluation algorithms can be used on different subparts of the formula, and the overall
cost of the whole plan is estimated. As with regular query optimizers, the space of evaluation plans
(for a user-specified approximation guarantee) is searched for one of optimal cost. ProApproX thus
reveals its originality through the following major features:

1. The support of a broader range of XPath queries over a more general data model than current
probabilistic XML systems (Sections 2 and 3);

2. A cost model for a variety of probability evaluation algorithms, based on which the selection of
the most efficient algorithm is performed (Section 4);

3. Simplification of the computation process via a decomposition of the probabilistic lineage into
independent computational cells (Section 5);

4. The possibility of setting arbitrary error bound ¢ and confidence ¢ for the desired probabilistic
approximation, with well-grounded propagation mechanisms of error and reliability between
computational units (Section 6);

5. An exploration of the space of evaluation plans based on the proposed cost model (Section 7).

We start with a brief introduction to the probabilistic XML model, and to probabilistic lineage.
After presenting all features of the algorithm, we present an extensive experimental evaluation of the
proposed system in Section 8, and go over the related work in Section 9 before concluding.

2 Probabilistic XML

We recall here some basic notions about probabilistic XML as an uncertain data model. The model
presented here was introduced and studied in [3,20,21] as a generalization of previously existing
models [4,26,36].
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Figure 1: Tree representation of a p-document with long-distance dependencies

Documents and p-Documents We model XML documents as unranked, unordered, labeled trees.
Not taking into account the order between sibling nodes in an XML document is a common but
non-crucial assumption. The same modeling can be done for ordered trees, without much change to
the theory.

A probabilistic XML document (or p-document) is similar to a document, with the difference that it
has two types of nodes: ordinary and distributional. Distributional nodes are fictive nodes that specify
how their children can be randomly selected. Given the criteria of dependency between elements, we
distinguish two types of data representation models. In the local dependency model [26,36] (named
PrXML™%e in [3]), choices made for different nodes are independent or locally dependent, i.e., a
distributional node chooses one or more children independently from other choices made at other
levels of the tree. In the long-distance dependency model [4] (PrXML®® in [3]), the generation at a
given distributional node might also depend on different conditions (i.e., probabilistic choices) related
to other parts of the tree. This model, more general than the local dependency model, is based on
one distributional node, cie (for conjunction of independent events): nodes of this type are associated
with a conjunction of independent (possibly negated) random Boolean variables e; . . . e, called events;
each event has a global and independent probability Pr(e;) that e; is true. Note that different cie
nodes share common events, i.e., choices can be correlated.

The semantics of a p-document is a probability distribution over a set of possible documents,
defined by the following process for the long-distance dependency case. First, randomly draw a truth
assignment for each of the ¢;’s, following Pr(e;). Then remove all distributional nodes whose condition
is falsified by this assignment. Descendant of removed nodes are removed, and the remaining ordinary
nodes are connected to their lowest ordinary ancestor, yielding a regular document. The probability
of this document is that of all truth assignments that generate it.

As noted in [3], local dependencies expressed by ind (independent) or muz (mutually exclusive)
nodes can be tractably translated into cie nodes. We use these results to efficiently translate datasets
in the local-dependency model into p-documents that rely exclusively on cie distributional nodes.
This allows us to consider the long-distance dependency model only in the remaining of the paper.

As an example, Figure 1 presents a fragment of a probabilistic XML document describing a given
Wikipedia article as a merge of all its (uncertain) revisions, reproduced (with elaboration) from [1].
For ease of presentation, cie nodes are shown by simply annotating edges with conjunctions of literals.
For example, the first and third “section” elements in the tree appear under cie nodes that retain
them only if e; is true; the whole first “article” is kept if and only if e is true; etc. Events e;’s
appearing in the tree correspond to particular contributors, or probabilistic events that particular
revisions are correct given that the authors are reliable [1], with the probability distribution of the
Pr(e;)’s typically inferred by a trust inference algorithm.



Querying Probabilistic XML The query language we consider in this work is tree-pattern queries
with joins [4]. A tree-pattern query with joins is given by a tree pattern (a tree whose edges are
labeled with either child or descendant and whose nodes are labeled, possibly by a wildcard) together
with a set of value joins that impose that two nodes of the tree pattern are matched to nodes with
the same value. A match of a query to a (deterministic) document must map all nodes of the query
to the document, respecting the following constraints: (i) the root is mapped to the root; (ii) child
edges are mapped to edges of the tree; (iii) descendant edges are mapped to a sequence of child
edges; (iv) non-wildcard labels are preserved; (v) nodes in a join condition must have the same label.
As in [4], we view each match as the minimal subtree containing all nodes of a document that are
mapped to a node of the query. Queries are given using the standard XPath syntax (note that some
tree-pattern queries with joins cannot be expressed in XPath 1.0 but they can all be expressed in
XPath 2.0).

Example 1. Given the p-document of Figure 1, we can search for all contributors to a given article
using the tree-pattern query Q;:

//article[title="Roger Waters’]//contributor
Similarly, the tree-pattern query with join Qy:
/articles/article[author=.//contributor]

looks for articles where the author appears among the contributors.

Though we focus on tree-pattern queries with joins for simplicity, a similar processing can be
applied to a larger class of queries, namely locally monotone [30] queries, that includes, for example,
the whole positive fragment of first-order XPath [7].

Again for simplicity, we restrict to the Boolean projection of tree-pattern queries with joins in what
follows: extension to queries that return a set of nodes is completely straightforward, see, e.g., [21]. A
Boolean query over a deterministic document returns either true or false. A Boolean query @) over a
p-document & returns the probability that @ is true in &, that is, the sum of the probabilities of all
possible documents of & where @) is true.

