
DRAFT
A Framework for Conditioning Probabilistic

XML Data

Ruiming Tang∗ Dongxu Shao† M. Lamine Ba‡

Pierre Senellart§ Stéphane Bressan¶

January 7, 2015

A probabilistic database denotes a set of non-probabilistic instances called possible
worlds, each of which has a probability (that is the confidence of this possible world
being actual). This is often a compact way to represent uncertain data. In addition,
direct observations and general knowledge, in the form of constraints, help refining
the probabilities of the possible worlds, possibly ruling out some of them. Enforcing
such constraints on the set of possible worlds, obtaining the valid possible worlds
that satisfy the given constraints and refining the probability of each such possible
world as the conditional probability of the possible world when the constraint is
true, is called conditioning the probabilistic database. The problem is to find a new
probabilistic database that denotes the valid possible worlds with their new probabil-
ities. Probabilistic XML allows capturing uncertainty of both values and structure.
We consider the conditioning problem for probabilistic XML with a language of
formulae of independent events to express the probabilistic dependencies among the
nodes of the XML tree. In the most general case, conditioning is intractable. For
reference, we present an exponential algorithm. We then focus on the specific case
of independent events and mutually exclusive constraints. This case goes beyond
local mutually exclusive constraints as considered so far in the literature. We devise
and present polynomial-time algorithms for conditioning probabilistic XML data in
tractable cases.

∗School of Computing, National University of Singapore
†Institute for Infocomm Research, A*STAR, Singapore
‡Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI Paris, France
§Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI & NUS; CNRS IPAL, Paris & Singapore
¶School of Computing, National University of Singapore

1

DRAFT
1 Introduction

Uncertainty of data, in its various forms, naturally arises from such applications as information
extraction [9], information integration [26, 11] and version control [6].

Probabilistic databases address the problem of the management and of the representation of
uncertain data by means of probabilities. A good probabilistic database model offers a generally
compact and easily manageable representation of uncertain data. A probabilistic database instance
denotes a set of possible deterministic database instances called possible worlds, each of which
has a probability (that is the confidence of this possible world being actual).

Direct observations and general knowledge, in the form of constraints, can be injected into
the database during a data cleaning process or during an auditing phase by domain experts, for
instance. These constraints help refining the probabilities of the possible worlds, possibly ruling
out some of them. Enforcing such constraints on the set of possible worlds, obtaining the valid
possible worlds that satisfy the given constraints and refining the probability of each such possible
world as the conditional probability of the possible world when the constraint is true, is called
conditioning the probabilistic database. The problem is to find a new probabilistic database that
denotes the valid possible worlds with their new probabilities.

Probabilistic relational databases [8, 7, 23, 12] represent uncertainties at value or tuple level,
while schema is constrained. The conditioning problem in probabilistic relational databases
has been studied in [19] and [24], respectively. Koch and Olteanu [19] claim that relational
conditioning is NP-Hard. They present a general but exponential time algorithm as well as
efficient heuristics and decomposition methods. Tang et al. [24] identify tractable scenarios
for which they devise polynomial time algorithms. We recognize that the idea of probabilistic
databases and the idea of conditioning are borrowed and adapted from concepts and vocabulary
in artificial intelligence research [21].

In contrast, probabilistic XML databases [18], leveraging the schema independence of XML,
can represent uncertainties not only at the value but also at the structural level (see Section 2
for details). The concept of p-documents [1, 18] is a general framework encompassing various
probabilistic XML models from the literature [20, 26, 2, 16]. It provides a compact way for
representing probabilistic XML databases, that is, a probability distribution over a set of possible
XML documents.

In this paper, we consider the conditioning problem for probabilistic XML with a language of
formulae of independent events to express the probabilistic dependencies among the nodes of
the XML tree. The tree-like structure of XML data and the fact that probabilistic XML captures
uncertainty of both values and structure introduce new interesting challenges for the conditioning
problem.

We extend with constraints the most expressive and succinct (update-efficient [16]) family
of p-documents, namely PrXMLfie [16], which consists of annotations made of propositional
formulae over a set of independent random Boolean variables. We consider an XML query
language to express constraints.

Note that even though we aim at compact models (e.g., p-document polynomial in the size
of the largest possible world), a simple counting argument shows that there are no compact
representation of arbitrary probability distributions over XML documents (see also Proposition 3).

Let us illustrate the conditioning problem for probabilistic XML with a simple student database

2

DRAFT

0

1

2 3 4

1e

2e 3e 4e

0

1

2 3 4

1a

2a 32 aa  32 aa 

0e 0a

0

1

2

1e

2e

3e

0e

3 4

5

4e

5e

0

1

2

3 4

5
2a

4a

0a

1a

2a

2a

0

1

2 3

1e

2e
3e

0e

4

5

4e

0

1

2 3 ')(332 aaa 

4

5

')(442 aaa 

0a

1a

2a

5e '52 aa 

0

1 3 5
1e 3e 5e

0e

2 4 62e 4e
6e

0

1 2

3 4

0e

1e 2e

3e 4e

label(0)=R
label(1)=A
label(2)=B
label(3)=C
label(4)=D

(0):students

(1):student (9):student …...

(2):id (4):name (7):salary (10):id (12):name (14):modules

(3):001 (11):001(5):John (6):Tom (8)$2000 (13):Gary (15):CS2102 (16):IT2002

0e

1e

2e

3e

4e

5e 6e

7e

8e

10e

11e

9e

12e

13e

14e

15e 16e

(17):department (20):department

(18):name (21):name (23):president

(19):computing (22):business (24):Grimm

17e

18e

19e

20e

21e

22e

23e

24e

Figure 1: Example PrXMLfie p-document: data about students

and mutual exclusiveness constraints. Consider the PrXMLfie p-document shown in Figure 1,
which represents a simple student database. The uncertainty of the values and structure is captured
with independent events. The tree is in PrXMLind. For instance, the probability of event e13 is
the probability of the student represented by the record rooted at node 9 to be called Gary when
the parent node, node 12 (and consequently nodes 9 and 0) exists.

The given p-document represents prior knowledge about students and their dependencies.
Further new dependencies (which might translate natural observations and new constraints) can
be used to refine this knowledge. These dependencies map to natural constraints over some
nodes in the p-document. Here are some examples of such dependencies representing mutual
exclusiveness constraints (for simplicity “mutually exclusive constraints”):
• Constraint 1 – Mutually Exclusive Siblings (MES): each student has only one name, i.e.,

node 5 and 6 are mutually exclusive.
• Constraint 2 – Mutually Exclusive Ancestor-Descendant (MEAD): a student cannot have a

salary, i.e., node 1 and node 7 are mutually exclusive.
• Constraint 3 – Mutually Exclusive Descendance (MED) : id is unique, i.e., node 3 and node

11 are mutually exclusive.
• Constraint 4 – MED & AD (combination of MED and MEAD): each student belongs to at

most one department and a department cannot have a president, i.e., node 17, node 20
and node 23 are mutually exclusive.

