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Abstract. We describe a system for analyzing form-based websites to
discover sequences of actions and values that result in a valid form sub-
mission. Rather than looking at the text or DOM structure of the form,
our method is driven by solving constraints involving the underlying
client-side JavaScript code. In order to deal with the complexity of client-
side code, we adapt a method from program analysis and testing, con-
colic testing, which mixes concrete code execution, symbolic code trac-
ing, and constraint solving to find values that lead to new code paths.
While concolic testing is commonly used for detecting bugs in stand-
alone code with developer support, we show how it can be applied to the
very different problem of filling Web forms. We evaluate our system on
a benchmark of both real and synthetic Web forms.

1 Introduction

Finding data on the Web is useful for search, information extraction, and aggre-
gation. The massive scale of the Web and the data itself means these tasks must
necessarily be automated. Interesting data is often hidden behind user interfaces,
and in particular Web forms. For example, airline or real-estate websites provide
free access to their data via search forms, but there is no public API or standard
way to access this information. This data is “hidden” from Web search engines
and other automated tools, and makes up the deep or hidden Web [8,21].

An automated tool accessing Web forms must find some sequence of user
actions (for example clicking buttons or filling input fields) which leads to a
successful form submission: one that leads to the target data. These actions
might involve complex interactive user-interface elements such as drop-down
lists, date pickers, and tabs. In addition, they must satisfy certain restrictions
on the actions and inputs given such as mandatory and optional fields, and
validation rules for input values. This combination of actions and input values
creates a huge search space for form filling tools to consider. The restrictions
on input actions and values are normally enforced in the browser directly with
client-side JavaScript (for usability) and again on the server when the query
is received (for security). Human-focused interfaces and input validation rules
make it difficult for automated tools to correctly fill and submit the forms.

Much research has been devoted to effective, automatic form-filling [5,25,26,
30,32,45], or even further, to generating wrappers which use the form to look up
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Listing 1. Validation code for the example airline form.
function validate to() {

var from = document.getElementById(”from”).value;
var to = document.getElementById(”to”).value;
return validate aux(from, to);

}
function validate aux(from, to) {

if (from.length == 0) { alert(”Error: Departure airport must be set”); return false; }
if (from == to) { alert(”Error: Departure must differ from Destination”); return false; }
return true;

}
function validate date() {

var to = document.getElementById(”from”).value;
var date = document.getElementById(”date”).value;
if (to.length == 0) { alert(”Error: Destination Airport must be set”); return false; }
var day = parseInt(date.substr(0, 2), 10), month = parseInt(date.substr(3, 5), 10);
var now = new Date();
var valid = (month>=now.getMonth()+1 && (month!=now.getMonth()+1 || day>=now.getDate()));
if (!valid) { alert(”Error: date cannot be before today”); return false; }
return true;

}

and extract data [18,40,43]. A common target is search fields, which generally
have no validation constraints [5,26,39]. Other work assumes domain knowl-
edge, encoded in heuristics or rules [18]. For complex fields in the absence of
domain knowledge, approaches to finding field values include sampling text on
the page [28], and the application of machine learning techniques [25,34]. With-
out both domain knowledge and a corpus of examples, these approaches cannot
infer constraints enforced by client side code, and thus cannot find satisfying val-
ues. We aim to supplement these approaches with constraint-driven form filling,
which analyzes client-side code to determine constraints being enforced on form
actions and values, and solves these constraints to yield successful submissions.
Constraint-driven form filling allows form exploration tools to exploit the rapid
advances in constraint-solving technology [6,13,27].

Example 1. Consider an airport form, which includes fields From and To (with
identifiers “from” and “to”, respectively) with values populated from a drop-
down list, along with field Date (with identifier “date”) populated by a date
picker. A snippet of the form’s validation code is shown in Listing 1, where
validate to is attached to the To field, and validate date is attached to the Date
field. For To, the code checks that the From field has already been filled and that
it is not equal to To. For Date it checks that To is already filled and that the
date entered is later than today’s date (for simplicity, all dates are assumed to
be in the current year).

Note that the validation code involves restrictions on both the values of the
fields, and on the order in which they are filled. In addition to the constraints
explicitly enforced by the event handlers, there are a number of implicit con-
straints on the field: for example, From and To are implemented by drop-down
lists, so the values can only be chosen from a certain pre-determined set. A
form-filling or wrapper-generation tool must find values that satisfy all of these
constraints.
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Static analysis of the underlying code can in principle determine the set of
restrictions enforced by the code (and thus values leading to form submission).
Unfortunately, analyzing JavaScript code used on the Web is notoriously dif-
ficult [7]. Thus a popular intermediate position in testing JavaScript code is
dynamic analysis, with a well-known approach being concolic testing [20,42].
Concolic testing combines concrete and symbolic execution, using the symbolic
analysis and constraint solving to generate new concrete input values to test.
The goal is to generate test inputs which cover each distinct code path in the
program or function being tested.

We introduce FormSolve, which applies the idea of mixing execution, sym-
bolic tracing, and constraint solving to the exploration of Web forms. FormSolve
will generate input actions and values for Web forms, symbolically trace the code
executed with these inputs, and solve constraints that will lead to new inputs
which reach new code paths.