A fundamental observation [30], due to the locally monotone nature of the query language, is that
the probability of a query over a p-document is the probability that one of the match of the query
over the underlying deterministic document remains in &?. We will use this fact to transform our
probabilistic XML querying problem into a probability computation problem over a propositional
formula in DNF.

3 Probabilistic XML Query Lineage

Recall the example query (); that looks for the list of contributors to the revisions of the article
entitled “Roger Waters”. Looking at Figure 1 we can see three matches to ()1 on the deterministic
document underlying the p-document, corresponding to the three different “contributor” nodes. For
each match, we can construct the conjunction of all probabilistic literals on the path from the root to
one of the node matched by the query: ¢; =e5 Aey Aey, co =e5 Nes Aes, cg = e5 A ey Aey. These
conjunctions are called the probabilistic lineage of each match.

As noted, the probability of a locally monotone query () over a p-document is exactly the probability
of the disjunction of probabilistic lineages of all matches to the query on the underlying deterministic
document. The probability of (); over the p-document of Figure 1 is thus the probability of the
following propositional formula, called the probabilistic lineage ¢ of the Boolean query ()1 over this
document:

pr=c1VeaVes=(esNerANex)V(es Aea Aes) V (es Aep Aey).



Because we only have conjunctions of literals on distributional nodes in PrXML“¢, probabilistic
lineages are always in disjunctive normal form (DNF). In the following, we will often note this DNF
¢ = V" c; and will call each ¢; a clause of the DNF.

In ProApproX, probabilistic events for a given node are stored in an attribute node named “prob”
of a regular XML document, stored and managed by an ordinary native XML DBMS. To retrieve the
lineage of a query, we need to transform our XPath query (Q into an XQuery query (' that returns
the concatenation of all “prob” attributes of each match. In our example, @), is transformed into
query @:
for $a in //article
for $b in S$a/title/text()[.= Roger Waters ]
for $c¢ in $a//contributor
let $leaves:=($b, $c)
let $atts:=(for $i in $leaves

return 3$i/ancestor—or—self::x/@Qprob)
return <match> {

distinct —values (
for $att in $atts
return string($att))} </match>

A generic translator from tree-pattern queries with joins encoded in XPath into XQuery lineage
queries is implemented as part of ProApproX.

We have then separated the problem of querying probabilistic XML into two independent problems:
(i) evaluating an XQuery query over a regular XML document; (ii) computing the probability of a
formula in DNF. The former problem can be solved using any XQuery processor; we use the native
XML DBMS BaseX! after comparing its performance on our datasets to other XQuery engines. The
latter problem is the focus on the remaining of this paper.

Computing the exact probability of a formula in DNF is a #P-hard problem in general, even when
all events have the same probability [34], and it is easy to see that any DNF formula can be generated
as the lineage of even a trivial XPath query such as //A [20]. However, we are going to detect some
easy cases and exploit polynomial-time randomized approximation algorithms [21] to build an efficient
query processor over probabilistic XML.

4 Algorithms and Cost Models

In this section we present a collection of algorithms for computing or approximating the probability of
a DNF formula ¢. Based on the computational complexity of each of these algorithms, we elaborate a
cost model that estimates the runtime (in ms) of each algorithm alg as a function cost,), of different
features of ¢, of approximation parameters defined further, and of a cost constant C,j, representing
the time needed for the elementary, inner, parts of each algorithm. A value for Cy, is measured
experimentally by varying the size of synthetic formulas (see Section 8 for precisions on generation)
and recording the processing time of the actual implementation of the algorithm on a given machine.
We only consider sequential processing here, see the conclusion for discussions about parallelization.
We give in Table 1 a summary of the notation used and in Table 2 a summary of the cost models of
all algorithms.

4.1 Exact Computation

We start with exact computation algorithms. Since the problem is #P-hard, only exponential-time
algorithms are known, but they are typically very fast on DNFs of small size. We present two such
algorithms, that are folklore, and are well-suited, respectively, to the case when there are few variables,
or few clauses, in .

'http://basex.org/
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Table 1: Notation

© DNF formula ¢ = /", ¢;

m number of clauses in ¢

N number of event variables used in ¢
ci a clause of ¢

k; size of clause ¢;

L total size of o, L= " k;

t number of trials (samples)

€ approximation error

1 — 0 probabilistic approximation guarantee
l lower bound on ¢’s probability
costye  cost of an algorithm alg
Cag  cost constant for algorithm alg

Table 2: Cost models and cost constants

Algorithm alg COStalg Calg (ms)
naive Chraive X 2V x L 4.107°
sieve Cgieve X 2™ X % 5-107°

AddMC Cagamc X hl% X 5% 4-107°
MulMC CAddMC X 11’1% X % 4. 10_5
coverage Ceoverage X ln§ X uf# 1077

Possible worlds (Naive algorithm) This algorithm corresponds to the naive, exponential-time,
iteration over all possible 2V truth value assignments to the N variables used in ¢, i.e., over all
possible worlds. It simply consists in summing up the probabilities of the satisfying assignments. In
the example of the previous sections, the formula ¢; has 5 different variables, and we can enumerate
all 32 possible worlds; 8 of them make ¢ true, and one can check that their total probability is
0.3744.

The computational complexity of the naive algorithm is obviously O(2" x L): we enumerate all
possible worlds, and for each one we evaluate the truth value of the formula in linear time. We
therefore set the following cost:

COSbpaive = C(na'l've X 2N X L

where Chaive is determined experimentally as previously explained and is equal to 4 - 1075 ms (see
Table 2 for all cost constants). This means, for instance, that the expected runtime of the naive
algorithm for a formula with 10 variables and of length 500 is Cpaive X 2! x 500 &~ 20 ms (for the
machine for which the cost constants were computed), which is reasonably low and shows that, at
least for some DNF formulas, the naive algorithm can be adapted.