These are precisely the kind of constraints we describe how to enforce.
The contributions of this article are as follows. (i) A general study of the problem of condi-

tioning probabilistic XML for various types of constraints, when constraints and dependencies
among nodes are arbitrary. (ii) Tractable algorithms for conditioning probabilistic XML data in
the specific case of independent events and four classes of mutually exclusive constraints given in
a rather simplified but reasonable query language (tree-pattern queries). This case goes beyond
local mutually exclusive constraints as considered so far in the literature (i.e., PrXMLind,mux

from [18]).
We start by reviewing state-of-the-art probabilistic XML models and conditioning probabilistic

databases in Section 2. Then, we present in Section 3 the XML data model we consider and the
extension of the PrXMLfie system with constraints. In Section 4, we explain how constraints can
be expressed as queries. We then proceed in Section 5 to provide general lower and upper bounds
on the conditioning problem. We describe the four classes of nodes mutually exclusive constraints
in Section 6. Tractable algorithms are presented for individual classes of mutually exclusive

3

DRAFT
constraints in Sections 7, 8, 9, respectively. Due to lack of space, some proofs and technical
content are omitted. An extended version of this article, with all this material, is available in
[25].

2 Related Work

This section reviews state-of-the-art probabilistic XML representation systems and the condition-
ing of probabilistic databases.

Probabilistic XML models A probabilistic XML document captures the description of a
probability distribution over a space of ordinary XML documents. The p-document setting [1]
is a general probabilistic XML representation system modeling this distribution in terms of a
probabilistic process that generates an ordinary random XML document (seen as an unranked,
labeled, and unordered tree).

Informally, a p-document is a special XML tree with distributional nodes in addition to
the usual (regular) XML nodes. While distributional nodes cannot appear in ordinary XML
documents, they are key structure elements used to specify a probability distribution over the
subsets of their children. In other worlds, distributional nodes enable to define the process of
obtaining random documents. As surveyed in [18, 1] existing probabilistic XML representation
systems differ in the distributional nodes that they consider in their p-documents. The set of
distributional nodes can be subdivided in two groups as follows.
• local distributional nodes: ind (for independent choices), mux (for mutually exclusive

choices), exp (for explicit choices) and det (for deterministic choices);
• global distributional nodes: cie (for conjunction of independent events) and fie (for formula

of independent events).
Similarly to [18, 1] we denote a given probabilistic XML data model by PrXMLX , where
X ⊆ {ind,mux,det,exp,cie,fie} contains distributional nodes considered in this model. We
mostly focus in this paper on PrXMLfie documents. For completeness, we review most commonly
studied probabilistic XML models.

PrXMLmux, PrXMLind, PrXML{mux,ind} [20, 17, 10, 26], and PrXMLexp [14, 13] are proposed
PrXML systems built on local distributional nodes. Such probabilistic XML representation
models describe local dependencies between regular nodes, that is, each distributional node
selects a subset of children independently from choices of other distribution nodes.

PrXMLcie [2] and PrXMLfie [16] are global dependency models handling in addition long-
distance dependencies between nodes – the aforementioned two models support local dependen-
cies as in the first family of probabilistic XML systems. Instead of assigning directly probability
values to children or set of children of distributional nodes, PrXMLcie and PrXMLfie attach
respectively conjunctions of independent events and formulae of independent events to them.
Each event represents a Boolean random variable with a probability of being true. Different
distributional nodes can share common events, therefore the choice of a distributional node might
also correlate choices of some other distributional nodes. Note that PrXMLcie p-documents
belong also to PrXMLfie but there is no efficient translations from the latter to the former [16].
PrXMLfie has been shown in [16] to be the most expressive and succinct probabilistic XML

4

DRAFT
representation system in the literature. In this paper, we propose an extended PrXMLfie data
model with additional constraints integrated as first class citizens. The model we present caters
for constraints rather than treating them as add-ons.

Conditioning probabilistic data There are two existing works on conditioning probabilistic
relational data, namely [19] and [24]. The authors of [19] propose an approach to do conditioning
probabilistic relations. They adapt algorithms and heuristics for Boolean validity checking and
simplification to solve the general NP-hard conditioning problem. In [24], some of the authors of
the present work identify special practical families of constraints (i.e., observation and X-tuple
constraints) for which efficient algorithms are presented.

We consider in this paper XML documents annotated with independent events; this is conceptu-
ally a similar setting as in [24], where the authors consider probabilistic relations where tuples are
annotated with independent events. However, as we shall see further in the paper, the difference
in structure between relations and XML make tractable cases in both scenarios quite different:
indeed, though one can encode a probabilistic XML document as a relation in a straightforward
manner [4], resulting tuples are not annotated with independent events, because of the implicit
dependency between the existence of a node and that of its parent. In other words, the setting we
consider in this paper is more general than the one in [24].

The problem of the evaluation of constraints in probabilistic XML has only been investigated
in [10]. Given a probabilistic XML document and a specific constraint in a pre-defined language,
Cohen et al. study in [10] three problems: constraint satisfaction, query evaluation, and sampling.
They do not consider, however, how to enforce the constraints into the probabilistic XML
document, so that possible worlds of the updated probabilistic XML document always satisfies
the constraints, which is what we do in this paper. The reason is that they are restricted to a
local-dependency probabilistic XML model, i.e., PrXML{mux,ind}. In this model, materializing
constraints which imply global-dependencies would result in exponential blow-up even in very
simple cases.

Updating is also related to conditioning. In [16], the authors define the semantics of two
elementary kinds of updates, insertions and deletions, using a locator query1. The main result
of this study is that PrXMLfie is efficient for these classes of updates. The problem of updating
probabilistic XML is relevant to conditioning in the sense that insertion is actually specifying
certain nodes or subtrees should be there (their corresponding formulae should be true) and
deletion is specifying some nodes or subtrees should not be there (their corresponding formulae
should be false). However, updating is not able to deal with other constraints as considered in
conditioning.

3 Data Model

We now present our data model: deterministic trees, syntax and semantics of probabilistic
XML documents, conditioning.

1A locator query is a tree-pattern query specifying the nodes where the update is to be performed.

5

DRAFT
Trees and XML documents Given an unordered, directed tree t, we consider V(t) and E(t)
as, respectively, the set of nodes and edges of t – the special node root(t) refers to the root node
of this tree. A given node ni in t has (i) a unique identifier and; (ii) a (possibly shared) label which
we denote by label(ni). Any two nodes n1, n2 ∈ V(t) such that (n1,n2) ∈ E(t) are in parent-child
relationship, that is, n1 is the parent of n2 and n2 is a child of n1. We use parent(n) to represent
the parent of node n. Two nodes n2, n3 are siblings if (n1,n2),(n1,n3) ∈ E(t). The node n1 is an
ancestor of n2 (or n2 is a descendant of n1) if there exists a path from n1 to n2. The parent-child
relationship is a special case of ancestor-descendant relationship. We use path node(ni,n j) to
represent the set of nodes along the path from ni to n j, where ni is an ancestor of n j. Finally, we
define LCA(N) as the lowest common ancestor of the set of nodes N in the tree.

We model an XML document as an unordered directed tree with node labels. Throughout this
paper, for ease of presentation, we use tree and XML document interchangeably.

Probabilistic XML We adapt the probabilistic relational data model in [24] to a probabilistic
XML data model.

Definition 1. (Events, complex events and formulae) Let E be a set of symbols called events
(e). A formula is a complex event (ce), which is a well formed formula of propositional logic in
which events are propositions: ce = e | ce∨ ce | ce∧ ce | ce→ ce | ¬ce. We denote by F(E), the
set of formulae formed with the events in E.

