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Abstract—Probabilistic XML is a probabilistic model for un-
certain tree-structured data, with applications to data integra-
tion, information extraction, or uncertain version control. We
explore in this work efficient algorithms for evaluating tree-
pattern queries with joins over probabilistic XML or, more
specifically, for listing the answers to a query along with their
computed or approximated probability. The approach relies on,
first, producing the lineage query by evaluating it over the
probabilistic XML document, and, second, looking for an optimal
strategy to compute the probability of the lineage formula. This
latter part relies on a query-optimizer–like approach: exploring
different evaluation plans for different parts of the formula and
estimating the cost of each plan, using a cost model for the various
evaluation algorithms. We demonstrate the efficiency of this
approach on datasets used in previous research on probabilistic
XML querying, as well as on synthetic data. We also compare
the performance of our query engine with EvalDP [1], Trio [2],
and MayBMS/SPROUT [3].

I. INTRODUCTION

Uncertainty comes along with data generated by imprecise
automatic tasks such as data extraction and integration, data
mining, or natural language processing. A measure of this
uncertainty may be induced from the trustworthiness of the
resources, the quality of the data mapping procedure, etc. Often,
information is described in a semistructured manner because
representation by means of a hierarchy of nodes is natural,
especially when the source (e.g., XML or HTML) is already
in this form. One possible way, among the most natural, to
represent this uncertainty is through probabilistic databases,
and probabilistic XML [4] in particular.

Probabilistic documents or p-documents [5], [6] are a
general representation system for probabilistic XML, based on
probabilistic XML trees with ordinary and distributional nodes.
The latter define the process of generating a random XML
instance following the specified distribution at the level of each
node. The model is a compact and complete representation of
a probabilistic space of documents (i.e., a finite set of possible
worlds, each with a particular probability).

Probabilistic documents have been used in various appli-
cations [4], such as uncertain data integration [7], XML
warehousing, uncertain version control systems [8], or Web
information extraction. We do not deal here with obtaining
probabilistic documents; we assume the p-document given and
investigate how to efficiently query it.

In contrast with existing work [1], [5], [9] that has proposed
algorithms for tractable subcases and characterized the com-
plexity of the problem, we consider in this work a very general
form of p-documents (involving arbitrary correlations between
nodes of the tree) together with a large class of queries (tree-
pattern queries with joins, with results extensible to the even
more general class of locally monotone [10] queries) and aim
at a practical solution for querying p-documents. Computing
the exact probability of a given answer to the query over a p-
document is #P-hard [1], but, under data complexity, there are
fully polynomial-time randomized approximation schemes [1]:
we thus focus on efficiently approximating the probabilities of
answers. Indeed, for many applications, one simply needs a
good estimate of the probability value, i.e., an approximation
to a multiplicative factor of the correct probability, with high
confidence. Approximations to an additive factor are of lesser
interest, since they make it hard to distinguish between, say,
probabilities of 10−2 and of 10−5.

Following ideas from [1], [10], we reduce the problem
of approximating the probability of a given answer to a
query 𝑄 over p-document P to approximating the probability
of a propositional formula 𝜙 in disjunctive normal form
(DNF). We first rewrite the initial (XPath) query 𝑄 into an
XQuery query 𝑄′ that returns, for every match of 𝑄 over
the deterministic document underlying P , the conjunction of
events conditioning this match (labeled probabilities related to
the probabilistic nodes of the p-document). This rewritten query
is then evaluated by a standard XQuery processor, allowing the
use of all standard XML indexing techniques. This step can be
done in time polynomial in the size of P . The disjunction of
all conjunctions of events associated to different probabilistic
matches referring to the same item constitutes the propositional
lineage 𝜙 of this item. Note that computing the probability of
a propositional formula relates to computing the number of
satisfying assignments of the formula, a problem known to be
#P-complete [11].

Our system, ProApproX, has the characteristic of not relying
on a single algorithm to evaluate the probability of a lineage
formula but of deciding on the algorithm to be used based on
a cost model of the various potential evaluation algorithms.
In addition, the formula is compiled into an evaluation plan,
different evaluation algorithms can be used on different subparts
of the formula, and the overall cost of the whole plan is



estimated. As with regular query optimizers, the space of
evaluation plans (for a user-specified approximation guarantee)
is searched for one of optimal cost. ProApproX thus reveals
its originality through the following major features:

1) The support of a broader range of XPath queries over a
more general data model than current probabilistic XML
systems (Sections II and III);

2) A cost model for a variety of probability evaluation
algorithms, based on which the selection of the most
efficient algorithm is performed (Section IV);

3) Simplification of the computation process via a decom-
position of the probabilistic lineage into independent
computational units (Section V);

4) The possibility of setting arbitrary error bound 𝜀 and
confidence 𝛿 for the desired probabilistic approximation,
with well-grounded propagation mechanisms of error and
reliability between computational units (Section VI);

5) An exploration of the space of evaluation plans based on
the proposed cost model (Section VII).

We start with a brief introduction to the probabilistic XML
model, and to probabilistic lineage. After presenting all
features of the algorithm, we present an extensive experimental
evaluation of the proposed system in Section VIII, and go over
the related work in Section IX before concluding.

II. PROBABILISTIC XML
We recall here some basic notions about probabilistic XML

as an uncertain data model [1], [4], [6].
Documents and p-Documents: We model XML documents

as unranked, unordered, labeled trees. Not taking into account
the order between sibling nodes in an XML document is a
common but non-crucial assumption. The same modeling can
be done for ordered trees, without much change to the theory.

A probabilistic XML document (or p-document) is similar
to a document, with the difference that it has two types of
nodes: ordinary and distributional. Distributional nodes are
fictive nodes that specify how their children can be randomly
selected. Given the criteria of dependency between elements,
we distinguish two types of data representation models. In the
local dependency model (named PrXMLmux ,ind in [6]), choices
made for different nodes are independent or locally dependent,
i.e., a distributional node chooses one or more children
independently from other choices made at other levels of the
tree. In the long-distance dependency model [10] (PrXMLcie

in [6]), the generation at a given distributional node might
also depend on different conditions (i.e., probabilistic choices)
related to other parts of the tree. This model, more general than
the local dependency model, is based on one distributional node,
cie (for conjunction of independent events): nodes of this type
are associated with a conjunction of independent (possibly
negated) random Boolean variables 𝑒1 . . . 𝑒𝑚 called events;
each event has a global and independent probability Pr(𝑒𝑖)
that 𝑒𝑖 is true. Note that different cie nodes share common
events, i.e., choices can be correlated.

The semantics of a p-document is a probability distribution
over a set of possible documents, defined by the following

process for the long-distance dependency case. First, randomly
draw a truth assignment for each of the 𝑒𝑖’s, following Pr(𝑒𝑖).
Then remove all distributional nodes whose condition is
falsified by this assignment. Descendant of removed nodes
are removed, and the remaining ordinary nodes are connected
to their lowest ordinary ancestor, yielding a regular document.
The probability of this document is that of all truth assignments
that generate it.

As noted in [6], local dependencies expressed by ind
(independent) or mux (mutually exclusive) nodes can be
tractably translated into cie nodes. We use these results to
efficiently translate datasets in the local-dependency model
into p-documents that rely exclusively on cie distributional
nodes. This allows us to consider the long-distance dependency
model only in the remaining of the paper.