Inclusion—exclusion (sieve) It is also possible to apply the inclusion—exclusion or sieve principle
to compute the probability of ¢. The sieve decomposition of the DNF ¢ is:

Pr <\/cl> = Z(—l)k_l Z Pr(cr), where ¢y := /\ci.

k=1 Ic{1,...,n} iel

|T|=k
On our example, Pr(p1) = Pr(cy)+Pr(ce)+Pr(cs)—Pr(ciAca)—Pr(eaAcs) —Pr(ci Acs)+Pr(ci AcaAcz) =
0.108 4 0.27 + 0.126 — 0.054 — 0.0378 — 0.0756 4 0.0378 = 0.3744. The computational complexity is
O(2™ x %) the probability of the conjunction of each set of clauses, whose typical size is of the order



of i, can be computed in linear time. We set:
cost = Cgieve X 2™ X N,

which becomes competitive with respect to the naive algorithm when clauses are few but long.

Note that, as described here, the sieve method is numerically instable. Implementing the sieve
formula presented earlier in floating-point arithmetic results in a low accuracy because of rounding
errors in sequences of additions and deletions. The sieve method can be improved towards better
numerical stability using an algorithm proposed by Heidtmann [14].

4.2 Approximation Algorithms

We present in this section two randomized approximation algorithms, giving respectively additive and
multiplicative guarantees. For fixed €, §, we say A(p) is an additive e-approximation of Pr(y) with
probabilistic guarantee 1 — ¢ if, with probability at least 1 — 4, the following holds:

Pr(p) —e < Alp) < Pr(p) +e.

Similarly, for fixed €, §, A(p) is a multiplicative e-approximation of Pr(y) with probabilistic guarantee
1 — 9 if, with probability at least 1 — §:

(1—¢) x Pr(p) < A(p) < (1+¢€) x Pr(e).
In Section 6, we explain how to turn additive guarantees into multiplicative ones.

Additive Monte Carlo The simplest way to implement an additive approximation is by sampling,
Monte-Carlo-style, the space of all possible assignments following the distribution of the literals, and
test whether the picked assignment satisfies at least one clause. If we conduct ¢ trials, an (unbiased)
estimator A(p) for the probability of ¢ will be the proportion of the trials that led to a satisfaction
of ¢. Following Hoeffding’s bound [15], we have:

2

Pr(|A(p) — Pr()] > €) < 2e7%%

Therefore, the number of trials ¢ needed to perform an (g, d)-additive approximation is:

In2—1Iné
t=|—|.
2e2

For each sample, the algorithm linearly scans the formula, which gives an overall complexity of

O(t x L) and a cost model:
2 L

costagamc = CAddMC X In 5 X 6_2

Self-Adjusting Coverage Algorithm This algorithm was introduced by Karp, Luby, and Madras [19]
and is a fully-polynomial randomized approximation scheme (FPRAS), which means it produces a
multiplicative estimate of the probability. We base our cost model on the following result:

SELF-ADJUSTING COVERAGE ALGORITHM THEOREM I [19]. Whene <1 andt = (8 x (1 +¢) x
mIn(2/0))/e?, the self-adjusting coverage algorithm yields an (g, 8)-approzimation.
Since each trial requires evaluating one clause of ¢, we have:

COSteoverage = Cooverage X % X ﬂtﬁ X In %

As can be seen on Table 2, the cost constant computed for this self-adjusting coverage algorithm is
much higher than the cost constants for other algorithms, reflecting the fact that though it has an
excellent algorithmic complexity, this can still be a costly algorithm to use in practice.

As we shall see, each of these four algorithms is most efficient on some of the possible ¢’s. However,
we do not apply them on the whole formula, but start by decomposing ¢ into an evaluation tree built
out of simpler formulas.



5 Building the Evaluation Tree

We explain in this section how ProApproX decomposes a DNF formula ¢ into an evaluation tree
formed of simpler subformulas. We assume in this section that no contradiction appears in ¢ (a clause
that contains both x and —z and is removed from ¢). To illustrate, we use the following running
example:

Example 2. Consider the formula ps = (€1 A ea) V (e1 Aes) V (mes Aes) V (es ANeg) V (es Aer). To
compute Pr(py), we rewrite @y as the composition of subformulas whose probabilities are simpler to
compute.

Our evaluation tree is based on three operations (independence detection, factorization, inconsistency
detection) that are repeatedly applied on the original formula. All three operations yield trees whose
leaves are formula in DNF and whose internal nodes are Boolean operations (independent disjunction
), independent conjunction @, and mutually exclusive disjunction @) that support efficient probability
computations.

Independence We say that two clauses are independent if they do not share any variables. Our first
operation attempts to write the DNF formula ¢ as an independent disjunction ¢’ &) ¢" of two DNF
formulas that form a partition of ¢ such that every clause of ¢’ is independent from every clause of
¢”. In our example, we can write g as ((e; Aea) V(e Aes)) O ((mes Aes) V (eg Aeg) V (eg Aer)).

Factorization Our second operation consists in factoring the intersection c¢ of all clauses ¢; of
formula ¢ out of the clauses, obtaining a rewriting of ¢ as ¢’ = c@® (¢} V --- V ¢,) where & denotes
independent conjunction: c¢ is independent of every c¢;. Note that both operands of @) are in DNF":
the left-hand side is a simple conjunctive clause, and the right-hand side is a DNF formula. If we
apply this factorization to the subformulas appearing in our previous rewriting of ¢, we obtain

(61 @ (62 V 63)) @ ((_|€4 A 65) V (64 A 66) V (64 N 67)).