Definition 2. (Probabilistic XML document) A probabilistic XML document (or p-document)
is a quintuple 〈D,E, f ,C, p〉, where D is a normal XML document, E is a set of events, f is a
function from V(D) to F(E) (associating each node in the document with a formula), C – the
constraint – is an element of F(E), and p is a probability function from E to (0,1]. If C is empty,
the probabilistic XML document is said to be unconstrained.

The function f has a different semantics from that of [24] where a given tuple t is actual if and
only if f (t) is true. Here, a node n is actual if and only if parent(n) exists and f (n) is true.

Definition 3. (Interpretation, model) An interpretation of a formula ce is an assignment of each
event in ce to {true, false}. A model of a formula ce is an interpretation of ce that makes ce true.
The set of models of ce is denoted as M (ce).

Definition 4. (Probability of a formula) Given a probability function p over a set E of events,
The probability of a formula ce ∈ F(E), denoted as p(ce) is

p(ce) = ∑
I∈M (ce)

(
∏

I(e)=true

p(e) ∏
I(e)=false

(1− p(e))

)

where an assignment e ranges over all the events in ce.

For ease of presentation, in this paper, we use PrXMLind (respectively, PrXMLfie) to denote
a probabilistic XML data model, such that in a probabilistic XML document 〈D,E, f ,C, p〉, f
assigns an independent event (respectively, a formula of events) to each node in D.

6

DRAFT
Possible worlds A possible world of a probabilistic XML document is an ordinary XML
document, obtained as a subtree of the probabilistic XML document such that (1) for each
existing node, the formulae of this node and its ancestors are true; (2) for each non-existing
node, at least one formula of this node or its ancestors are false; (3) the constraint is true. The
probability of a possible world is the probability of the model(s) satisfying the above conditions.

Definition 5. (Possible world) Let D=〈D,E, f ,C, p〉 be a probabilistic XML document. D′ is a
possible world of D if and only if the following formula F has non-zero probability.

F =
∧

n∈D′

∧
ni∈path node(root(D′),n)

f (ni)∧
∧

n∈D−D′
¬

 ∧
ni∈path node(root(D′),n)

f (ni)

∧C.

We denote pD(D′) = p(F |C) = p(F)
p(C) the probability of the possible world D′, and P(D) the

set of possible worlds of D .

With all these definitions in, we need to introduce the important notion of consistency of a
constraint with respect to the structural annotations of a probabilistic XML document.

Definition 6. (Consistency) Let D=〈D,E, f ,C, p〉 be a probabilistic XML document. D is
consistent (resp., inconsistent) if and only if there exists a possible world (resp., there does not
exist a possible world) of D , i.e., P(D) 6= /0 (resp., P(D) = /0).

It is easy to see that consistency only depends on the constraint:

Lemma 1. Let D=〈D,E, f ,C, p〉 be a probabilistic XML document. D is inconsistent if and only
if C is always evaluated to be false.

It is sometimes convenient to talk about the probability of an individual node:

Definition 7. (Probability of a node) Given a probabilistic XML document D=〈D,E, f ,C, p〉,
the probability of a node n ∈ V(D), denoted by pD(n), is defined as:

pD(n) = ∑
D′∈P(D),n∈V(D′)

pD(D′).

Equivalent probabilistic XML documents We introduce an equivalence relation between
probabilistic XML documents under the possible world semantics.

Definition 8. (World equivalence) Given two probabilistic XML documents D1=〈D,E1, f1,C1, p1〉
and D2=〈D,E2, f2,C2, p2〉, we say that D1 and D2 are world-equivalent, denoted by D1 ≡w D2,
if and only if

D′ ∈ P(D1)⇐⇒ D′ ∈ P(D2) and pD1(D
′) = pD2(D

′).

According to Definition 8,≡w is an equivalence relation, because it is reflexive (i.e., D1≡w D1),
symmetric (i.e., if D1 ≡w D2 then D2 ≡w D1) and transitive (i.e., if D1 ≡w D2,D2 ≡w D3 then
D1 ≡w D3).

A fundamental property, that allows considering the conditioning operation, is as follows:

7

DRAFT
Theorem 1. Let D1 = 〈D,E1, f1,C, p1〉 be a probabilistic XML document. If D1 is consistent,
then there exists an unconstrained probabilistic XML document D2 = 〈D,E2, f2, /0, p2〉 such that
D1 ≡w D2.

Proof. This is essentially a corollary of Proposition 5.7 in [1] which states that an arbitrary
finite probability distributions over XML documents can be represented by a probabilistic XML
document using mux and det nodes. However, the number of nodes of the resulting probabilistic
XML document is exponentially larger than that of individual possible worlds because all possible
worlds are represented. We give a slightly different proof, that maintain the same document D
(but may introduce exponentially large node annotations).

We normalize C to be its full disjunctive normal form (an exponential blowup may occur here)
and denote each conjunct by Ki for 1 ≤ i ≤ q. Each conjunct Ki maps to one possible world
pwd(Ki) (where pwd(Ki) is generated by the model of Ki). For each node n ∈ V(D), we need to
check whether n is in a possible world pwd(Ki) by verifying whether the model of Ki is a model
of
∧

n′∈path node(root(D),n) f1(n′).
We set f2(n) =

∨
n∈pwd(Ki) Ki. This makes sure that D2 has the same set of possible worlds as

D1. The probability of Ki is computed as p2(Ki) =
p1(Ki)
p(C) . This equation guarantees that D2 and

D1 have the same probability for the same possible world.
Note that the new events Ki’s are mutually exclusive. We can use a set of (q−1) independent

events ai’s to represent Ki’s, as: K1 = a1,Ki = ¬a1∧ ...∧¬ai−1∧ai(i = 2, ...,q−1),Kq = ¬a1∧
...∧¬aq−1. The probabilities p2(ai), i ∈ [1,q−1] can be easily computed by knowing p2(Ki), i ∈
[1,q].

The last step is replacing mutually exclusive events Ki’s by independent events ai’s in f2. By
the construction above, we obtain D2 such that D1 ≡w D2.

Conditioning Assume the p-document D1 = 〈D,E1, f1,C1, p1〉 together with a set of con-
straints C. Conditioning D1 with C consists in enforcing C into D1, that is, computing the
resulting probabilistic XML document Dc = 〈D,E1, f1,C1∪C, p1〉.

This conditioning problem is solved by finding a world-equivalent probabilistic XML document
with empty constraint, given the probabilistic XML document with a constraint.

Definition 9. (The conditioning problem) Given D1 = 〈D,E1, f1,C, p1〉, the conditioning prob-
lem is to find an unconstrained probabilistic database D2 = 〈D,E2, f2, /0, p2〉 such that D1 ≡w D2.

The existence of such a probabilistic XML document with no constraint is a direct consequence
of Theorem 1.

Corollary 1. Let D1 = 〈D,E1, f1,C1, p1〉 be a consistent probabilistic XML document. The
conditioning problem over D1 always has a solution.