We propose a refinement of concolic testing tuned for Web forms. This
involves many challenges that are not encountered in concolic testing of stan-
dalone code. Instead of using a constraint solver to find input values for a single
function, our concolic testing algorithm explores sequences of user input events,
along with their corresponding values, that may trigger a set of event-handling
functions. Our browser infrastructure allows the symbolic tracing of this event-
handling code, which can be written either directly in pure JavaScript or using
popular libraries such as jQuery. It also provides fine control over the browser,
which is necessary for faithfully—and deterministically—emulating user form-
filling actions, as well as for controlling and monitoring the browser’s behavior.
In order to get interesting output, our goal is not to generate arbitrary input
values (as in exhaustive testing), or interesting corner cases (as in functional test-
ing), but rather values that a typical user might provide via the interface. Our
constraint generation allows us to focus on user-realizable values, thus accelerat-
ing the discovery of interesting form submissions. We evaluate our technique on
both synthetic and real-world forms, and compare it to alternative approaches
to Web form filling.

Related Work. Indexing and extraction from the deep Web involves a number of
tasks, including entry point finding [4,33,34], form label identification [17,37,46],
form-filling [5,25,26,30,32,45], and result page analysis [11,47]. Work on form-
filling is focused on finding values that extract a good set of results. For example,
some work attempts to choose keywords for a text field which return relevant
results [5]. Tools such as Crawljax [36] and AJAX Crawl [14] take into account
the state of the user interface while crawling. The emphasis there is in identifying
changes in the DOM (Document Object Model, the tree structure representing
the content and structure of a Web page) caused by user actions and events, not
on getting through forms. Our work is on form-filling, but the focus is only on
getting results that satisfy validation rules. Additional desired properties can be
overlaid on top of this. One of our challenges is choosing an interesting ordering
for the form filling events. This challenge also arises in the analysis of other
event-driven systems, such as Android apps [1,22,24].
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Algorithm 1. High-level algorithm for concolic testing.
1: procedure Concolic-Analysis(program)
2: values ← Choose-Initial-Values( )
3: trace ← Execute-And-Record(program, values)
4: path-tree ← Init-Tree(trace)
5: while path-tree is not fully explored do
6: target-path ← Search(path-tree)
7: values ← Solve-Path-Constraint(target-path)
8: if target-path was successfully solved then
9: trace ← Execute-And-Record(program, values)

10: Extend-Tree(path-tree, trace)
11: else
12: Mark-Unreachable(path-tree, target-path)
13: end if
14: end while
15: end procedure

Concolic testing is a well-established topic, applied to many programming
languages, including JavaScript. Yet there are few attempts to apply it to the
Web. SymJS [29] uses concolic testing, but is based on the Rhino JavaScript
engine, which can parse only a small fraction of real-world Web JavaScript.
Jalangi [41] is a framework allowing instrumentation and runtime monitoring of
JavaScript. Neither SymJS nor Jalangi support Web forms. The only systems
we know of for exploring forms via JavaScript analysis are the demonstration
systems ProFoUnd [7] and ArtForm [44] (precursor to this work).

2 Concolic Testing for Web Form Exploration

Concolic testing, or directed automated random testing [20,42], is a testing tech-
nique which uses concrete executions of a program to drive a symbolic analysis.
The symbolic analysis guides the automated tester and suggests specific inputs
which reach new parts of the program which would be difficult for traditional
test-generation approaches to discover. Conversely, the concrete executions allow
exploration through parts of the program which are not fully understood by the
symbolic analysis alone.

A generic concolic testing algorithm is given in Algorithm 1. Concolic testing
begins by choosing some default starting values for the variables. The function
is then executed concretely (that is, using a real interpreter) and symbolic infor-
mation is recorded about how the inputs are modified and when they occur in
branch conditions. Thus each trace is associated with a path condition: the set
of individual branch conditions (expressed in terms of the input values) which
must be satisfied or unsatisfied in order for the program execution to follow that
particular path. Each path condition is a logical formula describing an equiva-
lence class of input values, with equivalent values resulting in the same execution
path in the program. Thus the state of the exploration can be characterized by
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the set of path conditions of explored traces, which form a tree. The testing
algorithm proceeds in an execute-and-analyze loop. After execution of a trace,
the new information gathered during that trace is added to the tree. In order
to find set a of input values that reaches a new path, the algorithm chooses a
sequence of branch conditions that has not been explored, generates the corre-
sponding path condition, and sends it to a constraint solver. If the solver can
satisfy the constraint, a solution is chosen as the next set of input values. If the
solver cannot, the path is marked as unreachable. This process is repeated to
cover progressively more code on each new iteration.

Example 2. Consider the function validate aux(from,to) from the running exam-
ple. Concolic testing would first execute the program on random values for the
arguments from and to, say empty strings for both. This would bring the program
to a trace that terminates after the first alert. Tracing this path symbolically,
the algorithm identifies the constraint from.length = 0, which is the first path
added to the tree (line 4). The search command on line 6 will isolate the path
consisting of the single constraint ¬(from.length = 0) as an unexplored path in
the code, and this will be sent to a constraint solver (line 7), which will return
values for from and to that satisfy it. For example, the solver might return the
values from = ‘a’ and to = ‘a’. These values are used to execute the function
in the next iteration, which drives the code to the second alert. This second
execution is symbolically traced, with the path ¬(from.length = 0) ∧ from = to.
The search procedure on line 6 now selects ¬(from.length = 0) ∧ ¬(from = to) as
an unexplored path to target. Solving this constraint will give values that drive
the execution to avoid each alert.