Inconsistency Our final operator looks for a partition of a DNF formula into two inconsistent
subformulas, i.e., a rewriting of ¢ into ¢’ @ ¢” where ¢’ and ¢” are partitions of the clauses of ¢, and
there is a variable x such that all clauses of ¢’ have a literal -z and all clauses of ¢” have a literal x.
Our example formula becomes (e; ® (e2 V e3)) ) ((—eq Aes) P ((es Neg) V (eq A er))).

Evaluation tree ProApproX repeatedly applies these three operations until no further rewritings
are possible. We obtain thus for ¢s:

(e1D(e2We3)) D ((meaDes) D (ea D (e6 Ver))).

This defines an evaluation tree for oy in a straightforward manner; inner nodes are the Boolean
operations V), @, @ (assumed binary for simplicity), and leaves are DNF formulas that cannot be
simplified any further (in the simple case of s, these are just trivial formulas formed of a single
literal):

O @®
VRN VRN
€1 © O O
/ N\ / N\ /N
€9 €3 —ey es €4 N



Note that the process is nondeterministic, since it depends on the order of application of operations.
We choose arbitrarily one such order and do not make any claim at optimality of the simplification
obtained.

These evaluation trees can be used to compute the probability of the main formula in terms of the
probabilities of the formulas on the leaves, thanks to the following observations:

Pr(yy @ hg) =1 — (1 = Pr(¢1)) x (1 = Pr(¢s))
Pr(yy @ 2) = Pr(y1) x Pr(y)
Pr(yy @ 2) = Pr(¢1) + Pr(y)

Towards an evaluation plan In general, the evaluation tree of a formula still contains as leaves
DNF formulas that are hard to compute. To compute the probability of the global formula, we turn
these evaluation trees into evaluation plans by assigning to every leaf of the tree one algorithm (either
exact or approximate) that will be used to compute the probability of this leaf. This assignment
will obviously use the cost model for the different algorithms, but we need to be careful about the
following aspects of the problem: (i) We need to propagate approximation parameters down the tree
in a principled manner, so that we keep the approximation guarantees on the global probability (see
next section). (ii) It is sometimes worth it not going down to the level of leaves of the approximation
tree to evaluate the probabilities, but to do it at a higher level; in other words, we might want to
assign evaluation algorithms to internal nodes of the tree rather than to leaves (see Section 7).

6 Propagation of approximation parameters

Our overall objective is to obtain a multiplicative approximation of the probability of a formula ¢ in
DNF, given an approximation tolerance € and probabilistic approximation guarantee 1 — d. We have
explained in the previous section that we will achieve this by decomposing ¢ into its evaluation tree
and assigning different algorithms, some exact, and some approximate, to different parts of the tree.
These assignments must be decided in so that the produced precisions at each node yield an overall
approximation that does not exceed the tolerance set for the approximation of the DNF formula as a
whole. In this section, we establish the different conditions for correct error allocation for children of
W), @, or @ nodes, in the case when the probability of both nodes is approximated. We also explain
how the approximation guarantee 1 — ¢ is propagated, and how to turn an additive approximation
into a multiplicative one.

Propagation of approximation error «.

Proposition 1. Let ¢ = 1y W) 1y, and assume py and ps are multiplicative approximations of Pr(iy)
and Pr(1s), to a factor of €1 and eq, respectively. Then 1 — (1 — p1)(1 — pa) is a multiplicative
approzimation of Pr(p) to a factor of € if e = €1 + &3.

Proof. Let us denote p the probability of ¢ and similarly p; and py the probabilities of ¢, and 15; p;
and py are multiplicative approximations of p; and p,, and

Then:

And thus:

I=[(1=1—e)p)(1—=(1—e2)p2)] <1~ (1—p1)(1~—p2)
1= (1=p)(1—p2) 1 —[1 =1 +e)p)(1 = (1 +e2)pa)]



Let abe 1 —[(1—(1—¢e1)p1)(1 — (1 —e2)po]. We have:

a=1—[(1-p+e1p1)(l —ps+eap2)]
=1—(1—pi)(1—po)

— [(1 = p1)eaps + (1 — pa)eipr + 16212

_ (A—p1)eap2+(1—p2)e1p1+eieapip2 . .
- p1+p2—pi1p2 - Let I = maX(pl,p2)7

)] 4+ apa(1 — p1); clearly, A < 111 + &,I1. Then

Let A = [(1 —p1)eopz + (1 = p2)erpr + €182p1p2].
we have p > TI. We write A as e1p1[1 + p2(eo
% < (51—1-82)% Lepteg=c¢ and A <€p.

We proceed similarly for the upper bound. O]

| = 1>

In practice, when we propagate an € factor down the tree, we look for different combinations of ¢,
and ey that sum to 1, evaluate the cost of each combination, and choose the best found (this is one
example of the general exploration of evaluation plans described in the following section). Note that
if e5 = 0 (that is, if we compute the exact value of Pr(¢y)), we can set g5 = €.

Proposition 2. Let ¢ = 1y @ 1o, and assume py and ps are multiplicative approximations of Pr(iy)
and Pr(1g), to a factor of 1 and eq, respectively. Then py + po is a multiplicative approzimation of
Pr(p) to a factor of € if ¢ = max(ey, €2).

Proof. We use the same notation as before.

p1+ e
P2 + €22

P1—€1P1 < P1 S
P2 — €2P2 < P2 <

and then:
P14 D2 —e1p1 — €22 < P1 + Pa < p1 + P2 + (€101 + €2p2)

Note that (e1p1 + €2p2) < e(p1 + p + 2) = ep which gives the required lower bound; the upper bound
is similar. In particular, if e = 0 we can set again €5 = €. [

For the (» operator, observe that it never appears between two arbitrary DNF formulas, but
between a formula in DNF and a conjunction, the probability of the latter can be evaluated exactly
in a tractable manner. We thus just state the propagation condition in this case:

Proposition 3. Let ¢ = 1)1 Dy, and assume py is a multiplicative approximation of Pr(¢y) to a
factor of e1. Then py x Pr(vs) is a multiplicative approximation of Pr(yp) to a factor of € if € = e;.