4 From Query to Constraint

8

DRAFT

0

1

2 3 4

1e

2e 3e 4e

0

1

2 3 4

1a

2a 32 aa  32 aa 

0e 0a

0

1

2

1e

2e

3e

0e

3 4

5

4e

5e

0

1

2

3 4

5

2a

4a

0a

1a

2a

0

1

2 3

1e

2e
3e

0e

4

5

4e

0

1

2 3 32 aa 

4

5

42 aa 

0a

1a

2a

2a

5e 2a

0

1

2 3

1e

2e
3e

0e

4

5

4e

0

1

2 3 ')(332 aaa 

4

5

')(442 aaa 

0a

1a

2a

5e '52 aa 

0

1 3 51e
3e 5e

0e

2 4 62e 4e
6e

0

1 2

3 4

0e

1e 2e

3e 4e

label(0)=R
label(1)=A
label(2)=B
label(3)=C
label(4)=D

Figure 2: p-Document with independent choices

This section shows how constraints are naturally expressed as semantic constraints among
nodes of a document identified by a query. In this paper, we mainly focus on mutually exclusive
constraints among nodes .

The query language we consider is twig queries [5] (or tree pattern queries), also known as the
downward navigational fragment of XPath. We occasionally reuse XPath notation.

A mutually exclusive constraint (or mutex constraint for short) over a set {x1,x2, . . . ,xq} of
nodes indicates that only one of the nodes in this set exists. The corresponding query consists
of two parts: (1) at least one of these q nodes exists; (2) any two nodes cannot exist together.
Given that, the expression of this query can be specified within our query language as Q =
(
∨q

i=1 qi)∧
∧

i, j∈[1,q]∧i< j¬(qi∧q j), where qi is the twig query expressing that node xi exists, i.e.,
the node existence constraint previously referred to.

Example 1. Consider the probabilistic XML document in Figure 2. Consider the constraint that
one of node 1 and node 3 exists. The query is ((/R/A)∨ (/R/B/C))∧¬((/R/A)∧ (/R/B/C)).
The global formula is:

((e0∧ e1)∨ (e0∧ e2∧ e3))∧¬(e0∧ e1∧ e2∧ e3).

5 General case

In this section, we establish general lower and upper bounds for the conditioning problem.
We consider two subproblems: tractability of the conditioning, in terms of time complexity;
compactness of representation of an unconstrained probabilistic XML document equivalent to a
constrained one.

Time complexity We first consider the time complexity of the conditioning problem. In the
general case where both the constraint C and formulae associated to nodes are general elements of
F(E), an EXPTIME upper bound is easy to obtain: enumerate all possible worlds, and construct
an unconstrained probabilistic XML document that regroups all such documents, with their
corresponding probabilities. A slightly more subtle approach, but that still yields an exponential-
time algorithm, was introduced in [19]. It relies on the notion of ws-sets (which corresponds,
in our terminology, to constraints in disjunctive normal) and ws-trees (a tree structure used to
compute the probability of constraints and to perform conditioning). We present this approach,
relying on the results of [19], as Algorithm 1.

9

DRAFT
The conditioning algorithm in [19] takes a probabilistic database and ws-sets (i.e., a constraint)

as input, and outputs a probabilistic database that includes only the possible worlds in the ws-sets,
with re-defined probabilities. Before conditioning, we encode a probabilistic XML document as a
probabilistic relation, as: (1) constructing a probabilistic relation with only one attribute which
stores the identifiers of node, (2) the formula associated with the tuple representing node n being
F1(n) =

∧
n′∈path node(root(D),n) f1(n′) (line 2 in Algorithm 1). This probabilistic relation gives the

probabilistic conditions of all nodes of the probabilistic XML document D1. The parent-child
relationship in D1 is reflected in the formula of the probabilistic relation. We use the conditioning
algorithm in [19] (line 3 in Algorithm 1) in this probabilistic relational setting.

Algorithm 1: General conditioning algorithm for probabilistic XML data
Data: D1 = 〈D,E1, f1,C1, p1〉
Result: D2 = 〈D,E2, f2, /0, p2〉 such that D1 ≡w D2

1 foreach node n in breadth-first-traversal of D do
2 F1(n)←

∧
n′∈path node(root(D),n) f1(n′);

3 F2←result of the conditioning algorithm in [19] applied with F1(n) as the formulae for a
tuple representing node n;

4 foreach node n in breadth-first-traversal of D do
5 Let αn such that F2(n) = f2(parent(n))∧αn;
6 f2(n)← αn;

The exponential-time running time is a direct consequence of the running time of the condi-
tioning algorithm of [19]. We now show the correction of this algorithm:

Proposition 1. Algorithm 1 solves the conditioning problem, as long as the input document is
consistent.

Proof. For each D′ ∈ P(D2), according to Theorem 5.3 of [19],

pD2(D
′) =

p1 (
∧

n∈D′ F1(n)∧
∧

n/∈D′ ¬F1(n)∧C)

p1(C)
.

But then, according to Definition 5,

p1(
∧

n∈D′ F1(n)∧
∧

n/∈D′ ¬F1(n)∧C)

p1(C)
= pD1(D

′).

Therefore pD2(D
′) = pD1(D

′). Similarly, we show that ∀D′ ∈P(D1), we have pD1(D
′) = pD2(D

′).

Conditioning still requires checking consistency. This operation itself is actually intractable
for any non-trivial query, which leaves little hope of having a polynomial-time conditioning
algorithm in the general case where node annotations are arbitrary (which correspond to the
PrXMLfie case).

10

DRAFT
Proposition 2. Checking the consistency of the constraint obtained by any satisfiable node
existence query Q over a probabilistic XML document is NP-hard.

Proof. We simply reduce from SAT. Let φ be an arbitrary propositional formula. We consider
a deterministic model of the query Q (supposed to exist as the query is satisfiable), where the
target node of the query is annotated with φ and all other nodes are annotated with true. Then
the global constraint is φ and thanks to Lemma 1, checking consistency amounts to checking
satisfiability of φ .

Compactness of representation We now turn to compactness of the conditioned probabilis-
tic XML document. Does there always exist an unconstrained probabilistic XML document
that has comparable size to the input document? We first show thanks to a simple counting
argument that if constraints are completely arbitrary and their size is not counted as part of the
input, conditioning can result in trees of exponential size:

Proposition 3. For all k ≥ 1 there exists a probabilistic XML document D1 = 〈D,E1, f1,C1, p1〉
with

|D|+ |E1|+ ∑
n∈D
| f1(n)|= O(k)

such that every unconstrained probabilistic XML document D2 = 〈D,E2, f2, /0, p2〉 with D1 ≡w D2
satisfies ∑n∈D | f2(n)|= Ω(2k).

Proof. For a fixed k, D is a tree with k distinct children, each of them being annotated with an
independent event ei, each having probability 1

2 . There are 2k possible worlds for 〈D,E1, f1, /0, p1〉.
There are therefore 22k −1 consistent probabilistic documents of the form 〈D,E1, f1,C, p1〉 when
C varies. Necessarily, it is not possible to describe each of these documents using o(2k) bits for
all such constraints.