As an example, Fig. 1 presents a fragment of a probabilistic
XML document describing a given Wikipedia article as a merge
of all its (uncertain) revisions, reproduced (with elaboration)
from [8]. For ease of presentation, cie nodes are shown by
simply annotating edges with conjunctions of literals. For
example, the first “section” element in the tree appears under a
cie node that retains it only if 𝑒2 is true; the whole first “article”
is kept if and only if 𝑒5 is true; etc. Events 𝑒𝑖’s appearing in
the tree correspond to particular contributors, or probabilistic
events that particular revisions are correct given that the authors
are reliable [8], with the probability distribution of the Pr(𝑒𝑖)’s,
on the right of the figure, typically inferred by a trust inference
algorithm.

Querying Probabilistic XML: The query language we
consider in this work is tree-pattern queries with joins [10].
A tree-pattern query with joins is given by a tree pattern (a
tree whose edges are labeled with either child or descendant
and whose nodes are labeled, possibly by a wildcard) together
with a set of value joins that impose that two nodes of the tree
pattern are matched to nodes with the same value. A match of
a query to a (deterministic) document must map all nodes of
the query to the document, respecting the following constraints:
(i) the root is mapped to the root; (ii) child edges are mapped
to edges of the tree; (iii) descendant edges are mapped to a
sequence of child edges; (iv) non-wildcard labels are preserved;
(v) nodes in a join condition must have the same label. As
in [10], we view each match as the minimal subtree containing
all nodes of a document that are mapped to a node of the
query. Queries are given using the standard XPath syntax (note
that some tree-pattern queries with joins cannot be expressed
in XPath 1.0 but they can all be expressed in XPath 2.0).

Example 1: Given the p-document of Fig. 1, we can
search for all contributors to a given article using the tree-
pattern query 𝑄1: //article[title=’Roger Waters’]

//contributor. Similarly, the tree-pattern query with
join 𝑄2: /articles/article[author=.//contributor]
looks for articles where the author appears among the contrib-
utors.
Though we focus on tree-pattern queries with joins for
simplicity, a similar processing can be applied to a larger
class of queries, namely locally monotone [10] queries.
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Fig. 1. Tree representation of a p-document with long-distance dependencies

III. PROBABILISTIC XML QUERY LINEAGE

Recall the example query 𝑄1 that looks for the list of
contributors to the revisions of the article entitled “Roger
Waters”. Looking at Fig. 1 we can see three matches to 𝑄1

on the deterministic document underlying the p-document,
corresponding to the three different “contributor” nodes. Nev-
ertheless, the system should return only two distinguished
answers to the user: “Sara” and “Antonio”. For each match,
we can construct the conjunction of all probabilistic literals on
the path from the root to one of the node matched by the query.
These conjunctions are called the probabilistic lineage of each
match. The first answer is about the contributor “Sara” that has
two probabilistic instances over the tree, and a corresponding
probabilistic lineage of:

𝜙𝑆𝑎𝑟𝑎 = 𝑐1 ∨ 𝑐3 = (𝑒5 ∧ 𝑒2 ∧ 𝑒1) ∨ (𝑒5 ∧ 𝑒4 ∧ 𝑒1).

The remaining item, “Antonio”, appears once and has thus
a DNF lineage composed only of the clause 𝑐2:

𝜙𝐴𝑛𝑡𝑜𝑛𝑖𝑜 = 𝑐2 = (𝑒5 ∧ 𝑒2 ∧ 𝑒3).

Because we only have conjunctions of literals on distribu-
tional nodes in PrXMLcie , probabilistic lineages are always
in disjunctive normal form (DNF). In the following, we will
often note this DNF 𝜙 =

⋁︀𝑚
𝑖=1 𝑐𝑖 and will call each 𝑐𝑖 a

clause of the DNF. In ProApproX, probabilistic events for a
given node are stored in an attribute node named “prob” of a
regular XML document, stored and managed by an ordinary
native XML DBMS. To retrieve items’ lineages, we need to
transform our XPath query 𝑄 into an XQuery query 𝑄′ that
returns the set of items that match the user query 𝑄, together
with their corresponding DNF lineage (i.e., for each instance
of an item, returns the concatenation of all “prob” attributes
of each match). For instance, for 𝑄1, we obtain 𝑄′

1:

f o r $ v a l in d i s t i n c t −v a l u e s
( / / a r t i c l e [ t i t l e = ’ Roger Waters ’ ] / / c o n t r i b u t o r )
order by $ v a l

re turn <match>{$ v a l }{
f o r $a in / / a r t i c l e
f o r $b in $a / t i t l e / t e x t ( ) [ . = ’ Roger Waters ’ ]
f o r $c in $a / / c o n t r i b u t o r
l e t $ l e a v e s : = ( $b , $c )
l e t $ a t t s : = ( f o r $ l in $ l e a v e s

where $c= $ v a l ( : The g r o u p i n g f u n c t i o n : )
re turn $ l / ances tor−or−s e l f : : * / @prob )

re turn <c l a u s e >{d i s t i n c t −v a l u e s

( f o r $ a t t in $ a t t s re turn s t r i n g ( $ a t t ) )
}</ c l a u s e >}

</match>

A generic translator from tree-pattern queries with joins
encoded in XPath into XQuery lineage queries is implemented
as part of ProApproX.

We can proceed similarly for Boolean queries, queries that
test for the match of a tree pattern. If 𝑄1 is seen as a tree-
pattern query, its probabilistic lineage over the document of
Fig. 1 is obviously 𝜙1 = 𝑐1 ∨ 𝑐2 ∨ 𝑐3, and a variation on 𝑄′

1

above produces this lineage.
We have thus separated the problem of querying probabilistic

XML into two independent problems: (i) evaluating an XQuery
query over a regular XML document; (ii) computing the
probability of a formula in DNF in order to obtain the
probability of a given answer. The former problem can be
solved using any XQuery processor; we use the native XML
DBMS BaseX1 after comparing its performance on our datasets
to other XQuery engines (in particular, to another native
XML DBMS, eXist2, and to an in-memory XQuery processor,
SAXON3). The latter problem is the focus of the remaining
of this paper.

Computing the exact probability of a formula in DNF is
a #P-hard problem in general, even when all events have
the same probability [11], and it is easy to see that any
DNF formula can be generated as the lineage of even a
trivial XPath query such as /A, see [5]. However, we are
going to detect some easy cases and exploit polynomial-time
randomized approximation algorithms [1] to build an efficient
query processor over probabilistic XML.

IV. ALGORITHMS AND COST MODELS

In this section we present a collection of algorithms for
computing or approximating the probability of a DNF for-
mula 𝜙. Based on the computational complexity of each of
these algorithms, we elaborate a cost model that estimates the
runtime (in ms) of each algorithm alg as a function costalg of
different features of 𝜙, of approximation parameters defined
further, and of a cost constant 𝐶alg representing the time
needed for the elementary, inner, parts of each algorithm.

1http://basex.org/
2http://exist-db.org/
3http://saxon.sourceforge.net/

http://basex.org/
http://exist-db.org/
http://saxon.sourceforge.net/


TABLE I
NOTATION

𝜙 DNF formula 𝜙 =
⋁︀𝑚

𝑖=1 𝑐𝑖
𝑚 number of clauses in 𝜙
𝑁 number of event variables used in 𝜙
𝑐𝑖 a clause of 𝜙
𝑘𝑖 size of clause 𝑐𝑖
𝐿 total size of 𝜙, 𝐿 =

∑︀𝑚
𝑖=1 𝑘𝑖

𝑡 number of trials (samples)
𝜀 approximation error

1− 𝛿 probabilistic approximation guarantee
ℓ lower bound on 𝜙’s probability

costalg cost of an algorithm alg
𝐶alg cost constant for algorithm alg

TABLE II
COST MODELS AND COST CONSTANTS

Algorithm alg costalg 𝐶alg (ms)

naı̈ve 𝐶naı̈ve × 2𝑁 × 𝐿 4 · 10−5

sieve 𝐶sieve × 2𝑚 × 𝐿
𝑚

5 · 10−5

AddMC 𝐶AddMC × ln 2
𝛿
× 𝐿

𝜀2
4 · 10−5

MulMC 𝐶AddMC × ln 2
𝛿
× 𝐿

ℓ2𝜀2
4 · 10−5

coverage 𝐶coverage × ln 2
𝛿
× (1+𝜀)×𝐿

𝜀2
10−3

A value for 𝐶alg is measured experimentally by varying the
size of synthetic formulas (see Section VIII for precisions on
generation) and recording the processing time of the actual
implementation of the algorithm on a given machine. We only
consider sequential processing here, see the conclusion for
discussions about parallelization. We give in Table I a summary
of the notation used and in Table II a summary of the cost
models of all algorithms.