Propagation of approximation guarantee 1 — 9 The propagation of the guarantee 1 — 9 is quite
straightforward. We assume approximations of different subformulas are going to be carried out in an
independent manner, using different samples. Then, if:

{ Pf(‘pl - ]51| 1p1)
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we have:
Pr((|p1 — p1l <ep1) A (lp2 — paf < €ap2)) = (1 —01)(1 = d2).
This gives the propagation rule: 1 —§ = (1 — §;)(1 — ds).
In ProApproX, in any case where we use approximations for both operands of one of the internal
nodes of the evaluation tree, we simply set 6; = dy =1 — /1 — 4.



Multiplicative guarantee from additive approximations Resorting to an execution plan using
additive algorithms with the ultimate goal of producing a multiplicative tolerance, might sometimes
be more efficient then running a multiplicative approximation. In that case, we would like the result
to be within a multiplicative error interval [p — pe, p + pe] of the probability p, for a given . Thus,
we need to set an input error €,q4q for the additive algorithm, so that:

€add = EP-

It is not possible to exactly determine this value since p is the quantity that we are actually looking
for. What we propose in this case, is to use a lower bound ¢ for p and set £,qq4 to fe. This guarantees
us that e,q4q is small enough to obtain a multiplicative error of €. One such simple lower bound, used
in ProApproX, is the maximum probability of a clause of the DNF, that can be easily determined
by a linear scan of the DNF. Using this trick, we can see Monte-Carlo sampling as a multiplicative
approximation algorithm, with a new cost model of

_o | 2 L
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7 Evaluation Plans

We now have all the necessary components for defining evaluation plans of a DNF formula ¢. An
(¢, §)-evaluation plan for ¢ is a subtree of the evaluation tree of ¢ presented in Section 5, with the
same root, where every leaf is associated with an algorithm among the four described in Section 4, and,
when this algorithm is an approximation algorithm, with approximation parameters ', 9’. We further
require that these approximation parameters guarantee a multiplicative (e, d)-approximation of ¢,
following the constraints of Section 6. The cost of a leaf of an evaluation plan is the cost of applying
the given algorithm on the formula at that leaf. The cost of an evaluation plan is defined as the sum
of the costs of all leaves (we thus ignore the cost of combining the probabilities at each internal node,
which amounts to evaluating a constant number of arithmetic operations, see Section 5). There are
many (indeed, infinitely many in general) evaluation plans for a given formula ¢, corresponding to
different subtrees of the evaluation tree, and to different assignments of approximation parameters.
Our goal is to find one of minimum cost.

When propagating an error bound e from one node to its children, many possible different values for
g1 and &9 can be used (e.g., under the condition &1 + €3 + £165 < ¢ for two approximated nodes linked
by and independent disjunction, different values for £; and e9 satisfy the condition). We can find
the best assignment locally for the direct descendant of a node through finding the global minimum
of the (e1,62) function. However, this does not necessarily guarantee producing the most optimal
propagation for the whole tree. Indeed, if we decide also to vary the allocation of these parameters,
the number of possible plans is unbounded. Inspired by query optimization techniques, we can explore
the space of evaluation plans for such a case by sampling a large number of them, evaluating the cost
of each, and choosing the best one found, which is thus not necessarily optimal, but can be good
enough in practice.

After experimenting with such a sampling technique, we decided instead to use in ProApproX
a more deterministic approach: we first decide on an adequate allocation of the approximation
parameters, and then look for the best evaluation plan with respect to these. Our exploration of the
search space is based on the following principles. We start with the evaluation tree, and a global ¢, 9:

1. First visit of the tree (top-down): We recursively assign ¢ and § values down the tree, following
the logical operator at the direct parent node, and propagation rules from Section 6; we always
set €1 = g9 and 07 = Jo;

2. Second visit of the tree (bottom-up):

a) We assign the best evaluation algorithm for a given node, following local parameters and
based on the cost model;
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Figure 2: An example best evaluation plan in a deterministic case.

b) If a given node is assigned with an exact algorithm, we re-assign unused ¢, ¢ to nodes
already assigned with an approximation algorithm, or to remaining nodes of the tree;

c) We restart (a,b) for the next node (including inner nodes);

3. Third visit of the tree (bottom-up): We then decide whether we want to chose to apply the
algorithm at a given node (and forget about the algorithms assigned to its descendant) or at
one of its ancestors.

Example 3. Fig. 2 illustrates a mock-up example of a best evaluation plan, or best-tree, where
computation nodes are marked with flags (framed nodes in the example compilation tree). Note that
the algorithm for finding the best-tree in the deterministic case amounts to comparing the cost of a
node with that of its children (a child node is never more expensive than its parent; however, the sum
of children costs can exceed a parent-node cost).

As we shall see, proceeding this way leads to better results than always choosing, say, the full
evaluation tree.

8 Experiments

In this section we evaluate our approach experimentally. We address the following questions:

(1) How does our new query evaluation method compare to the current state-of-the-art probabilistic
XML database query processing?

(2) How accurate are the results?

(3) How effective is the tree compilation of the DNF formula over simply performing an exact or an
approximate computation of the whole formula?