Assuming the constraint is not part of the input, or that the query that generated the constraint
can be completely arbitrary, is unreasonable however. What we want is to limit the expressiveness
by considering a fixed query language (such that the one of Section 4) and determine whether
for this query language, a blowup can occur when conditioning. The following result relates this
problem to a long-standing open problem:

Proposition 4. Assume there exists an NP-definable query Q satisfying the following: for all
k ≥ 1 there is a consistent probabilistic XML document D1 of size k constrained by Q such that
no unconstrained document D2 having the same set of possible worlds has representation size in
O(k2). Then there exists an NP problem for which all circuits are supra-linear.

The probabilistic document D1 can always be taken to be of depth 1 with independent events
on all nodes.

Proof. We assume by contraposition that all NP problems have linear-sized circuits.
Let L be the language of an arbitrary NP problem, and (Ck)k≥1 the corresponding family of

linear-sized circuit; we fix an arbitrary instance size k ≥ 1. Let D1 be a p-document of depth 1
and k nodes n1, . . .nk, with independent events (ei)1≤i≤k on all nodes, corresponding to the inputs
of the circuit Ck, and let Q be a query that expresses the NP problem over this document (the

11

DRAFT
0

1 2 4

3 5

1e 2e

3e

4e

5e

0

1 2 4

3 5

1a 2a

31 aa 

43211)(aaaaa 

)(3211 aaaa 

0

1

0

1 2

0

1 4

0

1 2 4

0

2

3

0

2 4

3

0

4

5

0

2 4

5

421 eee  4321 eeee  5421 eeee  54321 eeeee 

4321 eeee  54321 eeeee  5421 eeee  54321 eeeee 

K1 K2 K3 K4

K5 K6 K7 K8

421 aaa  421 aaa  421 aaa  421 aaa 

4321 aaaa  4321 aaaa  21 aa  321 aaa 

Figure 3: Two probabilistic XML documents in Example 2

result of the query is true in a possible world of D1 if and only if the circuit evaluates to true for
the corresponding valuation of its inputs).

Since D1 is consistent, it has at least one possible world. Let S be the set of events ei that are
true in one such possible world.

We use the folklore trick of coding circuits to Boolean expressions linear in the size of the
circuit [22]. Let φ be the corresponding encoding of Ck as a Boolean expression. We take for D2
a p-document with the same structure as D1 and with node ni annotated with condition ei∧φ if
ei 6∈ S, and (ei∧φ)∨¬φ otherwise. Since D2 is of the same structure size as D1, and each of its
node is annotated with a linear-sized formula, it has representation size quadratic in k. Observe
that D2 has exactly the same set of possible worlds as the conditioning of D1 by Q (in particular,
when φ is not satisfied by a valuation, we obtain a valid possible world).

The existence of an NP (or even PTIME) problem with a supra-linear circuit is a long-standing
open problem [15] that has potential applications to the P

?
= NP problem [3].

There is therefore little hope to find reasonable queries that would force a blowup worse than
quadratic of any unconstrained document having the same set of possible worlds.

However, note that having the same set of possible worlds is not enough: one also needs to
get the right probability distributions. There are cases where an unconstrained document has the
same set of possible worlds, but is not world-equivalent:

Example 2. Consider the probabilistic XML document D1 presented on the left-hand-side of
Figure 3 and its constraint is that only one of node 1,3,5 exists. The probabilistic XML document
D2 is on the right-hand-side in Figure 3.

D1 and D2 have the same set of possible worlds as presented in Figure 4. The corresponding
formulae of possible worlds in D1 and D2 are also presented below each possible world.

In order to determine the probability values of p2(ai), one has to resolve the set of equations
stating that the probabilities of each possible world of D1,D2 are the same. However, one can
show that this set of equations does not admit any valid solution.

Thus, it is still open whether there are cases of constraints defined by simple queries, and where
world-equivalent unconstrained documents are substantially larger than constrained ones.

12

DRAFT

0

1 2 4

3 5

1e

2e

3e

4e

5e

0

1 2 4

3 5

1a

2a

31 aa 

43211)(aaaaa 

)(3211 aaaa 

0

1

0

1 2

0

1 4

0

1 2 4

0

2

3

0

2 4

3

0

4

5

0

2 4

5

421 eee  4321 eeee  5421 eeee  54321 eeeee 

4321 eeee  54321 eeeee  5421 eeee  54321 eeeee 

K1 K2 K3 K4

K5 K6 K7 K8

421 aaa  421 aaa  421 aaa  421 aaa 

4321 aaaa  4321 aaaa  21 aa  321 aaa 

Figure 4: Eight possible worlds for probabilistic XML documents in Figure 3

6 mutually exclusive constraints

In this section, we introduce the kinds of constraints we further consider, as special cases for which
we will then present polynomial-time algorithms in the following sections; we also introduce some
important definitions. We first define four classes of mutually exclusive constraints considered
in this paper and especially three particular semantics. One particular technical tool relates to
the relevant part of a probabilistic XML document for a given constraint, that we study next.
We then introduce the notion of possible worlds according to the relevant part of a probabilistic
XML document for a constraint.

Data model and Constraints We restrict our study to mutually exclusive constraints over a
set of nodes N = {x1,x2, ...,xq}. We consider two semantics: with maybe semantics and without
maybe semantics. A mutually exclusive constraint with maybe semantics, called WMB (With-
MayBe) means that at most one node exists. A mutually exclusive constraint without maybe
semantics means that exactly one node exists (this is the variant presented in Section 4). Under
this semantics, there are two sub-cases: (1) the first one that we denote by WOMBA (standing
for, WithOut-MayBe-Absolutely) translates the fact that exactly one node exists; (2) the second
means that exactly one node exists if the lowest common ancestor exists – we refer to this latter
by WOMBI, i.e. WithOut-MayBe-If.

In addition, we consider a special class of probabilistic XML documents, namely probabilistic
XML documents with independent events (PrXMLind) as input of the conditioning problem. In
a probabilistic XML document D1 = 〈D,E1, f1,C, p1〉 of this special class, for all two nodes
xi,x j ∈ V(D) and independent events ei,e j, when f1(xi) = ei then xi 6= x j⇒ ei 6= e j. These two
restrictions will allow us to propose algorithms despite the general intractability result.

We present below the four classes of mutually exclusive constraints we consider throughout
the rest of this paper.

13

DRAFT
• Mutually Exclusive Siblings (MES) Constraints: all nodes in N are siblings, i.e.

∀xi,x j ∈ N parent(xi) = parent(x j).

• Mutually Exclusive Ancestor-Descendant (MEAD) Constraints: there is a node x in N such
that x is the lowest common ancestor of any two nodes in N, i.e.

∃x ∈ N ∀x1,x2 ∈ N x = LCA(x1,x2)

• Mutually Exclusive Descendance (MED) Constraints: any two distinct pairs of couple of
nodes in N have the same lowest common ancestor, i.e.

∀xi,x j,xa,xb ∈ N LCA(xi,x j) = LCA(xa,xb) /∈ N

• MED&AD Mutually Exclusive Constraints: combination of MED and MEAD constraints.
The set of mutually exclusive nodes N can be divided into two disjoint sets as N = X ∪Y
and X ∩Y = /0. The set of nodes X={x1 . . .xg} has the property that:

∀xh,xl,xr,xs ∈ X LCA(xh,xl) = LCA(xr,xs) /∈ N.

Y = {y1 . . .yb} can be divided into g disjoint subsets Y1 . . .Yg. The set of nodes xi∪Yi has
the property that ∀ y1,y2 ∈ Yi (xi = LCA(y1,y2)), where i ∈ [1,g]. Note that q = g+b.