Note that concolic testing normally includes classification of a trace—in the
context of testing, this would be determining whether an error occurs in it. In
Algorithm 1, we assume this is done within Execute-and-Record. For our
form crawling application, the classifier determines whether the result of a trace
is a successful submission (leading to a new page) or not. We can detect this by
checking for page loads, alert messages, or certain modifications to the DOM.

Adaptation to Form Exploration. In adapting concolic testing to the exploration
of Web forms, a tempting analogy is that the form represents a “virtual func-
tion”, whose arguments are the form fields. However, a function takes its argu-
ments all at once, whereas a Web form takes inputs one at a time interactively.
The code which responds to a form filling can be triggered by a number of events,
such as filling fields or hovering over them. These event handlers may interact,
and the order in which they are fired can affect the output. Thus a more realistic
model of a form is as an association of each field f with one or more actions
Actf , where an action writes the input value vf into the field and executes some
program code. In using concolic testing to explore a form, we must discover both
the values to fill into form fields and also the ordering of these actions.

Our algorithm is shown in Algorithm 2. We explain the details, and in par-
ticular the constraint solving call on line 12, below. It is similar in structure to a
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Algorithm 2. The high-level algorithm for form exploration.
1: procedure Form-Concolic-Testing(form-actions)
2: initial-order, initial-values ← Choose-Initial-Order(form-actions)
3: trace ← Execute-And-Record(initial-order, initial-values)
4: path-tree ← Init-Tree(trace)
5: if trace is terminating then
6: Mark all local symbolic paths within trace as Known-Extendible
7: else
8: Mark aborting local symbolic paths as Known-Unextendible
9: end if

10: while ∃Act · UnresolvedAct(path-tree) �= ∅ do
11: target ← Choose(sympth,Act) with sympth ∈ UnresolvedAct(path-tree)
12: order, values ← Solve-Path-Constraint(OverApproxAct(target))
13: if target was successfully solved with order, values then
14: trace ← Execute-And-Record(order, values)
15: Extend-Tree(path-tree, trace)
16: if trace is terminating then
17: Mark all local symbolic paths within trace as Known-Extendible
18: else
19: Mark aborting local symbolic paths as Known-Unextendible
20: end if
21: else
22: Mark target as Known-Unextendible
23: end if
24: end while
25: end procedure

classic concolic algorithm, with the high-level distinction that we explore a tree
of paths for each action. At each iteration we choose an action with unexplored
code, and generate both a value for each form field and an action ordering.

We now formalize the problem of simultaneous detection of input values and
the ordering of actions using an extremely idealized model Although the model’s
assumptions do not hold on real Web forms, the approach is still effective.

In the model we have a set of form actions, each with a corresponding pro-
gram which manipulates a set of variables �v, including one distinguished variable
v, the input variable of the form action. Informally this is the value supplied by
the user when invoking this action. Each variable v has a default value D (pro-
vided by the Web page’s HTML) which it holds until the action is run. In our
basic model, we assume program code in a simple procedural language built up
from the following grammar:

x := τ(�y) if ϕ(�y) then E1 else E2 E1;E2 Abort doC

Above τ ranges over terms built up from set of atomic functions (e.g., +,×)
from variables and constants, while ϕ ranges over some set of conditions (e.g.,
Boolean combinations of atomic conditions τ1 {�, �=,=} τ2, where τi are terms).
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C in doC ranges over some set of commands that do not impact submission or
control flow. A condition ϕ is ground if it contains no free variables.

A variable is assigned in expression E if it occurs on the left side of some
assignment statement and otherwise is free. The semantics of the language are
standard. Given an expression E and a binding σ for the free variables of E, the
semantic function returns the sequence of ground conditions and atomic actions
Abort and doC that are generated during an execution. We will be particularly
interested in the truth values of conditions and whether or not Abort is encoun-
tered. Given a condition ϕ and a binding σ for the variables in ϕ, the value of
ϕ, denoted Val(ϕ, σ), is true if ϕ holds when the variables appearing in ϕ are
replaced with their valuation by σ. The trace of E on an assignment σ to the
free variables of E is the sequence of conditions encountered and their values. If
E executes Abort at any point when running on σ it is said to abort on σ, while
otherwise we say it terminates on σ.

We name our actions by numbers, with Acti denoting the program associ-
ated with action i, while vi and Di denote the distinguished input variable and
default value of Acti, respectively. A set of such indexed actions Act1 . . .Actn
has restricted global state if for every Acti, each free variable v occurring in it’s
program expression is one of the input variables vj and no input variable is
ever assigned. That is, the actions have no shared global state except the input
variables, which are set as each action is executed.

The trace of an action on a binding σ is simply the trace of its program code
expression. The behavior of a single expression is well-defined given a binding for
all variables. We now need to explain the outcome of a sequence of form actions,
which involves binding each free variable v encountered in conditions to either
the user-specified input value of v or to its default value.