Experimental Setup We implemented our system in Java. XQuery lineage queries, translated from
the original XPath queries, are evaluated over the XML dataset through the XML::DB API for BaseX,
the native XML DBMS. All indexing features of BaseX (in particular, path summaries and text
index) were turned on. The resulting DNF formulas are then compiled into trees, potential evaluation
strategies are explored and their cost assessed, and the chosen strategy is then run to evaluate the
probability of the query. Figure 3 illustrates the architecture of the system:

(1) The user (XPath) query is translated into the lineage query expressed in XQuery language:
Section 3;

(2, 3) The lineage query is processed by the native DBMS BaseX over the database (PrXML
p-documents stored as ordinary XML documents with prob attributes);
(4) The gathered probabilistic lineage is compiled by ProApproX:

Lineage preprocessing: optimizations over the DNF (removing subsumed or invalid clauses,
etc.)
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Figure 3: The ProApproX 2.0 architecture.
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Figure 4: Running time of the different algorithms on the MondialDB dataset [20,21]

Compilation: Section 5

Exploration: Section 7

Computation: following the algorithms set at the computation nodes of the best evaluation
tree

(5) The probability of the user query is then displayed.

Our experiments were run on a desktop PC with an Intel Xeon CPU at 2.40 GHz running 64 bit
Linux, with the data accessed by BaseX located on a standard magnetic hard drive.

Data and Queries Our evaluation was carried out on three different datasets, two of them previously
used in the probabilistic XML literature, the third one a synthetic dataset.

1. We used the MondialDB probabilistic XML document with local dependencies and 15 tree-
pattern queries that served to evaluate EvalDP [20,21]. EvalDP is a linear-time bottom-up
algorithm for evaluating tree-pattern queries without joins on local dependency p-documents.
The queries have between two to six nodes depending on their complexity and selectivity.
The p-document, also provided by the authors of [21], has been created by adding random
probabilistic choices in a regular XML document. We added an extra query with a join
(/mondial//country[.//name=@name]) to showcase the fact that ProApproX is able to deal
with join and no-join queries indifferently.



2. We also obtained the Movies dataset and queries, used by Hollander and Van Keulen in [16], from
the authors of this work. [16] explores the feasibility of storing and querying probabilistic XML
documents in a probabilistic relational database. The authors considered real-life uncertain data
obtained from a probabilistic data integration application [35], that produces a local-dependency
p-document. The application integrates movie data from a TV guide? with that of the Internet
Movie Database®. As in [16], the query was ran on five p-documents of different sizes.

3. Finally, we tested the performance of our DNF probability evaluator over synthetic data: random
DNF formulas with a number of literals L ranging from 1 to 12,000. Specifically, for a given
target size number of literals, we iteratively randomly drew clauses in the following manner,
until the target size was reached: first, draw a random clause size uniformly at random between
1 and [L/3, L/10, and L/100]; second, uniformly draw positive or negative literals from a fixed
set of variables (of size L/2) avoiding contradicting literals.

Methodology Each query is translated to an XQuery lineage query that is evaluated on BaseX to
capture the DNF lineage. The time of this operation is what we call XQuery time. To compare our
approach to baselines, we first run the four main computation algorithms over the entire DNF' lineage:
sieve and naive algorithms, Monte-Carlo sampling, and the self-adjusting coverage algorithm. The
computation is stopped at one minute if not finished before. Afterwards, we fully compile the DNF in
a tree structure. We then use our cost model to determine what the best strategy to evaluate the
probability of each leaf. We call this the full-tree strategy. Finally, we used the exploration strategy
detailed in Section 7 to find, if possible, a tree whose cost is lower than both the cost of evaluating
the whole DNF with any of the algorithms and the cost of the full tree strategy. This is the best-tree
strategy, for which we can distinguish between the Exploration time (to decide of the best tree and of
the best allocation of error bounds and evaluation algorithms) and the Fvaluation time itself, when
the actual evaluation algorithms are run and the final probability is obtained. The running time
of the best-tree strategy, ProApprox’s default behavior, is thus obtained by summing XQuery time,
Exploration time, and Fvaluation time. In all experiments, we set the parameters for a multiplicative
approximation with ¢ = 0.1 and a reliability factor 6 = 95%.

Comparison with EvalDP We compare with EvalDP, using the implementation kindly provided
by the authors of [21]. We show the results of our system, baselines and EvalDP on the 16 queries,
averaged by type, in Figure 4. The best tree strategy of ProApproX has highly competitive execution
time, being in all cases under 1s and the fastest probability computation method, sometimes tied
with one of the baselines. The best baseline algorithm depends on the query: when the lineage is
simple (types 2, 3, or 6) exact nalve or sieve computation methods are extremely fast, and this is
the choice that our optimizer selects. On query type 4, Monte-Carlo approximations are fast (this is
usually the sign that we have a high lower bound on the probability value, making it easy to derive a
multiplicative approximation from an additive approximation). On query type 5 and the join query,
interestingly enough, the best-tree strategy is significantly faster than all baselines, meaning that our
evaluation tree is useful and that different evaluation strategies need to be applied to different nodes
of the tree.

Unlike EvalDP, whose performance is linear in the size of the data (and remains in our experiments
relatively uniform for all queries), the performance of ProApproX is obviously related to both the
size and the complexity of the lineage DNF. The part that is directly related to the size of the data
in ProApproX is the XQuery time recorded by BaseX for lineage query evaluation. But the part that
is sensitive to the size of the DNF lineage is the compilation time. As shown in Table 3, the majority
of the time is spent in XQuery evaluation for all queries on this dataset. For queries with larger
DNFs, the Compilation time becomes relatively important. The time required for the Exploration

Zhttp://www.tvguide. com/
3http://www.imdb.com/
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Query type Average DNF size XQuery Compilation Exploration FEvaluation

2 6 96.82% 2.47% 0.19% 0.52%
3 5 98.19% 1.38% 0.08% 0.34%
4 43 97.41% 2.01% 0.34% 0.24%
5 252 64.47% 33.76% 1.43% 0.35%
6 6 99.69% 0.29% 0.02% 0.01%
4+join 3656 61.49% 36.12% 1.95% 0.44%

Table 3: Proportion of the time spent on each part of the probabilistic XML query evaluation on the
MondialDB dataset for the best tree strategy
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Figure 5: Relative error on the probabilities computed by the algorithm on the MondialDB over each
non-join query with respect to the exact probability values (¢ = 0.1, § = 95%)

and Evaluation phases remain negligible in all cases. Finally recall that EvalDP is neither able to
deal with join queries, nor with long-distance dependencies, contrarily to ProApproX.