A. Exact Computation

We start with exact computation algorithms. Since the
problem is #P-hard, only exponential-time algorithms are
known, but they are typically very fast on DNFs of small
size. We present two such algorithms, that are folklore, and
are well-suited, respectively, to the case when there are few
variables, or few clauses, in 𝜙.

Possible worlds (Naı̈ve algorithm): This algorithm cor-
responds to the naı̈ve, exponential-time, iteration over all
possible 2𝑁 truth value assignments to the 𝑁 variables used
in 𝜙, i.e., over all possible worlds. It simply consists in
summing up the probabilities of the satisfying assignments.
In the example of the previous sections, the formula 𝜙1 =
(𝑒5 ∧ 𝑒2 ∧ 𝑒1) ∨ (𝑒5 ∧ 𝑒2 ∧ 𝑒3) ∨ (𝑒5 ∧ 𝑒4 ∧ 𝑒1) has 5 different
variables, and we can enumerate all 32 possible worlds; 8
of them make 𝜙1 true, and one can check that their total
probability is 0.3744.

The computational complexity of the naı̈ve algorithm is
obviously 𝑂(2𝑁 × 𝐿): we enumerate all possible worlds, and
for each one we evaluate the truth value of the formula in
linear time. We therefore set the following cost:

costnaı̈ve = 𝐶naı̈ve × 2𝑁 × 𝐿

where 𝐶naı̈ve is determined experimentally as previously ex-
plained and is equal to 4 · 10−5 ms (see Table II for all cost
constants). This means, for instance, that the expected runtime
of the naı̈ve algorithm for a formula with 10 variables and of
length 500 is 𝐶naı̈ve × 210 × 500 ≈ 20ms (for the machine for
which the cost constants were computed), which is reasonably
low and shows that, at least for some DNF formulas, the naı̈ve
algorithm can be appropriate.

Inclusion–exclusion (sieve): It is also possible to apply
the inclusion–exclusion or sieve principle to compute the
probability of 𝜙. The sieve decomposition of the DNF 𝜙 is:

Pr

(︃
𝑛⋁︁

𝑖=1

𝑐𝑖

)︃
=

𝑛∑︁
𝑘=1

(−1)𝑘−1
∑︁

𝐼⊂{1,...,𝑛}
|𝐼|=𝑘

Pr(𝑐𝐼), where 𝑐𝐼 :=
⋀︁
𝑖∈𝐼

𝑐𝑖.

On our example, Pr(𝜙1) = Pr(𝑐1)+Pr(𝑐2)+Pr(𝑐3)−Pr(𝑐1∧
𝑐2)−Pr(𝑐2 ∧ 𝑐3)−Pr(𝑐1 ∧ 𝑐3) + Pr(𝑐1 ∧ 𝑐2 ∧ 𝑐3) = 0.108 +
0.27 + 0.126 − 0.054 − 0.0378 − 0.0756 + 0.0378 = 0.3744.
The computational complexity is 𝑂(2𝑚 × 𝐿

𝑚 ): the probability
of the conjunction of each set of clauses, whose typical size
is of the order of 𝐿

𝑚 , can be computed in linear time. We set:

costsieve = 𝐶sieve × 2𝑚 × 𝐿

𝑚
,

which becomes competitive with respect to the naı̈ve algorithm
when clauses are few but long.

Note that, as described here, the sieve method is numerically
instable. Implementing the sieve formula presented earlier in
floating-point arithmetic results in a low accuracy because
of rounding errors in sequences of additions and deletions.
The sieve method can be improved towards better numerical
stability using an algorithm proposed by Heidtmann [12].

B. Approximation Algorithms

We present in this section two randomized approximation
algorithms, giving respectively additive and multiplicative
guarantees. For fixed 𝜀, 𝛿, we say 𝐴(𝜙) is an additive 𝜀-
approximation of Pr(𝜙) with probabilistic guarantee 1− 𝛿 if,
with probability at least 1− 𝛿, the following holds:

Pr(𝜙)− 𝜀 6 𝐴(𝜙) 6 Pr(𝜙) + 𝜀.

Similarly, for fixed 𝜀 and 𝛿, 𝐴(𝜙) is a multiplicative 𝜀-
approximation of Pr(𝜙) with probabilistic guarantee 1 − 𝛿
if, with probability at least 1− 𝛿:

(1− 𝜀)× Pr(𝜙) 6 𝐴(𝜙) 6 (1 + 𝜀)× Pr(𝜙).

In Section VI, we explain how to turn additive guarantees into
multiplicative ones.

Additive Monte-Carlo: The simplest way to implement an
additive approximation is by sampling, Monte-Carlo–style, the
space of all possible assignments following the distribution of
the literals, and test whether the picked assignment satisfies at
least one clause. If we conduct 𝑡 trials, an (unbiased) estimator
𝐴(𝜙) for the probability of 𝜙 will be the proportion of the



trials that led to a satisfaction of 𝜙. Following Hoeffding’s
bound [13], we have:

Pr (|𝐴(𝜙)− Pr(𝜙)| > 𝜀) 6 2e−2𝑡𝜀2 .

Therefore, the number of trials 𝑡 needed to perform an (𝜀, 𝛿)-
additive approximation is:

𝑡 =

⌈︂
ln 2− ln 𝛿

2𝜀2

⌉︂
.

For each sample, the algorithm linearly scans the formula,
which gives an overall complexity of 𝑂(𝑡 × 𝐿) and a cost
model:

costAddMC = 𝐶AddMC × ln
2

𝛿
× 𝐿

𝜀2
.

Self-Adjusting Coverage Algorithm: This algorithm was
introduced by Karp, Luby, and Madras [14] and is a fully-
polynomial randomized approximation scheme (FPRAS), which
means it produces a multiplicative estimate of the probability.
We base our cost model on the following result:

SELF-ADJUSTING COVERAGE THEOREM I [14]. When 𝜀 <
1 and 𝑡 = (8 × (1 + 𝜀) × 𝑚 ln(2/𝛿))/𝜀2, the self-adjusting
coverage algorithm yields an (𝜀, 𝛿)-approximation.

Since each trial requires evaluating one clause of 𝜙, of
average size 𝑂( 𝐿

𝑚 ), we have:

costcoverage = 𝐶coverage ×
𝐿

𝑚
× (1 + 𝜀)𝑚

𝜀2
× ln

2

𝛿
.

As can be seen on Table II, the cost constant computed for this
self-adjusting coverage algorithm is much higher than the cost
constants for other algorithms, reflecting the fact that though it
has an excellent algorithmic complexity (indeed, practically the
same as Monte-Carlo sampling, which only yields an additive
approximation), this can still be a costly algorithm to use in
practice.

As we shall see, each of these four algorithms is most
efficient on some of the possible 𝜙’s. However, we do not
apply them on the whole formula, but start by decomposing 𝜙
into an evaluation tree built out of simpler formulas.