A bound form action is a pairing of a form action Acti with a value ci for
its input variable vi, while a form input is a sequence of bound form actions.
We define the unfolding of a form input (Act1, c1) . . . (Actn, cn) as the sequence
(E1, σ

1), . . . , (En, σn), where σi is the order-modified assignment mapping vj to
cj if j � i and to Dj otherwise. We can extend our semantics to form inputs via
unfoldings. The trace of a form input is the concatenation of the traces in its
unfolding. A form input is said to abort if some Ei aborts on σi; otherwise we
say it terminates.

We now extend our discussion from traces to symbolic descriptions of these
traces, starting with the “local behavior” within a form action, given a binding
for all variables. For binding σ to the free variables of expression E, the local
symbolic path of E(σ) is a formula describing the values of conditions in the
trace of E(σ). That is, the conjunction

∧
Val(ϕi,σ)=� ϕi ∧ ∧

Val(ϕi,σ)=⊥ ¬ϕi where
ϕ1 . . . ϕk is the sequence of conditions encountered in executing E on σ.

We have just discussed the symbolic paths that emerge from concrete traces.
We now describe formulas that represent possible concrete traces for future
exploration. Given a trace t = (ϕ1,TVal1) . . . (ϕk,TValk) for an action, con-
sisting of conditions ϕi and their truth values TVali, a symbolic modification is
a local symbolic path of the form (ϕ1,TVal1) . . . (ϕp,TValp), (ϕp+1,¬TValp+1)



102 B. Spencer et al.

where p < k. That is, we take a prefix of t, and negate its last element. Given
a set of traces T , a symbolic modification is unexplored if no trace in T satisfies
this condition. Given set of traces T and action A, UnexploredA(T ) is the set of
symbolic modifications of traces in A that are unexplored.

We can lift the classification of traces as aborting or terminating to the sym-
bolic level. Given a set of traces T and a form action A, let T (A) be the restriction
of the trace to A. Let AbortA(T ) be the traces in T (A) that are aborting, and
TerminateA(T ) the set of traces that are terminating. By Symbolic(AbortA(T ))
we denote the set of local symbolic paths of traces in T that are aborting in A,
and similarly for Symbolic(TerminateA(T )).

Above we have a symbolic version of the behavior of a single form action
A, describing it via conditions. We now need to lift this to a sequence of form
actions. In doing this we have to take into account the role of the ordering in
determining whether we use the default value or the user-supplied value. Further,
since we are interested in whether a path is explored in a terminating trace, we
also need to track symbolically whether other actions abort.

Given a local symbolic path ψ(�v) of a trace for Acti, the ordered version of
ψ, Ordi(ψ), is the formula ψ with each variable vj replaced by v′

j and conjoined
with the constraint (j � i → v′

j = vj) ∧ (j � i → v′
j = Dj) using an additional

relation �. That is, Ordi(ψ) is a symbolic representation of an ordering and a
binding σ such that ψ holds on the order-modified assignment σi defined above.

Given a path sympth for action Acti, and a set of traces T , let
OverApproxi(sympth) to be Ordi(sympth)∧OrderAx∧∧

j �=i MayTerminatej , where
MayTerminatej is defined as

∧
sympth′

j∈Symbolic(AbortActj (T )) ¬Ordj(sympth′
j) and

OrderAx is a formula asserting that � is a linear order on the indices of actions
1 . . . n. That is, the formula OverApproxi(sympth) symbolically represents the
orderings and values that will achieve the behavior sympth in action Acti and
will not drive any other action to a known-aborting trace of T . Informally, it
describes form inputs that may explore sympth without aborting in any action,
based on the current knowledge of aborts in T .

Similarly, UnderApproxi(sympth) is Ordi(sympth) ∧ OrderAx ∧ ∧
j �=i

MustTerminatej , where MustTerminatej is
∨

sympth′
j∈Symbolic(TerminateActj (T ))

Ordj(sympth′
j). This formula represents orderings and values which achieve

the behavior sympth in action Acti and drive every other action to known-
terminating trace of T . Informally, this describes inputs and orderings that we
are sure will explore sympth based on what we know about aborts in T . The
following two lemmas give the critical properties of these symbolic descriptions.

Lemma 1. If UnderApproxi(sympth) is satisfiable by input values c1 . . . cn and
ordering j1 . . . jn, then the form input (Actj1 , cj1) . . . (Actjn , cjn) gives a trace
that does not abort outside of action Acti and extends sympth.

Lemma 2. If sympth is a symbolic modification for action Acti, and the form
input (Actj1 , cj1) . . . (Actjn , cjn) generates a trace extending sympth that does not
abort outside of Acti, then c1 . . . cn and j1 . . . jn satisfy OverApproxi(sympth).
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Lemmas 1 and 2 form the basis of Algorithm 2. We maintain a set of traces
and corresponding symbolic paths which, along with their symbolic modifica-
tions, form a tree. We also classify the symbolic paths and their modifications. We
distinguish the known-extendible paths, those which are known to have an exten-
sion that is terminating, and the known-unextendible ones, where it is known that
there is no such extension. The paths which are neither known-extendible or
known-unextendable are said to be unresolved. The set UnresolvedA(T ) contains
the local symbolic paths from T which are neither known-extendible or known-
unextendible, as well as the symbolic modifications of local symbolic paths in T
which have not yet been considered by the algorithm.