We will mostly focus on the WOMBA semantics in the following, details for the other semantics
can be found in [25]. Conditioning on MED&AD Mutually Exclusive Constraints is omitted in
the article due to space limit, and it is included in [25].

Local Tree and Local Possible Worlds We introduce the concept of local tree as being the
relevant part of a given probabilistic XML document under constraints. We formally define this
local tree, as well as the set of corresponding local possible worlds, as follows.

Theorem 2. Let D1 = 〈D,E1, f1,C, p1〉 be a consistent probabilistic XML document in PrXMLind.
If f1(ni) is independent from C, after conditioning, it is possible to condition so that its formula
f2(ni) is a unique independent event, and p1(f1(ni)) = p2(f2(ni)).

Proof. Since f1(ni) is an unique independent event ei and it is independent from C, we can
choose f2(ni) to be also an unique independent event, i.e., f2(ni) = ai. Obviously, we have
p2(ai) = p1(ei) as proven below.

p2(ai) = p1(ei|C) =
p1(ei∧C)

p1(C)
=

p1(ei) · p1(C)

p1(C)
= p1(ei).

Corollary 2. Let D1 = 〈D,E1, f1,C, p1〉 be a consistent probabilistic XML document in PrXMLind

and C is a mutually exclusive constraint over a set of nodes N. After conditioning (1) the formulae
of all the nodes in the paths from root(D) to x ∈ N must be updated and the probabilities of new
events must be defined; (2) for other nodes (which are not in those paths), the formulae and
probabilities can be left unmodified.

14

DRAFT
Corollary 2 is a direct consequence of Theorem 2, because if a node ni is not in the paths from

root(D) to x∈N, then its formula f1(ni) is independent from C. We can exclude such irrelevant
nodes for the conditioning operation. Under Corollary 2 we give the formal definition of the
local tree in next.

Definition 10. (Local tree) Assume D1 = 〈D,E1, f1,C, p1〉 is in PrXMLind and C is a mutually
exclusive constraint over a set of nodes N. The local tree, that we denote by LT(C,D), of D with
respect to the constraint C is a tree obtained by considering only the paths from root of D to the
nodes in N and by excluding the rest of nodes.

Example 3. Consider the document in Figure 2 and the constraint in Example 1. The local tree
is the tree in Figure 2, excluding node 4 and the edge from node 2 to node 4.

Theorem 3. Let us give two probabilistic XML documents D1 = 〈D,E1, f1,C, p1〉 (D1 is in
PrXMLind and C is a mutually exclusive constraint) and D2 = 〈D,E2, f2, /0, p2〉. We claim that
D1 ≡w D2 iff

〈LT (C,D),E1, f1,C, p1〉 ≡w 〈LT (C,D),E2, f2, /0, p2〉.

To end this section, we deduce the local possible worlds of the local tree as follows.

Definition 11. (Local possible worlds) The local possible worlds of D1 = 〈D,E1, f1,C, p1〉 (in
PrXMLind) correspond to possible worlds of 〈LT (C,D), E1, f1,C, p1〉.

Now, let us study the number of local possible worlds for each kind of mutually exclusive
constraint sketched above.

Number of Local Possible Worlds Assume there are m+ 1 nodes on the path from the
root node to the lowest common ancestor of all the nodes in N. Figure 5(a), Figure 5(b) and
Figure 5(c) present local trees of MES, MEAD and MED constraints, respectively. In the given
tree examples, the set of mutually exclusive nodes is N = {x1 . . .xq}. Figure 5(d) depicts the local
tree of MED&AD constraint, and q mutually exclusive nodes are shaded in the figure.

In Figure 5(b) and 5(c) there are k nodes in the paths from node m to node xi (excluding m
and including xi). In Figure 5(d), there are g shaded nodes (x1,x2, ...,xg) in the higher level, each
of which there are hi shaded descendant nodes (for simplicity we assume hi = h for i ∈ [1,g]).
Assume there are k1 nodes in the paths from node m to node xi’s for i ∈ [1,g] (excluding m and
including xi) and there are k2 nodes in the path from node xi’s to node y(i, j)(j ∈ [1,hi]) (excluding
xi and including y(i, j)). We have q = g+gh.

Table 1 shows the number of local possible worlds for presented mutually exclusive semantics.
The number of local possible worlds of MES constraint is linear to q, while this size for MEAD,
MED, and MED&AD mutually exclusive constraints is exponential in q.

15

DRAFT
Table 1:

Constraint WMB WOMBA WOMBI

MES m+q+2 q m+q+1
MEAD m+2+ kq−1 kq−1 m+1+ kq−1

MED m+1+q · kq−1 + kq q · kq−1 m+1+q · kq−1

MED&AD m+1+g(kg−1
1 kh

2)+ kg
1 g(kg−1

1 kh
2) m+1+g(kg−1

1 kh
2)

…... …...

…... …... …...

m

1x
ix qx

0

…...

0

1 3 5

4 62

0e

1e

2e

3e

4e

5e

6e

m

0

…...

…... …...1x ix qx
…... …...

…... …... …...

m

1x
ix 1qx

0

…...

(a) local tree of MES con-
straints

…... …...

…... …... …...

m

1x
ix qx

0

…...

0

1 3 5

4 62

0e

1e

2e

3e

4e

5e

6e

m

0

…...

…... …...1x ix qx
…... …...

…... …... …...

1x
ix 1qx

0

…...

mxq 

(b) local tree of MEAD
constraints

…... …...

…... …... …...

m

1x
ix qx

0

…...

0

1 3 5

4 62

0e

1e

2e

3e

4e

5e

6e

m

0

…...

…... …...1x ix qx
…... …...

…... …... …...

m

1x
ix 1qx

0

…...

(c) local tree of MED con-
straints

…... …...

…... …... …...

m

1x
ix qx

0

…...

0

1 3 5

4 62

0e

1e

2e

3e

4e

5e

6e

m

0

…...

…... …...1x ix qx
…... …...

…... …... …...

1x
ix 1qx

0

…...

mxq 

…... …... …... …... …... …...

…... …...

…... …... …...

…...

…... …... …...

…... …... …... …... …... …...

m

…... …...

…... …... …...

…...

…... …... …...

1x
ix gx

)1,1(y),1(1hy)1,(iy),(ihiy)1,(gy),(ghgy

(d) local tree of MED&AD
constraints

Figure 5: Local trees under considered mutually exclusive constraints

7 MutEx Siblings Constraints

In this section, we consider the mutually exclusive siblings (MES) constraint (Constraint 1 in the
example in Section 1), i.e., the nodes in N = {x1,x2, ...,xq} are mutually exclusive and they are
siblings. We assume the node id of the root of D is 0, and the node id of the parent node of all
the nodes in N is m. There are m+1 nodes in path node(0,m). Each node is associated with
an independent event ei (i ∈ [0,m]). There are q nodes in N, i.e., node m has q children (with id
m+ i, i ∈ [1,q]), each of which is associated with an independent event ei (i ∈ [m+1,m+q]).

According to Corollary 2, the local tree of the input probabilistic XML document is the part
including nodes in path node(0,m+ i) (i ∈ [1,q]). Therefore we will not discuss the formulae of
the other nodes.