V. BUILDING THE EVALUATION TREE

We explain in this section how ProApproX decomposes a
DNF formula 𝜙 into an evaluation tree formed of simpler
subformulas. We assume here that no contradiction appears in
𝜙 (a clause that contains both 𝑥 and ¬𝑥 is removed from 𝜙
in a preprocessing step). To illustrate, we use the following
running example:

Example 2: Consider the formula 𝜙2 = (𝑒1∧𝑒2)∨(𝑒1∧𝑒3)∨
(¬𝑒4∧𝑒5)∨(𝑒4∧𝑒6)∨(𝑒4∧𝑒7). To compute Pr(𝜙2), we rewrite
𝜙2 as the composition of subformulas whose probabilities are
simpler to compute.

Our evaluation tree is based on three operations (indepen-
dence detection, factorization, inconsistency detection) that are
repeatedly applied on the original formula. All three operations
yield trees whose leaves are formula in DNF and whose internal
nodes are Boolean operations (independent disjunction ∨ ,
independent conjunction ∧ , and mutually exclusive disjunction
+) that support efficient probability computations.

Independence: We say that two clauses are independent
if they do not share any variables. Our first operation attempts
to write the DNF formula 𝜙 as an independent disjunction
𝜙′ ∨ 𝜙′′ of two DNF formulas that form a partition of 𝜙 such
that every clause of 𝜙′ is independent from every clause of 𝜙′′.
In our example, we can write 𝜙2 as ((𝑒1 ∧ 𝑒2) ∨ (𝑒1 ∧ 𝑒3)) ∨
((¬𝑒4 ∧ 𝑒5) ∨ (𝑒4 ∧ 𝑒6) ∨ (𝑒4 ∧ 𝑒7)).

Factorization: Our second operation consists in factoring
the intersection 𝑐 of all clauses 𝑐𝑖 of formula 𝜙 out of the
clauses, obtaining a rewriting of 𝜙 as 𝜙′ = 𝑐 ∧ (𝑐′1 ∨ · · · ∨ 𝑐′𝑚)
where ∧ denotes independent conjunction: 𝑐 is independent
of every 𝑐𝑖. Note that both operands of ∧ are in DNF: the
left-hand side is a simple conjunctive clause, and the right-hand
side is a DNF formula. If we apply this factorization to the
subformulas appearing in our previous rewriting of 𝜙2, we
obtain (𝑒1 ∧ (𝑒2 ∨ 𝑒3)) ∨ ((¬𝑒4 ∧ 𝑒5)∨ (𝑒4 ∧ 𝑒6)∨ (𝑒4 ∧ 𝑒7)).

Inconsistency: Our final operation looks for a partition
of a DNF formula into two inconsistent subformulas, i.e., a
rewriting of 𝜙 into 𝜙′ + 𝜙′′ where 𝜙′ and 𝜙′′ are partitions of
the clauses of 𝜙, and there is a variable 𝑥 such that all clauses
of 𝜙′ have a literal ¬𝑥 and all clauses of 𝜙′′ have a literal 𝑥.
Our example formula becomes (𝑒1 ∧ (𝑒2 ∨ 𝑒3)) ∨ ((¬𝑒4 ∧
𝑒5) + ((𝑒4 ∧ 𝑒6) ∨ (𝑒4 ∧ 𝑒7))).

Evaluation tree: ProApproX repeatedly applies these three
operations until no further rewritings are possible. We obtain
thus for 𝜙2:

(𝑒1 ∧ (𝑒2 ∨ 𝑒3)) ∨ ((¬𝑒4 ∧ 𝑒5) + (𝑒4 ∧ (𝑒6 ∨ 𝑒7))).

This defines an evaluation tree for 𝜙2 in a straightforward
manner; inner nodes are the Boolean operations ∨ , ∧ , +
(assumed binary for simplicity), and leaves are DNF formulas
that cannot be simplified any further (in the simple case of 𝜙2,
these are just trivial formulas formed of a single literal):

∨

∧

𝑒1 ∨

𝑒2 𝑒3

+

∧

¬𝑒4 𝑒5

∧

𝑒4 ∧

𝑒6 𝑒7

Note that the process is nondeterministic, since it depends on
the order of application of operations. We choose arbitrarily
one such order (independence, factorization, inconsistency,
and then the whole sequence again, until reaching a fixpoint,
which necessarily happens since all operators produce smaller
formulas than the original one). We do not make any claim
of optimality of the simplification obtained but observe that,
at least, leaf formulas obtained are independent of the order
(though the structure of the tree may differ):

Proposition 1: The set of formulas contained in leaf nodes
of the evaluation tree obtained by repeatedly applying the three
independence, factorization, inconsistency operator in whatever
order until reaching a fixpoint is independent of the order.
This can be proved by an induction on the size of the formula.



Our evaluation trees are essentially special cases of d-trees,
the decision diagrams used in the SPROUT [3] probabilistic
query engine, where we disallow Shannon expansion – as a
consequence, our evaluation trees always have a size bounded
by that of the original formula, in contrast with d-trees.

Evaluation trees can be used to compute the probability of
the main formula in terms of the probabilities of the formulas
on the leaves, thanks to the following observations:

Pr(𝜓1 ∨ 𝜓2) = 1− (1− Pr(𝜓1))× (1− Pr(𝜓2))

Pr(𝜓1 ∧ 𝜓2) = Pr(𝜓1)× Pr(𝜓2)

Pr(𝜓1 + 𝜓2) = Pr(𝜓1) + Pr(𝜓2)

Towards an evaluation plan: In general, the evaluation
tree of a formula still contains as leaves DNF formulas that
are hard to compute. To compute the probability of the global
formula, we turn these evaluation trees into evaluation plans by
assigning to every leaf of the tree one algorithm (either exact
or approximate) that will be used to compute the probability
of this leaf. This assignment will obviously use the cost model
for the different algorithms, but we need to be careful about
the following aspects of the problem: (i) We need to propagate
approximation parameters down the tree in a principled manner,
so that we keep the approximation guarantees on the global
probability (see next section). (ii) It is sometimes worth not
going down to the level of leaves of the approximation tree
to evaluate the probabilities, but to do it at a higher level; in
other words, we might want to assign evaluation algorithms to
internal nodes of the tree rather than to leaves (see Section VII).

VI. PROPAGATION OF APPROXIMATION PARAMETERS

Our overall objective is to obtain a multiplicative approx-
imation of the probability of a formula 𝜙 in DNF, given an
approximation tolerance 𝜀 and probabilistic approximation
guarantee 1 − 𝛿. We have explained in the previous section
that we will achieve this by decomposing 𝜙 into its evaluation
tree and assigning different algorithms, some exact, and some
approximate, to different parts of the tree. These assignments
must be decided on so that the produced precisions at each
node yield an overall approximation that does not exceed the
tolerance set for the approximation of the DNF formula as a
whole. In this section, we establish the different conditions for
correct error allocation for children of ∨ , ∧ , or + nodes, in
the case when the probability of both nodes is approximated to
a multiplicative factor (conditions for additive approximations
can be found in [15]). We also explain how the approximation
guarantee 1 − 𝛿 is propagated, and how to turn an additive
approximation into a multiplicative one.

Propagation of approximation error 𝜀:
Proposition 2: Let 𝜙 = 𝜓1 ∨ 𝜓2, and assume 𝑝1 and 𝑝2

are multiplicative approximations of Pr(𝜓1) and Pr(𝜓2), to a
factor of 𝜀1 and 𝜀2, respectively. Then 1 − (1 − 𝑝1)(1 − 𝑝2)
is a multiplicative approximation of Pr(𝜙) to a factor of 𝜀 if
𝜀 = 𝜀1 + 𝜀2.

