

Proapprox2.0. A Predictive Query Engine for Probabilistic XML Asma Souihli Pierre Senellart

gmail.com: $e_2 \wedge e_8 \wedge e_6$ C2

gmail.com: $e_2 \wedge e_9 \wedge e_{10}$ C3

gmail.com: $e_2 \wedge e_9 \wedge e_6$ C4

The probability of the gmail address is:

Pr(gmail.com) = Pr(C1 V C2 V C3 V C4)

4 Complexity

Probabilities of the satisfying assignments for the DNF (lineage formula):

#P-Hard problem

No polynomial time algorithm for the exact solution **if P≠NP**

#P problems ask "how many" rather than "are there any"

How many graph coloring using k colors are there for a particular graph G?

5 Approach

ProApproX reveals its originality through the following major features:

- **✓** A broader range of XPath queries
- ✓ a more general data model
- **✓** A cost model for a variety of probability evaluation algorithms

 (including Monte Carlo and the Self-Adjusting Coverage Algorithm)
- **✓ Lineage Decomposition into independent computational units**
- \checkmark Custom-made error bound ε and confidence δ for the desired probabilistic approximation
- \checkmark Well-grounded propagation mechanisms of ε and δ between computational units
- **✓** An exploration of the space of evaluation plans based on the proposed cost model