At any step of the algorithm we choose an unresolved path sympth and
check whether OverApproxi(sympth) is satisfiable. If the formula is not satis-
fiable, we mark sympth as known-unextendible (that is, no terminating trace
extends sympth, which we know from Lemma 2). Otherwise we take a satisfy-
ing assignment consisting of c1 . . . cn and ordering j1 . . . jn, and use it in a new
execution, giving trace t. We add the new trace t to our set of traces and iterate.

If t terminates, then it acts as a witness that each restriction of t to action
Acti can be extended by a terminating trace. Thus, we mark all the local symbolic
paths in t as known-extendible. If t aborts, then by Lemma 1 we know that either
Acti aborted, or c1 . . . cn and j1 . . . jn did not satisfy UnderApproxi(sympth). In
either case, there must be some action Actj for which t does not extend an
explored branch, and where t aborts. That is, in Actj , t follows a previously
unexplored path and discovers an abort. Thus one local symbolic modification
is resolved in Actj (even if it had not been a known modification until now).

It is possible for a newly recorded trace to give rise to new symbolic modifi-
cations, so the total number of unresolved traces does not necessarily decrease
at each iteration. However, each action’s program code has a finite number
of symbolic branches, so the number of symbolic paths available to explore is
limited. Because at least one local symbolic path is resolved in each iteration,⋃

i∈{1..n} UnresolvedActi(T ) must eventually become empty, and this guarantees
termination.

Proposition 1. Algorithm 2 is complete. Assuming completeness of the solver,
on termination the path tree will have the property that for every local symbolic
path sympth which has any extension which terminates overall, then at least one
such extension is explored by the algorithm. In other words, every local symbolic
path which is reachable on a terminating trace is explored.

Example 3. Let us illustrate Algorithm 2 on Example 1. Assume that we have
identified the form actions as ActFrom, ActTo, and ActDate for entering values into
the departure airport, arrival airport, and departure date fields. Algorithm 2 will
choose an arbitrary default initial order and values for these fields: for example
empty strings for the airports and “01/01” for the date. The code is executed
on these values, and reaches the first alert message in validate aux, and the
first alert in validate date, both classified as aborts. The corresponding local
symbolic path for ActTo is the single constraint from.length = 0, and for ActDate
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it is to.length = 0. These constraints are added to the corresponding path trees
for each action. The command on line 11 will then choose an unexplored path
to target, suppose it is ¬(to.length = 0) in ActDate. Assuming the default value
DTo is the empty string, the corresponding ordered constraint OrdDate simplifies
to: (ActTo ≺ ActDate ∧ ¬(to.length = 0)). To form the full over-approximation
constraint, we also include the linear order axioms, and MayTerminate, which in
this case (when simplified) is simply the negation of the single abort trace in
ActTo: (ActFrom ≺ ActTo ∧ ¬(from.length = 0)).

The call on line 12 will solve this combined constraint for both an order
and values. The only valid order is From ≺ To ≺ Date. Suppose the returned
values are To1 = “A”, From1 = “A”, and Date1 = “01/01”. The code is re-
tested with these values, and symbolically traced, leading to the second alerts
in both validate aux and validate date. This second trace is associated with local
symbolic paths for each action, for example ¬(from.length = 0)∧ from = to for
ActTo, which are added to the corresponding trees on line 15. In the second
iteration of the while loop we would choose another unexplored path (line 11),
and this would return, for example, the path ¬(from.length = 0) ∧ ¬(from = to)
from ActTo. The ordered version of this path simplifies to: (ActFrom ≺ ActTo ∧
¬(from.length = 0) ∧ ¬(from = to)). This time, the MayTerminate constraint
is required to avoid both aborts in ActDate. Thus, the full over-approximation
constraint, omitting the linear order constraints, simplifies to:

[ActFrom ≺ ActTo ∧ ¬(from.length = 0) ∧ ¬(from = to)]
∧ [ActTo ≺ ActDate ∧ ¬(to.length = 0)]

∧
[

int(substr(date, 3, 5)) � m1 ∧
(

∨ int(substr(date, 3, 5)) �= m1

int(substr(date, 0, 2)) � d1

)]

where m1 and d1 are the concrete date and month observed during the execution.
A second call to the solver returns the ordering From ≺ To ≺ Date and values

From2, To2, Date2, where From2 and To2 are distinct and non-empty, and Date2
is later than the current date. These new values are tested, this time producing
a trace which terminates in every action and successfully submits the form.

The completeness result is based on strong assumptions. It requires complete-
ness of the solver, and requires the analysis to track all conditions symbolically.
The code must also conform to the simple structure where form actions set their
input variables but otherwise do not communicate with other actions. Real-
world code does not obey these assumptions, but we can still apply Algorithm 2
to arbitrary code, tracking only the input fields symbolically across actions, while
dropping the completeness guarantees.