With respect to SPROUT, we recorded one order of magnitude improvements on the largest DNF's.
For the last categories of queries, run times for SPROUT were of the order of several seconds, while
ProApproX never exceeded 100 milliseconds.

Accuracy of Results Obviously, a fast algorithm is of no use if the results obtained are not accurate,
something to be wary of in the case of ProApproX since it relies on approximation algorithms. To
evaluate the quality of results generated by ProApproX, we based the comparison on the relative error
distance between our results and the exact probability computed by the naive algorithm (except in
one case where EvalDP returns a wrong answer, probably due to a bug in the code, where we had to
compute the exact answer using the naive algorithm). We left the join query out of this experiment,
since it was too costly to compute its probability in an exact manner. Figure 5 is the result on one
particular run of the algorithm (since we use sampling, errors tend to be averaged out if we consider
multiple runs). The figure shows that for most results ProApproX achieves high accuracy. For 14 out
of 15 queries, we record an accuracy far below our relative error margin of 0.1. For one of the 15
queries, we have an error slightly higher than 0.1, but this is in line with what is expected: with a
probabilistic guarantee § of 95% and for 15 queries, there is a chance of 1 — 0.95'° = 53.6% that we
produce, at least once, a relative accuracy beyond 0.1.

Performance over the Movies dataset For the three queries of this dataset, the run time on the
five p-documents was recorded to be almost one order of magnitude lower then the performances
presented by the authors in [16] using Trio, a relational probabilistic DBMS [25]. In Figure 6, we
plot the performance over the join query (J3; points missing in the figure mean runtimes greater than
5s. The score for Trio is plotted on the figure, though it is not directly comparable, as we did not
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reimplement the translation to Trio but took the numbers directly from [16]. Still, it is interesting
here to note that Trio has a performance of about 40 seconds on the biggest p-document (19,475
nodes), while ProApproX took around 4 seconds.

Figure 6 also compares the best-tree strategy to the full-tree strategy (always evaluating the leaves
of the evaluation tree) and shows that the latter is not always efficient. In this particular example,
we see that it is always best to apply the coverage algorithm to the whole formula. We have seen, in
Figure 4 that for some other datasets, the coverage algorithm is not efficient. The point here is that
by using a cost optimizer, we are able in all cases to find the most efficient evaluation strategy (or
one close to it).

Performance over Synthetic Data Fig. 7 presents the performance of different evaluation methods:
the additive Monte-Carlo, the Self-Adjusting coverage algorithm, evaluation over a fully compiled tree
(Full tree), and evaluation over the best execution plan (Best tree) that ProApproX chooses for a DNF
probability computation. Note that times shown on the top line are actually anywhere beyond. The
running time of the self-adjusting coverage algorithm is directly proportional to the size of the formula
(i.e., appears as an exponential in a log-linear plot). This is not the case, however, for Monte-Carlo
sampling because of the use of the lower bound on the DNF probability: when this value is relatively
high (apparently the case for most of the big random DNF's of Fig. 7), Monte-Carlo sampling can
be very efficient. On the other hand, when the lower bound is low, the Monte Carlo algorithm can
be quite ineffective, as is shown by the irregular variation recorded for this algorithm over DNF's of
different sizes. Our best-tree strategy significantly outperforms the self-adjusting coverage algorithm



and gives very low running times (of usually less than 100ms) for DNFs holding until 10* variables.
It also outperforms Monte Carlo for most of the cases, especially for DNFs with low probabilities.
However, when the data scales (DNFs with sizes larger than ~10%9), Monte Carlo may record better
time, which is due to the compilation time needed by ProApproX before deciding on the best strategy.
Yet the difference in running time remains reasonable. Interestingly, for very large formulas, the
best-tree strategy does a better job than the full-tree strategy. Most importantly, the best tree is
always under 6s, even though it is sometimes not the quickest (cf. Monte-Carlo), which empirically
demonstrates that it is much more robust.

9 Related Work

Probabilistic data management Managing probabilistic and uncertain data is a topic of much
current interest in database research, and there has been a significant amount of work under the
relational database scheme. Extensive literature and many systems and prototypes have been
introduced, in particular MystiQ [8], Trio [25], Orion (previously known as U-DBMS) [32], and
MayBMS [5, 18].

SPROUT [17], the query engine integrated in the probabilistic relational database MayBMS [18],
considers query evaluation for tuple independent probabilistic databases (i.e, restricted databases [29])
and Boolean conjunctive queries with inequalities [28] but without self-joins [11]. For tractable queries,
the confidence computation is based on OBDDs [27]. If a DNF lineage is captured, it is compiled
to a novel kind of decision diagrams called d-trees, exploiting negative correlations (inconsistency),
independence, and factored representations. The authors pointed out the need for more advanced and
more accurate — but still efficient — techniques for estimating lower and upper bounds of probability
values.

Later work by R. Fink and D. Olteanu [12] on SPROUT employs novel exact and approximate
knowledge compilation techniques that compute probabilities of events for results of arbitrary relational
algebra queries. The main component is an incremental compilation algorithm that repeatedly
decomposes a propositional formula ¢ into sub-formulas such that lower and upper bounds of the
probability of ¢ can be efficiently computed from bounds for the sub-formulas. The algorithm is run
for a given time budget or until the desired approximation is reached [12]. The authors also addressed
the problem of approximating lineage formulas that are hard to evaluate with read read-once formulas,
where every variable occurs at most once, or read-once formulas in disjunctive normal form [13].