As previously mentioned, we restrict in this present paper to WOMBA semantics (see [25]
for other kinds of constraints). The constraint C tells that exactly only one of node m’s children
exists. It can be formulated as follows:

C =
m∧

i=0

ei∧ (
q∨

u=1

(em+u∧
q∧

i=1,i6=u

¬em+i))

The probability of the constraint is then:

p1(C) =
m

∏
i=0

p1(ei)
q

∑
u=1

(p1(em+u)
q

∏
i=1,i 6=u

(1− p1(em+i)) =
m

∏
i=0

p1(ei)
q

∏
i=1

(1− p1(em+i))
q

∑
i=1

p1(em+i)

1− p1(em+i)

16

DRAFT
0

1

2 3 4

1e

2e 3e 4e

0

1

2 3 4

1a

2a 32 aa  32 aa 

0e 0a

0

1

2

1e

2e

3e

0e

3 4

5

4e

5e

0

1

2

3 4

5

2a

4a

0a

1a

2a

0

1

2 3

1e

2e
3e

0e

4

5

4e

0

1

2 3 32 aa 

4

5

42 aa 

0a

1a

2a

2a

5e 2a

0

1

2 3

1e

2e
3e

0e

4

5

4e

0

1

2 3 ')(332 aaa 

4

5

')(442 aaa 

0a

1a

2a

5e '52 aa 

0

1 3 51e
3e 5e

0e

2 4 62e 4e
6e

0

1 2

3 4

0e

1e 2e

3e 4e

label(0)=R
label(1)=A
label(2)=B
label(3)=C
label(4)=D

Figure 6: Probabilistic XML documents in Example 4

Example 4. Consider the local tree of a probabilistic XML document shown on the left-hand-side
in Figure 6. The constraint is that one of nodes 2,3,4 exists. It is formulated as

C = e0∧ e1∧ [(e2∧¬e3∧¬e4)∨ (¬e2∧ e3∧¬e4)∨ (¬e2∧¬e3∧ e4)]

Thanks to independence of the ei’s, the probability of the constraint can be computed as follows.

p1(C) = p1(e0)× p1(e1)× [p1(e2)(1− p1(e3))(1− p1(e4))+

(1− p1(e2))p1(e3)(1− p1(e4))+(1− p1(e2))(1− p1(e3))p1(e4)]

= p1(e0)p1(e1)(1− p1(e2))(1− p1(e3))(1− p1(e4))

(
p1(e2)

1− p1(e2)
+

p1(e3)

1− p1(e3)
+

p1(e4)

1− p1(e4)

)
This probability p1(C) can be computed in linear time to the size of constraint. Thanks to that,

and to the fact that there are linearly many local possible worlds (see Table 1), it is possible to
condition the tree in a very simple manner. Algorithm 2 is the conditioning algorithm for an MES
constraint under WOMBA semantics. Due to Theorem 3, there is no need to input the entire
document D of D1 = 〈D,E1, f1,C, p1〉, therefore we only consider the local tree LT (C,D). Line
1 to line 2 assign new formulae to the nodes in path node(0,m). Line 3 to line 6 assign new
formulae to the mutually exclusive nodes in N, which guarantees that only one of them exists.
Line 7 presents the set of equations to compute the probabilities of the new events. Since one of
the nodes in N exists, all the nodes in path node(0,m) must exist, otherwise none of the nodes in
N exists. Hence the probabilities of the events associated with the nodes in path node(0,m) are 1
(in Equation (1)). Equations (2), (3), (4) enumerate all local possible worlds and state that their
probabilities are unchanged after conditioning.

Example 5. Follow Example 4 and perform conditioning according to Algorithm 2. The result of
conditioning is presented on the right-hand-side of Figure 6. In order to compute the probabilities
of new events, the set of equations is:

p2(a0) = p2(a1) = 1

p2(a2) =
p1(e0) · p1(e1) · p1(e2) · (1− p1(e3)) · (1− p1(e4))

p1(C)

(1− p2(a2)) · p2(a3) =
p(e0) · p(e1) · (1− p(e2)) · p(e3) · (1− p(e4))

p1(C)

(1− p2(a2)) · (1− p2(a3)) =
p1(e0) · p1(e1) · (1− p1(e2)) · (1− p1(e3)) · p1(e4)

p1(C)

The set of equations is easy to solve. p2(a3) can be computed using the third and fourth
equations. p2(a2) can be computed using the second equation.

17

DRAFT
Algorithm 2: Conditioning algorithm for MES constraint under WOMBA semantics

Data: 〈LT (C,D),E1, f1,C, p1〉
Result: A world equivalent 〈LT (C,D),E2, f2, /0, p2〉

1 foreach node i ∈ path node(0,m) do
2 f2(i)← ai;
3 f2(m+1)← am+1;
4 for i ∈ [2,q−1] do
5 f2(m+ i)←¬am+1∧¬am+2∧ ...∧am+i;
6 f2(m+q)←¬am+1∧¬am+2∧ ...∧¬am+q−1;
7 The probabilities of the new events are computed by solving the following set of

equations:

p2(a0) = p2(a1) = ...= p2(am) = 1 (1)

p2(am+1) =
∏

m
i=0 p1(ei) · p1(em+1) ·∏q

i=1,i6=1(1− p1(em+i))

p1(C)
(2)

∀k ∈ [2,q−1],
k−1

∏
i=1

(1− p2(am+i)) · p2(am+k)

=
∏

m
i=0 p1(ei) · p1(em+k) ·∏q

i=1,i 6=k(1− p1(em+i))

p1(C)

(3)

q−1

∏
i=1

(1− p2(am+i)) =
∏

m
i=0 p1(ei) · p1(em+q) ·∏q

i=1,i6=q(1− p1(em+i))

p1(C)
(4)

Theorem 4. Given 〈LT(C,D),E1, f1,C, p1〉, Algorithm 2 outputs a world equivalent 〈LT(C,D),E2, f2, /0, p2〉.
Algorithm 2 performs in linear time to the size of the local tree.

Proof. The set of equations in line 7 of Algorithm 2 is developed based on Definition 8. The left-
hand-side of each equation is the probability of a possible world in 〈LT (C,D),E2, f2, /0, p2〉,
while the right-hand-side of the equation is the probability of the same possible world in
〈LT (C,D),E1, f1,C, p1〉. These equations guarantee the input and output are world-equivalent.

Algorithm 2 introduces m+q new events and p1(C) can be computed in linear time. The set of
equations can be solved in linear time because each variable can be determined in turn by simple
operations on the equations as addition and division. Hence the complexity of Algorithm 2 is
O(m+q).