3 Implementing Concolic Testing for Form Exploration

Implementing concolic testing in the Web context is challenging. First, one needs
to control the browser, both to simulate user actions faithfully and ensure that
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the browser behaves deterministically from one iteration to the next. Frame-
works such as Selenium WebDriver support this, but give limited control over
certain low-level events such as timers and AJAX events. Second, we need to get
information from the browser, and in particular need to analyze the executed
code to record the symbolic paths taken. There are frameworks which can be
used for symbolic tracing of stand-alone JavaScript, with the goal to help testing
and debugging [41]. However, applying these to third-party JavaScript on the
Web can be problematic, since they require instrumentation of the JavaScript
source, which can be problematic when crawling third-party sites.

FormSolve’s approach works directly with a browser engine. We build on
top of WebKit, an open-source production Web browser engine, used by Apple’s
Safari browser. The browser engine includes page fetching, HTML and CSS ren-
dering, and a JavaScript interpreter, but excludes the browser’s user-interface.
We instrument the source code to add hooks to control the browser, and we
instrument the interpreter to perform symbolic-tracing, extending the WebKit
interpreter to track a symbolic value with every concrete value. WebKit’s
JavaScript interpreter uses an internal JavaScript bytecode language, so our
symbolic tracing works at the byte-code level, rather than the JavaScript source
level. This simplifies the generated constraints.

The symbolic interpreter runs alongside WebKit’s existing JavaScript inter-
preter and computes the symbolic values used in the analysis. When values are
read from form fields, they are tagged as symbolic, and these symbolic values are
propagated by the symbolic interpreter as the values are processed. A branch
instruction is called symbolic if its branch condition uses any symbolic value.
When a symbolic branch is encountered, its condition is recorded in the trace.

Symbolic values are created when certain properties of DOM objects are
accessed by the site’s JavaScript code. For example the value property of text
fields, the checked property of checkboxes and radio buttons, or the value or
selectedIndex properties of drop-down boxes. To make these DOM properties
symbolic, WebKit’s internal implementation of the DOM API is instrumented.

As well as the bytecode interpreter, JavaScript’s built-in methods must also
be instrumented. These are implemented by C++ methods in WebKit, which are
modified in FormSolve to add an appropriate symbolic tag to the return value.
We have only instrumented the functions which were most commonly used on
the sites we were analysing. This reduces the implementation complexity, but
also simplifies the generated constraints. Branch conditions which cannot easily
be encoded as SMT constraints are dropped to make the analysis more concrete,
thus allowing the analysis to continue past certain difficult functions or patterns.

Note that JavaScript library functions (such as from jQuery) are not built-ins
and are implemented in JavaScript, so they are executed along with any other
JavaScript code. They do not require special handling by the interpreter.

Example 4. We explain our symbolic tracing on this snippet from Example 1:
var from = document.getElementById(”From”).value;
if (from.length == 0) { alert(”Error: Departure Airport must be set”); }



106 B. Spencer et al.

Table 1 shows the corresponding bytecode, the resulting register-level
state change, and the changes in the symbolic state generated by the
symbolic interpreter. For example, the first line of the table shows
that the initial JavaScript command generates two bytecode instructions:
op call r1 getElementById ”from”, which calls getElementById to look up the
DOM node with identifier “from” (the From field) and store it in the register
r1, followed by op get by id r2 r1 ”value”, which fetches the “value” property of
that DOM object (the empty string) and stores it in register r2. The symbolic
instrumentation sets r2 to the symbolic value of the property lookup, which will
be SymStr(”from”), representing a symbolic input originating from a field with
identifier “from”.

Table 1. JavaScript level, bytecode-level, and symbolic execution.

JavaScript code WebKit bytecode Concrete state Symbolic state

var from = document.
getElementById(”from”).value;

op call r1 getElementById ”from” r1 := DOM node From (none)
op get by id r2 r1 ”value” r2 := “” [value of From] r2 := SymStr(”from”)

if (from.length == 0) op get by id r3 r2 ”length” r3 := 0 [length of “”] r3 := StrLen(r2)
op eq r4 r3 0 r4 := true [length is 0] r4 := IntOp(r3, I EQ, ConstInt(0))
op jfalse r4 else label [r4 is true; so no jump] b := BoolOp(r4, B EQ, ConstBool(false))

Finding User-Realizable Values. Line 12 of Algorithm 2 uses the constraint solver
to generate new input values. In the context of form filling, we want to avoid
inputs that a user could not perform at the interface, since these are unlikely to
produce a useful output. We thus add additional constraints on the value space
that enforce user realizability.

HTML permits various types of input fields, each with their own restrictions
on which values can be input. For example a select element produces a drop-
down list with fixed options for the user to select from. To produce user-realizable
input values, the analysis models these input fields to only generate values a user
would be able to provide using a normal Web browser. This is done by encoding
DOM facts as extra constraints which are included with each path condition.

Example 5. In the running example, the To field is implemented by a drop-down
to choose between a set of airport codes: JFK, ORD, etc. In any constraint
involving the corresponding variable to, we add a constraint saying to = JFK ∨
to = ORD ∨ . . ., where the list of codes is populated from the DOM. The client-
side code may also check the index of the selected item, rather than its value.
In this case, we add a variable to index to represent this index, which must
correspond to the main to variable. In our example, the constraint would become
(to = JFK ∧ to index = 1) ∨ (to = ORD ∧ to index = 2) ∨ . . ., forcing the solver
to choose a matching index and value together.