Probabilistic XML Meanwhile, the semistructured model has received less attention. An in-depth
study on the compared expressiveness and efficiency of probabilistic XML models was elaborated by
Abiteboul, Kimelfeld, Sagiv, and Senellart in [3]. Subsequent research has extended the model with
continuous probabilistic distributions [2], constraints [9], or possible trees of unbounded size [6].

Early work on query evaluation over p-documents was introduced by Kimelfeld, Kosharovsky, and
Sagiv in [20,21] producing the EvalDP algorithm that natively processes positive tree-pattern queries,
without join. The algorithm is restricted to run only over p-documents with local dependencies,
i.e., where dependency can only happen between children of a same parent node. This linear-time
bottom-up processing of the tree has first-rate performance, and has been generalized to arbitrary
monadic second-order queries through tree automata techniques [6,10], but is not applicable to queries
or data that involve correlations.

In [21], Kimelfeld, Kosharovsky, and Sagiv proposed as a proof of the existence of a randomized
polynomial-time approximation scheme an alternative sampling algorithm to obtain a multiplicative
approximation of a Boolean query. The probability of query () being true in a random instance &

can be computed [21] by: > " Pr(m; < &) x Pr (/\;;11 —(m; < P) | m; < 33), where Pr(m; < &)
is the probability that a match m; of @ remains in &?. The first term is easy to compute by just
gathering the probabilities of all events involved in the match; the second term can be approximated

by conducting biased draws to considerate the probability that none of the preceding matches exists



in the random document &, given that a current match m; appears in that same document. We
implemented this biased approximation in [31], a demonstration of an early version of ProApproX
without any form of cost estimation, and the evaluation leads to very good accuracy. Nevertheless,
the convergence guarantee [21] that is obtained from Hoeffding’s inequality requires a running time
growing in O(n®Inn) in the number of matches (i.e., in the number of clauses of the lineage formula).

DNF probability estimation We replaced this method by the self-adjusting coverage algorithm, a
linear multiplicative estimation of the number of assignments satisfying a DNF, and an extension of
the earlier coverage algorithm for the union of sets problem, proposed by Karp, Luby and Madras [19]
(with the background motivation of managing network reliability issues). The DNF counting problem
is the special case of the DNF probability problem when all variable probabilities are 0.5, in which case
Pr(yp) = % (with #¢ the number of satisfying assignments of ¢). Both coverage and self-adjusting
coverage algorithms for the DNF counting problem can easily be modified for the DNF probability
problem, yielding (e, d)-approximation algorithms, as shown in a subsequent work by Luby and
Velickovic [24], and as deployed in ProApproX.

Systems At the practical level, a full-fledged probabilistic semistructured data management system
is still missing. Hollander and van Keulen [16] investigate the adequacy of probabilistic relational
databases for querying probabilistic semistructured data by mapping XML to relational data. Queries
can then be transformed into relational queries and evaluated using a system such as Trio, for which
efficient query evaluation algorithms have been developed, both exact and approximate. The downside
of the approach is that relational databases do not exploit the specific characteristics of tree-like data
encoded into databases, that for instance makes tree-pattern queries over local models tractable [21].

Initial ideas leading to this work were presented in [31,33] though the specificity of our approach,
using a cost estimator to optimize the running time of the (approximate) probability computing, is
fully novel.

10 Conclusions

We have introduced an original optimizer-like approach to evaluating query results over probabilistic
XML. Though some components are specific to this setting (in particular, the translation from XPath
queries to XQuery lineage queries), the core of our system aims at solving the very general problem
of computing (approximate) probabilities of propositional formulas built out of independent random
variables, in an efficient manner. Our formula decomposition technique, and some of the algorithms
used, assume that the formula is in DNF, but the technique could probably be extended to arbitrary
formulas.

The first principle our approach relies on, as well as the main observation from our experiments, is
that the optimal probability evaluation algorithm to use depends on the characteristics of the formula:
if the formula has few variables, go with the naive algorithm; if it has few clauses, with the sieve
algorithm; if the probability is known to be close to 1, with Monte-Carlo sampling; if the formula was
obtained from evaluating a tree-like query over a tree-like structure, use a technique such as EvalDP;
if nothing else works, use the self-adjusting coverage algorithm. Our cost model captures this. The
second principle is that different algorithms can be used to evaluate the probability of different parts
of a formula. Our formula decomposition technique, and our exploration of possible evaluation trees,
makes use of this.

In ProApproX, the production of the lineage from the original p-document and query, and the
evaluation of the probability of this lineage are fully independent. Each of these problem can thus be
optimized independently (using, respectively, the XML query optimization of a native XML DBMS,
and our formula probability evaluation technique). However, it is likely that exploiting the structure
of the query to obtain lineage that is already factorized would result in even more efficient evaluation.
This is an obvious direction for future research.



Other potential improvements of interest would be (i) to refine our cost model with non-linear
functions of the size of the formulas, to take into account second-order terms in the complexity of
the algorithms; (ii) to explore the space of evaluation trees in a more intelligent manner, taking into
account the fact that, for instance, it is always better to apply the naive algorithm on two children of
a node than on the node itself — note that this observation is not true in general for approximation
algorithms, so this requires non-trivial analyses of the cases; (iii) to keep the same §’s parameter
across the whole tree by performing correlated samples in all branches of the tree — this is not trivial
either, since we need to keep track of all partial samples performed; (iv) to exploit the fact that most
evaluation algorithms scale effortlessly to distribute the probability computation over multi-core or
distributed architectures.
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