Proof: Let us denote 𝑝 the probability of 𝜙 and similarly
𝑝1 and 𝑝2 the probabilities of 𝜓1 and 𝜓2; 𝑝1 and 𝑝2 are

multiplicative approximations of 𝑝1 and 𝑝2, and{︃
(1− 𝜀1)𝑝1 6 𝑝1 6 (1 + 𝜀1)𝑝1

(1− 𝜀2)𝑝2 6 𝑝2 6 (1 + 𝜀2)𝑝2

Then: {︃
1− (1 + 𝜀1)𝑝1 6 1− 𝑝1 6 1− (1− 𝜀1)𝑝1

1− (1 + 𝜀2)𝑝2 6 1− 𝑝2 6 1− (1− 𝜀2)𝑝2

And thus:

1− [(1− (1− 𝜀1)𝑝1)(1− (1− 𝜀2)𝑝2)] 6 1− (1− 𝑝1)(1− 𝑝2)

1− (1− 𝑝1)(1− 𝑝2) 6 1− [(1− (1 + 𝜀1)𝑝1)(1− (1 + 𝜀2)𝑝2)]

Let 𝛼 be 1− [(1− (1− 𝜀1)𝑝1)(1− (1− 𝜀2)𝑝2]. We have:

𝛼 = 1− [(1− 𝑝1 + 𝜀1𝑝1)(1− 𝑝2 + 𝜀2𝑝2)]

= 1− (1− 𝑝1)(1− 𝑝2)⏟  ⏞  
=p

− [(1− 𝑝1)𝜀2𝑝2 + (1− 𝑝2)𝜀1𝑝1 + 𝜀1𝜀2𝑝1𝑝2].

Let 𝜆 = [(1 − 𝑝1)𝜀2𝑝2 + (1 − 𝑝2)𝜀1𝑝1 + 𝜀1𝜀2𝑝1𝑝2]. 𝜆
𝑝 =

(1−𝑝1)𝜀2𝑝2+(1−𝑝2)𝜀1𝑝1+𝜀1𝜀2𝑝1𝑝2

𝑝1+𝑝2−𝑝1𝑝2
. Let Π = max(𝑝1, 𝑝2); we

have 𝑝 > Π. We write 𝜆 as 𝜀1𝑝1[1+𝑝2(𝜀2−1)]+𝜀2𝑝2(1−𝑝1);
clearly, 𝜆 6 𝜀1Π+ 𝜀2Π. Then 𝜆

𝑝 6 (𝜀1 + 𝜀2)
𝑝
𝑝 6 𝜀1 + 𝜀2 = 𝜀

and 𝜆 6 𝜀𝑝.
We proceed similarly for the upper bound.
In practice, when we propagate an 𝜀 factor down the tree,

we look for different combinations of 𝜀1 and 𝜀2 that satisfy
a given propagation condition at a parent node, evaluate the
cost of each combination, and choose the best found (this is
one example of the general exploration of evaluation plans
described in the next section). Note that if 𝜀1 = 0 (that is, if
we compute the exact value of Pr(𝜓1)), we can set 𝜀2 = 𝜀.

Proposition 3: Let 𝜙 = 𝜓1 + 𝜓2, and assume 𝑝1 and 𝑝2
are multiplicative approximations of Pr(𝜓1) and Pr(𝜓2), to a
factor of 𝜀1 and 𝜀2, respectively. Then 𝑝1+𝑝2 is a multiplicative
approximation of Pr(𝜙) to a factor of 𝜀 if 𝜀 = max(𝜀1, 𝜀2).

Proof: We use the same notation as before.{︃
𝑝1 − 𝜀1𝑝1 6 𝑝1 6 𝑝1 + 𝜀1𝑝1

𝑝2 − 𝜀2𝑝2 6 𝑝2 6 𝑝2 + 𝜀2𝑝2

and then:

𝑝1 + 𝑝2 − 𝜀1𝑝1 − 𝜀2𝑝2 6 𝑝1 + 𝑝2 6 𝑝1 + 𝑝2 + (𝜀1𝑝1 + 𝜀2𝑝2)

Note that (𝜀1𝑝1 + 𝜀2𝑝2) 6 𝜀(𝑝1 + 𝑝2) = 𝜀𝑝 which gives the
required lower bound; the upper bound is similar.
In particular, if 𝜀1 = 0 we can set again 𝜀2 = 𝜀.

For the ∧ operator, observe that it never appears between
two arbitrary DNF formulas, but between a formula in DNF
and a conjunction; the probability of the latter can be evaluated
exactly in a tractable manner. We thus just state the propagation
condition in this case:

Proposition 4: Let 𝜙 = 𝜓1 ∧ 𝜓2, and assume 𝑝1 is a
multiplicative approximation of Pr(𝜓1) to a factor of 𝜀1. Then
𝑝1 × Pr(𝜓2) is a multiplicative approximation of Pr(𝜙) to a
factor of 𝜀 if 𝜀 = 𝜀1.



Propagation of approximation guarantee 1 − 𝛿: The
propagation of the guarantee 1 − 𝛿 is quite straightforward.
We assume approximations of different subformulas are going
to be carried out in an independent manner, using different
samples. Then, if:{︃

Pr(|𝑝1 − 𝑝1| 6 𝜀1𝑝1) > 1− 𝛿1

Pr(|𝑝2 − 𝑝2| 6 𝜀2𝑝2) > 1− 𝛿2

we have:

Pr((|𝑝1−𝑝1| 6 𝜀1𝑝1)∧(|𝑝2−𝑝2| 6 𝜀2𝑝2)) > (1−𝛿1)(1−𝛿2).

This gives the propagation rule: 1− 𝛿 = (1− 𝛿1)(1− 𝛿2).
In ProApproX, in any case where we use approximations for

both operands of one of the internal nodes of the evaluation
tree, we simply set 𝛿1 = 𝛿2 = 1−

√
1− 𝛿.

Multiplicative guarantee from additive approximations:
Resorting to an execution plan using additive algorithms with
the ultimate goal of producing a multiplicative tolerance, might
sometimes be more efficient then running a multiplicative
approximation. In that case, we would like the result to be
within a multiplicative error interval [𝑝 − 𝑝𝜀, 𝑝 + 𝑝𝜀] of the
probability 𝑝, for a given 𝜀. Thus, we need to set an input error
𝜀add for the additive algorithm, so that: 𝜀add = 𝜀𝑝. It is not
possible to exactly determine this value since 𝑝 is the quantity
that we are actually looking for. What we propose is to use
a lower bound ℓ for 𝑝 and set 𝜀add to ℓ𝜀. This guarantees
us that 𝜀add is small enough to obtain a multiplicative error
of 𝜀. One such simple lower bound, used in ProApproX, is
the maximum probability of a clause of the DNF, that can be
easily determined by a linear scan of the DNF.

Using this trick, we can see Monte-Carlo sampling as a
multiplicative approximation algorithm, with a new cost model
of costMulMC = 𝐶AddMC × ln 2

𝛿 × 𝐿
ℓ2𝜀2 .

VII. EVALUATION PLANS

We now have all necessary components for defining eval-
uation plans of a DNF formula 𝜙. An (𝜀, 𝛿)-evaluation plan
for 𝜙 is a subtree of the evaluation tree of 𝜙 presented in
Section V, with the same root, where every leaf is associated
with an algorithm among the four described in Section IV,
and, when this algorithm is an approximation algorithm, with
approximation parameters 𝜀′, 𝛿′. We further require that these
approximation parameters guarantee a multiplicative (𝜀, 𝛿)-
approximation of 𝜙, following the constraints of Section VI.
The cost of a leaf of an evaluation plan is the cost of applying
the given algorithm on the formula at that leaf. The cost of
an evaluation plan is defined as the sum of the costs of all
leaves (we thus ignore the cost of combining the probabilities
at each internal node, which amounts to evaluating a constant
number of arithmetic operations, see Section V). There are
many (indeed, infinitely many in general) evaluation plans for
a given formula 𝜙, corresponding to different subtrees of the
evaluation tree, and to different assignments of approximation
parameters. Our goal is to find one of minimum cost.