Constraint Solving. A critical component in the architecture is the constraint
solver. In general, concolic testing requires a high-performance solver which sup-
ports standard program variable types: integers, Booleans, reals, bit-vectors,
and arrays. Examples of solvers used for concolic testing or symbolic execution
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Table 2. Comparing FormSolve with
Jalangi on 1000 synthetic programs.

FormSolve Jalangi

Avg. distinct paths 5.75 2.54

Avg. line coverage 91.49% 87.69%

No. with full coverage 46.44% 37.05%

Table 3. Results of FormSolve,
Crawljax and Artemis on 1000 syn-
thetic forms.

FS CJ Ar

Analysis time (s) 969 272 153 2 206

Avg. iterations 1.86 40.95 43.29

No. with full cov. 10.4% — 0.7%

Forms submitted 31.4% 19.8% 17.7%

Table 4. Results of FormSolve,
Crawljax and Artemis on 18 JSFid-
dle examples.

FS CJ Ar

Analysis time (s) 2 245 6 509 319

Avg. iterations 26.17 33.67 45.94

Forms submitted 61.1% 33.3% 11.1%

Table 5. Comparing Algorithm 2 with single-
order testing on 1000 synthetic forms.

Single-order Algorithm 2

Analysis time (s) 585 969

Avg. iterations 3.04 1.86

No. with full coverage 4.7% 10.4%

Forms submitted 24.1% 31.4%

Multiple traces explored 69.8% 46.8%�

average line coverage 90.6% 95.5%�

no. with full coverage 6.7% 22.2%�

forms submitted 34.0% 66.2%

include Boolector [38], STP [19], Yices [15], and Z3 [12]. JavaScript requires
very strong support for reasoning about strings. In particular, transformations
between strings and other data types are common, so it is very useful if the solver
supports these datatype coercions. We make use of CVC4, which supports a wide
variety of theories compared with other solvers [9], strong string support [31], as
well as support for coercions between different theories.

4 Experimental Evaluation

Standalone JavaScript Code. The first goal of our evaluation is to compare our
bytecode-based code exploration with alternatives based on JavaScript source.
We compared against Jalangi [23,41], a framework for JavaScript testing that
includes concolic testing for standalone (that is, not Web-based) JavaScript. We
compared the tools on 1000 synthetic, randomly-generated standalone JavaScript
programs. To generate the examples, we began with a context-free grammar for
the program expressions, and then used a standard CFG-sampling algorithm [35]
to generate random expressions from it. We then choose a random implemen-
tation for each operation in the generated program skeleton, choosing from a
fixed set of simple JavaScript implementations. For example, for a term a ∧ b,
we choose between a single-expression implementation combining the two child
expressions, one which uses intermediate variables, and one using conditionals.
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The aggregate results are shown in Table 2. We see that FormSolve explores
many more paths than Jalangi. FormSolve benefits from symbolic instrumenta-
tion of a number of built-ins, native string operations, and datatype coercions
which are not supported (and may be difficult to support) at the source level in
Jalangi. There is also some benefit from FormSolve using CVC4, over the earlier
version of CVC used by Jalangi.

Synthetic Web Forms. The second goal was to test FormSolve’s ability to deal
with complex Web forms. We ran FormSolve on a suite of 1000 randomly gener-
ated test forms. The generator first produces a random form, and then supple-
ments it with validation code using the JavaScript generator described above.
Each field’s validation code uses the value of its own field, and optionally those
of other fields. The generated forms use an average of 8.57 form fields and 47.16
lines of JavaScript validation code. We compared FormSolve with two alterna-
tive approaches. Crawljax [10,36] is an automatic crawler for dynamic websites
which is based on a dynamic analysis of the Web application. In particular,
Crawljax tracks changes to the state of the DOM, and explores user events until
no more states can be discovered. In the absence of any domain knowledge,
Crawljax can be seen as a state-of-the art approach to crawling complex web-
sites, including Web forms. Artemis [2,3] is a tool that does feedback-directing
testing of websites. In each iteration, Artemis generates DOM and JavaScript
events as well as values to enter in form fields. It uses metrics like line cover-
age to rank actions that are most promising for use in the next iteration. Each
tool (FormSolve, Crawljax, Artemis) is run for a maximum of 50 iterations: for
FormSolve, an iteration is defined as in Algorithm 2; for Crawljax, it is a full
run of the tool, until no new state is discovered—different iterations use differ-
ent random seeds; for Artemis, an iteration is a predefined sequence of actions
that is run in the browser. Iterations in Crawljax take a large amount of time
and involve many browser interactions, while they are comparatively short in
FormSolve and Artemis.

The results are shown in Table 3. The table includes line coverage of the
event-handling code, measured at the JavaScript source level, for all tools except
Crawljax, which does not record this. The number of iterations for each example
is taken to be that of the first submission, or the total if no submission was found.
While not truly representative of the kinds of constraints found on real websites,
these results do indicate that FormSolve can deal with complex constraints that
do not obey the restricted global state assumptions our completeness result relies
on, while also showing that prior methods do not suffice for complex constraints.