When propagating an error bound 𝜀 from one node to its
children, many possible different values for 𝜀1 and 𝜀2 can be

used (e.g., under the condition 𝜀1 + 𝜀2 + 𝜀1𝜀2 6 𝜀 for two
approximated nodes linked by and independent disjunction,
different values for 𝜀1 and 𝜀2 satisfy the condition). We can find
the best assignment locally for the direct descendant of a node
by finding the global minimum of the (𝜀1,𝜀2) function. However,
this does not necessarily guarantee producing the most optimal
propagation for the whole tree. Indeed, if we decide also to
vary the allocation of these parameters, the number of possible
plans is unbounded. Inspired by query optimization techniques,
we can explore the space of evaluation plans for such a case by
sampling a large number of them, evaluating the cost of each,
and choosing the best one found, which is thus not necessarily
optimal, but can be good enough in practice.

After experimenting with such a sampling technique (see [15]
for details), we decided instead to use in ProApproX a
more deterministic approach: we first decide on an adequate
allocation of the approximation parameters, and then look for
the best evaluation plan with respect to these. Our exploration
of the search space is based on the following principles. We
start with the evaluation tree, and global 𝜀, 𝛿:

1) First visit of the tree (top-down): We recursively assign 𝜀
and 𝛿 values down the tree, following the logical operator
at the parent node, and propagation rules from Section
VI; we always set 𝜀1 = 𝜀2 and 𝛿1 = 𝛿2;

2) Second visit of the tree (bottom-up):
a) We assign the best evaluation algorithm for a given

node, following local parameters and based on the cost
model;

b) If a given node is assigned with an exact algorithm,
we re-assign unused 𝜀, 𝛿 to nodes already assigned with
an approximation algorithm, or to remaining nodes of
the tree;

c) We restart (a,b) for the next node (including inner
nodes);

3) Third visit of the tree (bottom-up): We then decide whether
we want to chose to apply the algorithm at a given
node (and forget about the algorithms assigned to its
descendants) or at one of its ancestors.

Example 3: Fig. 2 illustrates a mock-up example of a best
evaluation plan, or best-tree, where computation nodes are
marked with flags (framed nodes in the example compilation
tree). Note that the algorithm for finding the best-tree in the
deterministic case amounts to comparing the cost of a node
with that of its children (a child node is never more expensive
than its parent; however, the sum of children costs can exceed
a parent-node cost).
As we shall see, proceeding this way leads to better results
than always choosing, say, the full evaluation tree.

VIII. EXPERIMENTS

In this section we evaluate our approach experimentally. We
address the following questions: (1) How does our new query
evaluation method compare to the state of the art in probabilistic
XML database query processing? (2) How accurate are the
results? (3) How effective is the tree compilation of the DNF
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Fig. 2. Example best evaluation plan obtained by the deterministic procedure

formula over simply performing an exact or an approximate
computation of the whole formula?

Experimental Setup: We implemented our system in Java.
XQuery lineage queries, translated from the original XPath
queries, are evaluated over the XML dataset through the
XML::DB API for BaseX, the native XML DBMS. Using this
API gives us the flexibility of plugging in an arbitrary XML
database engine. All indexing features of BaseX (in particular,
path summaries and text node index) were turned on. The
resulting DNF formulas are then compiled into trees, potential
evaluation strategies are explored and their cost assessed, and
the chosen strategy is then run to evaluate the probability of
the query. Our experiments were run on a desktop PC with an
Intel Xeon CPU at 2.40 GHz running 64 bit Linux, with the
data accessed by BaseX located on a standard magnetic disk.

Data and Queries: Our evaluation was carried out on
three different datasets, two of them previously used in the
probabilistic XML literature, the third one a synthetic dataset.

1) We used the MondialDB probabilistic XML document
with local dependencies and 15 tree-pattern queries that
served to evaluate EvalDP [1], [5]. EvalDP is a linear-time
bottom-up algorithm for evaluating tree-pattern queries
without joins on local-dependency p-documents. The
queries have between two to six nodes depending
on their complexity and selectivity. The p-document,
also provided by the authors of [1], has been created
by adding random probabilistic choices in a regular
XML document. We added two extra queries with a
join (/mondial//country[.//name=@name] and
/mondial//country[.//@capital=.//@id])
to showcase the fact that ProApproX is able to deal with
join and no-join queries indifferently.

2) We also obtained the Movies dataset and queries, used by
Hollander and Van Keulen in [2], from the authors of that
work. [2] explores the feasibility of storing and querying
probabilistic XML documents in a probabilistic relational
database. The authors considered real-life uncertain data
obtained from a probabilistic data integration applica-
tion [7], that produces a local-dependency p-document.
The application integrates movie data from a TV guide4

4http://www.tvguide.com/

with that of the Internet Movie Database5. As in [2], the
queries were ran over five p-documents of different sizes.

3) Finally, we tested the performance of our DNF probability
evaluator over synthetic data: random DNF formulas
with a number of literals 𝐿 ranging from 1 to 700,000.
Specifically, for a given target size number of literals, we
iteratively randomly drew clauses in the following manner,
until the target size was reached: first, draw a random
clause size uniformly at random between 1 and [𝐿/3,
𝐿/10, and 𝐿/100]; second, uniformly draw positive or
negative literals from a fixed set of variables (of size 𝐿/2)
avoiding contradicting literals.

Methodology: Each query is translated into an XQuery
lineage query that is evaluated on BaseX to capture the DNF
lineage. The time of this operation is what we call XQuery
time. To compare our approach to baselines, we first run the
four main computation algorithms over the entire DNF lineage:
sieve and naı̈ve algorithms, Monte-Carlo sampling, and the self-
adjusting coverage algorithm. The computation is stopped at
one minute if not finished before. Afterwards, we fully compile
the DNF in a tree structure. We then use our cost model to
determine what the best strategy to evaluate the probability of
each leaf. We call this the full-tree strategy. Finally, we used the
exploration strategy detailed in Section VII to find, if possible,
a tree whose cost is lower than both the cost of evaluating the
whole DNF with any of the algorithms and the cost of the full
tree strategy. This is the best-tree strategy, for which we can
distinguish between the Compilation time spent in decomposing
the DNF using the three presented operators in Section V, the
Exploration time (to decide of the best tree and of the best
allocation of error bounds and evaluation algorithms) and the
Evaluation time itself, when the actual evaluation algorithms
are run and the final probability is obtained. The running
time of the best-tree strategy, ProApprox’s default behavior,
is thus obtained by summing Compilation time, XQuery time,
Exploration time, and Evaluation time. In all experiments, we
set the parameters for a multiplicative approximation with
𝜀 = 0.1 and a reliability factor 𝛿 = 95%.

Baselines: In addition to the simple algorithms already
mentioned, we compare to three different state-of-the-art
systems for probabilistic database querying, whenever possible:

EvalDP [1], a linear-time query evaluator for tree-pattern
queries (without joins) over local-dependency p-documents.
Because of these two restrictions, this algorithm is only
applicable for the part of the MondialDB dataset that does not
contain joins. We use the implementation kindly provided by
the authors of [1].

Trio [16] is a probabilistic relational DBMS that was used
in [2] to encode the data and queries of the Movies dataset,
using an ad-hoc encoding for this particular dataset. We did
not reimplement this encoding and just take the experimental
figures from [2] (they are thus not completely comparable, but
the order of magnitude remains significant).

5http://www.imdb.com/

http://www.tvguide.com/
http://www.imdb.com/
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SPROUT [3] is the query engine of the PostgreSQL-based
MayBMS probabilistic DBMS [17], and the state-of-the-art
in probabilistic database querying. To use it for our purpose,
we first retrieved the DNF lineage of the queries over the
p-document, and then encoded this DNF lineage as MayBMS
relations (each clause is a row of the relation, whose arity is
proportional to the maximum number of literals in a clause).
This required some modifications to the latest available version
of SPROUT6 since it did not support out-of-the-box relations of
arbitrary arity; we also run into some PostgreSQL configuration
issues in the process. To get fair timings that do not include any
disk-management PostgreSQL-specific time, we also inserted
snippets of code to record the time needed to run the probability
computation (compilation and evaluation of the lineage) and
only that. We use the two-argument aconf() function that
approximates the probability of a query in MayBMS (using an
optimal algorithm based on Monte-Carlo sampling [3]), with
the same 𝜀, 𝛿 parameters as for ProApproX7. Since this baseline
also requires first extracting the DNF lineage, we add to aconf()
timings the XQuery time as well, as we do for ProApproX. The
number of literals per clause in the synthetic dataset proved too
large for MayBMS, so we only report timings for MondialDB
and Movies.

MondialDB: We show experimental results of our system,
and baselines on all MondialDB queries, grouped by type,

6http://www.cs.ox.ac.uk/projects/SPROUT/
7We were not able to make the other probability computation functions, the

exact conf() and the deterministic approximation conf(’M’,𝜀) based on d-trees,
run on relations of arbitrary arity.

TABLE III
PROPORTION OF THE TIME SPENT ON EACH PART OF THE QUERY

EVALUATION ON THE MONDIALDB DATASET (COMP: COMPILATION TIME,
EXP: EXPLORATION TIME, EVAL: EVALUATION TIME)

Query type Avg DNF size XQuery Comp Exp+Eval

2 6 96.82% 2.47% 0.71%
3 5 98.19% 1.38% 0.42%
4 43 97.41% 2.01% 0.58%
5 252 64.47% 33.76% 1.78%
6 6 99.69% 0.29% 0.03%

4+join 3656 61.49% 36.12% 2.39%

in Fig. 3. The best tree strategy of ProApproX has highly
competitive execution time, being in all cases under 100ms
and the fastest probability computation method, sometimes
tied with one of the baselines. The best baseline algorithm
depends on the query: when the lineage is simple (types 2, 3,
or 6) exact naı̈ve or sieve computation methods are extremely
fast, and this is the choice that our optimizer selects. On query
type 4, Monte-Carlo approximations are fast (usually the sign
of a high lower bound on the probability value, making it
easy to derive a multiplicative approximation from an additive
approximation). On query type 5 and join queries, interestingly
enough, the best-tree strategy is significantly faster than all
simple baselines, meaning that our evaluation tree is useful
and that different evaluation strategies need to be applied to
different nodes of the tree.

Unlike EvalDP, whose performance is linear in the size of the
data (and remains in our experiments relatively uniform for all
queries), the performance of ProApproX is obviously related to
both the size and the complexity of the lineage DNF. The part
that is directly related to the size of the data in ProApproX is the
XQuery time recorded by BaseX for lineage query evaluation.
But the part that is sensitive to the size of the DNF lineage
is the compilation time. As shown in Table III, the majority
of the time is spent in XQuery evaluation for all queries on
this dataset. For queries with larger DNFs, the Compilation
time becomes relatively important. The time required for the
Exploration and Evaluation phases remain negligible in all
cases. Finally recall that EvalDP is neither able to deal with
join queries, nor with long-distance dependencies, contrarily
to ProApproX.

http://www.cs.ox.ac.uk/projects/SPROUT/
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Fig. 5. Running time of the different algorithms on query 𝑄3 of the movie
dataset [2]; times greater than 6s are not shown; times for Trio from [2]

With respect to SPROUT’s aconf(), we recorded improve-
ments of one order of magnitude on the largest DNFs. For
the last categories of queries, runtimes for aconf() were of the
order of several seconds, while ProApproX never exceeded
100 milliseconds.

Fig. 4 shows how accurate the result of ProApproX are,
compared to exact results, on one particular run of the algorithm
(since we use sampling, errors tend to be averaged out if
we consider multiple runs). It shows that for most results
ProApproX achieves high accuracy. For 14 out of 15 queries,
we record an accuracy far below our relative error margin of
0.1. For one of the 15 queries, we have an error slightly higher
than 0.1, in line with what is expected: with a 𝛿 of 95% and
for 15 queries, there is a chance of 1− 0.9515 = 53.6% that
we produce, at least once, a relative accuracy beyond 0.1.

Movies: For the three queries of this dataset, the run
time on the five p-documents was recorded to be almost one
order of magnitude lower then the performances presented
by the authors in [2] using Trio, a relational probabilistic
DBMS [16]. In Fig. 5, we plot the performance over the
join query 𝑄3; points missing in the figure mean runtimes
greater than 6 seconds. It is interesting here to note that
Trio has a performance of about 40 seconds on the largest
p-document (19,475 nodes), while ProApproX took around
200 milliseconds.

Fig. 5 also compares the best-tree strategy to the full-tree
strategy (always evaluating the leaves of the evaluation tree)
and shows that in this particular example, the latter is always
efficient (or very close to the most efficient). It seems also that
it is quite efficient to apply the coverage algorithm to the whole
formula, which hints that the full tree might not have many
levels (the lineage clauses might be highly correlated). We
have seen in Fig. 3 that, for some other datasets, the coverage
algorithm is not efficient. The point here is that by using a cost
optimizer, we are able in all cases to find the most efficient
evaluation strategy (or one close to it).

Recorded run times for MayBMS were much higher than
times spent by the best evaluation tree in ProApproX to

compute the probabilities. Furthermore, we noted that for
the last query, whose DNF size is of 47,011 variables, and
over the largest document (19,475 nodes), SPROUT was
running indefinitely, failing to return an estimation of the DNF
probability; we stopped the process after two hours. The reason
why aconf() may perform disappointingly on these DNFs is that
it was not really designed for lineages with large clauses such as
those we get from PrXML querying. Conversely, ProApproX
would probably perform worse than SPROUT on typically
relational data and queries.

Finally, note that to estimate the probability of a query, a
MayBMS user has to choose among the different probability
computation functions; if she calls aconf(), she will always
get approximations of the result, even in cases when the exact
computation is efficient, unlike ProApproX. Indeed, when one
varies approximation parameters, ProApproX ends up switching
to an exact algorithm, while the runtime of MayBMS keeps
increasing as the conditions on approximations become stricter.