Real-World Form Validation. A more interesting benchmark is given by a set
of simple real-world examples of Web forms. We used JSFiddle, a code-sharing
website for Web-based code. Since form-related examples are not easily isolated
in JSFiddle, we performed a Google search for “JSFiddle form validation”. We
extracted 18 examples, after removing those which did not perform JavaScript
form validation. The examples were modified where necessary to allow them to
be run in the tools with common submission and error behaviors. These test
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cases represent real-world forms; they use common JavaScript libraries and use
complex constraints, but do not include the full complexity of real sites. There
is no other content to contend with than the forms themselves.

We again compared FormSolve with Crawljax and Artemis, with results
shown in Table 4. Some examples required only non-empty inputs; Artemis still
has difficulty handling some of these, since it does not faithfully simulate the
form-filling events triggered by a real user. FormSolve has a modest gain over
Crawljax, handling several of the examples that require string comparisons.

The running time for FormSolve is dominated by a single example which
uses string functions to parse an ID number, including a checksum; which took
30 min 45 s out of the total analysis time for all 18 examples of 37 min 25 s. This
example (named VSKNx in our test data [16]) requires solving many difficult
constraints over both strings and integers. At one point characters from the ID
are converted to integers, multiplied by a constant, converted back to strings to
extract the digits, which are then converted to integers and summed; and the
analysis must solve a final integer constraint on the cumulative total of these
sums. As such, FormSolve does not find a submission within 50 iterations. If left
to run with no iteration limit, it is eventually able to find a valid ID number and
successfully submit the form. In total, there were three examples which ran to
the iteration limit, all of which can be solved with enough time. Including those
examples would bring FormSolve’s successful submissions to 77.8%.

Impact of Dynamic Re-Ordering. We compared Algorithm 2 to a variant of the
algorithm where a fixed field order (taken from the field ordering in the DOM)
is used. The experiments were conducted on the same set of 1000 synthetic
forms described above. The JSFiddle examples are not tested, because they do
not include interesting interactions between different fields’ event handlers. For
each configuration, we measured the line coverage as before, and also tracked
whether we were able to generate a successful form submission. Note that as
the examples are randomly generated, some of them have no valid inputs, and
submission really is impossible. The results are shown in Table 5.

We observe that the big advantage of Algorithm 2 over a static ordering is
pruning out explorations in one event handler which are known to abort in a later
handler. The algorithm is able to prove that certain unexplored paths must later
lead to abort actions, and therefore avoid wasted iterations. Trace execution is
very expensive when testing real sites, so this is a significant advantage.

An example of this can be seen in the second part of the table. Algorithm 2
only attempted to explore 46.8% of the examples, compared to 69.8% for the
static-ordering variant. In the cases explored by the static ordering algorithm but
rejected by Algorithm 2 (23.0% of the total), the static ordering algorithm spent
time exploring branches in certain event handlers which would all eventually
lead to an abort action in a later handler. In contrast, Algorithm 2’s calls to the
constraint solver showed these branches to be futile, allowing the algorithm to
ignore them. This explains the dramatic difference in the number of successful
form submissions found in examples where multiple traces were explored (34.0%
for the static order and 66.2% for Algorithm 2).
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Real Websites. Finally we experimented with 4 real airline websites that included
complex validation rules. We report the numbers for the single-order mode dis-
cussed above. In that mode, FormSolve was able to find correct submissions while
Crawljax could not (despite taking more than 16 h in total) and Artemis could
find only 2. An illuminating example is the archived website of AirTran Air-
ways. The validation rules include that origin and destination must be entered,
that there must be valid combinations of the number of children and adults
(e.g., not more infants than adults), and that the departure and return dates
must be ordered correctly and be no earlier than today’s date. FormSolve finds
10 successes while exploring 207 code paths. Handling of the date and passen-
ger constraints exercises the support for integer arithmetic in the solver. The
Australian airline Rex has similar passenger restrictions, but in addition each
departure airport allows a different set of arrival airports. FormSolve can find
458 distinct successful paths to submission, of a total of 1539 paths explored.

The real-world set is only anecdotal, due to our prototype’s basis in the
development version of WebKit, which limits its ability to run on recently-
updated websites. Further, the dynamic reordering-mode has not yet been made
sufficiently robust—for example, it has weaker support for restricting to user-
realisable values. This causes it to miss half of the submissions found by the
single-order mode on our small set of real-world sites. More thorough experi-
ments with a more modern browser codebase will be needed to draw firm quan-
titative conclusions about the general applicability of our approach.

5 Conclusion

In this paper we make the first step at applying constraint-solving technology to
finding valid submissions for Web forms. The approach has the advantage that
it can be used not just to find single submissions but a representation of all valid
submissions, in terms of a constraint; this is particularly relevant for wrapper-
generation. Clearly this approach does not replace prior techniques of form-filling
and wrapper generation, particularly in the presence of domain knowledge or
a corpus of examples. Preliminary results with the FormSolve prototype show
that the high-level approach, along with our bytecode-based implementation, has
promise in practice. A full-featured implementation of bytecode-based symbolic
tracing in a state-of-the-art browser remains a major engineering challenge. In
the future we will look at variants of our approach with symbolic tracing at the
JavaScript level, working with the code on-the-fly. Our benchmark generators
and evaluation data are available on GitHub [16].
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