Synthetic Data: Fig. 6 presents the performance of
different evaluation methods on synthetic data: additive Monte-
Carlo, self-adjusting coverage, evaluation over a fully compiled
tree (Full tree), and evaluation over the best execution plan
(Best tree) that ProApproX chooses for a DNF probability
computation. Note that times shown on the top line are actually
anywhere beyond. The running time of the self-adjusting
coverage algorithm is directly proportional to the size of
the formula (i.e., appears as an exponential in a log-linear
plot). This is not the case, however, for Monte-Carlo sampling
because of the use of the lower bound on the DNF probability:
when this value is relatively high (apparently the case for most
of the big random DNFs of Fig. 6), Monte-Carlo sampling can
be very efficient. On the other hand, when the lower bound is
low, the Monte-Carlo algorithm can be quite ineffective, as is
shown by the irregular variation recorded for this algorithm
over DNFs of different sizes. Our best-tree strategy significantly
outperforms the self-adjusting coverage algorithm and gives
very low running times (of usually less than 100ms) for DNFs
holding until 104 variables. It also outperforms Monte-Carlo for
most of the cases, especially for DNFs with low probabilities.
However, when the data scales (DNFs with sizes larger than
∼105.6), Monte-Carlo may record better time, which is due to
the compilation time needed by ProApproX before deciding
on the best strategy. Yet the difference in running time remains
reasonable. Interestingly, for very large formulas, the best-tree
strategy does a better job than the full-tree strategy. Most
importantly, the best tree is always under 6s, even though
it is sometimes not the quickest (cf. Monte-Carlo), which
empirically demonstrates that it is much more robust.

IX. RELATED WORK

Probabilistic data management: Managing probabilistic
and uncertain data is a topic of much current interest in database
research, and there has been a significant amount of work under
the relational database scheme. Extensive literature and many
systems and prototypes have been introduced, such as Trio [16]
and MayBMS [18], [19].
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Fig. 6. Running time of the different algorithms on the synthetic dataset

SPROUT [20], the query engine integrated in the prob-
abilistic relational database MayBMS [19], considers query
evaluation on probabilistic tables, for a query language that goes
from Boolean conjunctive queries without self-joins [21] to
positive queries [3], to queries with negation [22]. For tractable
queries, the confidence computation is based on OBDDs [23]. If
a DNF lineage is captured, it is compiled to a novel kind of de-
cision diagrams called d-trees, exploiting negative correlations
(inconsistency), independence, and factored representations.
In [3], the authors pointed out the need for more advanced and
more accurate – but still efficient – techniques for estimating
lower and upper bounds of probability values.

Fink and Olteanu [24] also addressed the problem of
approximating lineage formulas that are hard to evaluate with
read-once formulas, where every variable occurs at most once,
or read-once formulas in disjunctive normal form; note that the
input lineage formula cannot include negated literals, which
makes it inapplicable to our setting.

Probabilistic XML: Meanwhile, the semistructured model
has received less attention. See [4] for a survey of the
probabilistic XML literature.

Early work on query evaluation over p-documents was
carried out by Kimelfeld, Kosharovsky, and Sagiv in [1],
[5], resulting in the EvalDP algorithm that natively processes
positive tree-pattern queries, without join. The algorithm is
restricted to run only over p-documents with local dependencies,
i.e., where dependency can only happen between children of a
same parent node. This linear-time bottom-up processing of
the tree has first-rate performance, and has been generalized to
arbitrary monadic second-order queries through tree automata
techniques [25], but is not applicable to queries or data that
involve correlations.

In [1], Kimelfeld, Kosharovsky, and Sagiv proposed as
a proof of the existence of a randomized polynomial-time
approximation scheme an alternative sampling algorithm to
obtain a multiplicative approximation of a Boolean query.
The probability of query 𝑄 being true in a random in-
stance P can be computed [1] by:

∑︀𝑛
𝑖=1 Pr(𝑚𝑖 C P) ×

Pr
(︁⋀︀𝑖−1

𝑗=1 ¬(𝑚𝑗 C P) | 𝑚𝑖 C P
)︁

, where Pr(𝑚𝑖CP) is the
probability that a match 𝑚𝑖 of 𝑄 remains in P . The first

term is easy to compute by just gathering the probabilities
of all events involved in the match; the second term can be
approximated by conducting biased draws to considerate the
probability that none of the preceding matches exists in the
random document P , given that a current match 𝑚𝑖 appears
in that same document. We implemented this algorithm in [26],
a demonstration of an early version of ProApproX without any
form of cost estimation, and the evaluation leads to very good
accuracy. Nevertheless, the convergence guarantee [1] that is
obtained from Hoeffding’s inequality requires a running time
growing in 𝑂(𝑚3 ln𝑚) in the number of matches (i.e., in the
number of clauses of the lineage formula).

DNF probability estimation: We replaced this method by
the self-adjusting coverage algorithm, a linear multiplicative
estimation of the number of assignments satisfying a DNF, and
an extension of the earlier coverage algorithm for the union of
sets problem, proposed by Karp, Luby and Madras [14] (with
the background motivation of managing network reliability
issues). The DNF counting problem is the special case of the
DNF probability problem when all variable probabilities are
0.5, in which case Pr(𝜙) = #𝜙

2𝑁
(with #𝜙 the number of

satisfying assignments of 𝜙). Both coverage and self-adjusting
coverage algorithms for the DNF counting problem can easily
be modified for the DNF probability problem, yielding (𝜀, 𝛿)-
approximation algorithms, as shown in a subsequent work by
Luby and Velickovic [27], and as deployed in ProApproX.

Systems: At the practical level, a full-fledged probabilistic
XML data management system is still missing. Hollander
and van Keulen [2] investigate the adequacy of probabilistic
relational databases for querying probabilistic semistructured
data by mapping XML to relational data. Queries can then
be transformed into relational queries and evaluated using
a system such as Trio, for which efficient query evaluation
algorithms have been developed, both exact and approximate.
The downside of the approach is that relational databases do
not exploit the specific characteristics of tree-like data encoded
into databases, that for instance makes tree-pattern queries over
local models tractable [1].

Preliminary ideas leading to this work were presented in [26],
[28] though the material presented in Sections IV–VIII, as well
as the use of a cost estimator to optimize the running time of



the probability computation, are fully novel. Details that could
not fit in this article are available in [15]. A demonstration of
the latest version of ProApproX has been presented in [29].

X. CONCLUSION

We have introduced an original optimizer-like approach
to evaluating query results over probabilistic XML. Though
some components are specific to this setting (in particular, the
translation from XPath queries to XQuery lineage queries), the
core of our system aims at solving the very general problem
of computing (approximate) probabilities of propositional
formulas built out of independent random variables, in an
efficient manner. Our formula decomposition technique assumes
that the formula is in DNF, but the technique could probably
be extended to arbitrary formulas.

The first principle our approach relies on, as well as the
main observation from our experiments, is that the optimal
probability evaluation algorithm to use depends on the char-
acteristics of the formula: if the formula has few variables,
go with the naı̈ve algorithm; if it has few clauses, with the
sieve algorithm; if the probability is known to be close to 1,
with Monte-Carlo sampling; if the formula was obtained from
evaluating a tree-like query over a tree-like structure, use a
technique such as EvalDP; if nothing else works, use the self-
adjusting coverage algorithm. Our cost model captures this.
The second principle is that different algorithms can be used
to evaluate the probability of different parts of a formula.
Our formula decomposition technique, and our exploration of
possible evaluation trees, makes use of this.

In ProApproX, the production of the lineage from the original
p-document and query and the evaluation of the probability
of this lineage are fully independent. Each of these problems
can thus be optimized independently (using, respectively, the
XML query optimization of a native XML DBMS, and our
formula probability evaluation technique). However, it is likely
that exploiting the structure of the query to obtain lineage
that is already factorized would result in even more efficient
evaluation. This is an obvious direction for future research.

Other potential improvements of interest would be (i) to
refine our cost model with non-linear functions of the size
of the formulas, to take into account second-order terms in
the complexity of the algorithms; (ii) to keep the same 𝛿’s
parameter across the whole tree by performing correlated
samples in all branches of the tree – this is not trivial either,
since we need to keep track of all partial samples performed;
(iii) to exploit the fact that most evaluation algorithms are
effortlessly parallelizable (with the exception of the self-
adjusting coverage algorithm, which requires synchronization)
to distribute the probability computation.
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