8 MutEx AD Constraints

Let us now turn to mutually exclusive Ancestor-Descendant (MEAD) constraints (Constraint 2 in
the example in Section 1), i.e., the nodes in N = {x1,x2, ...,xq} are mutually exclusive and there
is one node xq = m which is the lowest common ancestor of every pair of nodes in N. The
node id of the root of D is 0. There are m+1 nodes in the path from node 0 to node m. Each
node is associated with an independent event ei (1≤ i≤ m). Note that any two of the other q−1

18

DRAFT
0

1

2 3 4

1e

2e 3e 4e

0

1

2 3 4

1a

2a 32 aa  32 aa 

0e 0a

0

1

2

1e

2e

3e

0e

3 4

5

4e

5e

0

1

2

3 4

5
2a

4a

0a

1a

2a

0

1

2 3

1e

2e
3e

0e

4

5

4e

0

1

2 3 32 aa 

4

5

42 aa 

0a

1a

2a

2a

5e 2a

0

1

2 3

1e

2e
3e

0e

4

5

4e

0

1

2 3 ')(332 aaa 

4

5

')(442 aaa 

0a

1a

2a

5e '52 aa 

0

1 3 51e
3e 5e

0e

2 4 62e 4e
6e

0

1 2

3 4

0e

1e 2e

3e 4e

label(0)=R
label(1)=A
label(2)=B
label(3)=C
label(4)=D

Figure 7: Probabilistic XML documents in Example 6

nodes in N (except node m) cannot be in an AD relationship; otherwise node m is not the lowest
common ancestor of the two nodes which are in an AD relationship.

The ids of the remaining q− 1 nodes in N are x1, ...,xq−1 and their associated events are
ex1 , ...,exq−1 . There are ki nodes in the path from node m to node xi (by excluding m while
including xi). We use (i, j) to represent the jth node in the path from node m to node xi. The
associated event of node (i, j) is e(i, j). Node xi is the node (i,ki).

According to Corollary 2, the local tree of the input probabilistic XML document is the part
including nodes in path node(0,xi) (i ∈ [1,q− 1]). We will not discuss the formulae of other
nodes.

Again, we focus on the WOMBA semantics. The constraint is exactly one node in N exists.
Node m is the ancestor of all the other nodes in N, therefore if node m does not exist, all the other
nodes in N cannot be actual. Hence, the constraint tells that node m exists while the other nodes
in N do not. An MEAD constraint under WOMBA semantics is formulated as follows:

C =
m∧

i=0

ei∧
q−1∧
i=1

¬(
ki∧

j=1

e(i, j)).

Its probability is

p1(C) =
m

∏
i=0

p1(ei)
q−1

∏
i=1

(1−
ki

∏
j=1

p1(e(i, j))).

Example 6. Consider the local tree of a probabilistic XML document on the left-hand-side in
Figure 7. The constraint is one of node 2,3,5 exists. The constraint can be formulated as:

C = e0∧ e1∧ e2∧¬e3∧¬(e4∧ e5).

Its probability is

p1(C) = p1(e0)p1(e1)p1(e2)(1− p1(e3))(1− p1(e4)p1(e5)).

This probability p1(C) can be computed in linear time to the size of the constraint. Algorithm
3 is the conditioning algorithm for an MEAD constraint under WOMBA semantics. The input
is the local tree of the constraint and the document. Line 1 to line 2 assign new formulae to
the nodes in path node(0,m). Line 4 assigns new formulae to nodes xi (i ∈ [1,q− 1]), which

19

DRAFT
guarantees that only one of node m and xi’s exists. Line 5 to line 6 assign formulae to the nodes
between m and xi’s. As can be observed, their formulae are independent. Line 7 presents the
set of equations to compute the probabilities of the new events. The probabilities of the events
associated with the nodes in path node(0,m) are 1 (in Equation (5)). Equation (6) defines the
probabilities of other new events.

Algorithm 3: Conditioning algorithm for the MEAD constraint under WOMBA semantics
Data: 〈LT (C,D),E1, f1,C, p1〉
Result: A world equivalent 〈LT (C,D),E2, f2, /0, p2〉

1 foreach node i ∈ path node(0,m) do
2 f2(i) = ai;
3 for i ∈ [1,q−1] do
4 f2(xi)←¬am;
5 for j ∈ [1,ki−1] do
6 f2((i, j))← a(i, j);
7 The probabilities of the new events are computed by solving the following set of

equations:

p2(a0) = p2(a1) = ...= p2(am) = 1 (5)

p2(a(i, j))
1− p2(a(i, j))

=
p1(e(i, j))(1−∏

ki
u= j+1 p1(e(i,u)))

1− p1(e(i, j))
(if p1(e(i, j)) 6= 1) (6)

p2(a(i, j)) = 1 (if p1(e(i, j)) = 1) (7)

Example 7. Follow Example 6 and do conditioning using Algorithm 3. The result of conditioning
is presented on the right-hand-side of Figure 7. In order to compute the probabilities of new
events, solve the equations: {

p2(a0) = p2(a1) = p2(a2) = 1
p2(a4)

1−p2(a4)
= p1(e4)·(1−p1(e5))

1−p1(e4)

Theorem 5. Given 〈LT(C,D),E1, f1,C, p1〉, Algorithm 3 outputs a world equivalent 〈LT(C,D),E2, f2, /0, p2〉.
Algorithm 3 performs in linear time to the size of the local tree.

Proof. From Equation (1) in Algorithm 3, we have:

If p1(e(i, j)) 6= 1, then p2(a(i, j)) =
p1(e(i, j))(1−∏

ki
u= j+1 p1(e(i,u)))

1−∏
ki
u= j p1(e(i,u))

; if p1(e(i, j)) = 1, then p2(a(i, j)) = 1.

Pick any possible world in 〈LT (C,D),E2, f2, /0, p2〉. Let us assume that in this possible world,
in the path from node m to node xi (i ∈ [1,q−1]), node (i,zi) exists while its child does not. We
assume zi < ki−1. The proof is almost the same when zi = ki−1 therefore we omit it.

20

DRAFT
The probability of the path from node m to node xi is

p2(a(i,1))p2(a(i,2))...p2(a(i,zi))(1− p2(a(i,zi+1)))

=
p1(e(i,1))(1−∏

ki
u=2 p1(e(i,u)))

1−∏
ki
u=1 p1(e(i,u))

p1(e(i,2))(1−∏
ki
u=3 p1(e(i,u)))

1−∏
ki
u=2 p1(e(i,u))

...
p1(e(i,zi))(1−∏

ki
u=zi+1 p1(e(i,u)))

1−∏
ki
u=zi

p1(e(i,u))

1− p1(e(i,zi+1))

1−∏
ki
u=zi+1 p1(e(i,u))

=
∏

zi
j=1 p1(e(i, j))(1− p1(e(i,zi+1)))

1−∏
ki
u=1 p1(e(i,u))

Therefore the probability of this possible world is

q−1

∏
i=1

(
zi

∏
j=1

p2(a(i, j))(1− p2(a(i,zi+1)))) =
∏

q−1
i=1 (∏

zi
j=1 p1(e(i, j))(1− p1(e(i,zi+1))))

∏
q−1
i=1 (1−∏

ki
u=1 p1(e(i,u)))

=
∏

m
i=0 p1(ei)∏

q−1
i=1 (∏

zi
j=1 p1(e(i, j))(1− p1(e(i,zi+1))))

∏
m
i=0 p1(ei)∏

q−1
i=1 (1−∏

ki
u=1 p1(e(i,u)))

=
∏

m
i=0 p1(ei)∏

q−1
i=1 (∏

zi
j=1 p1(e(i, j))(1− p1(e(i,zi+1))))

p1(C)

We deduce that this value is the probability of the same possible world in 〈LT (C,D),E1, f1,C, p1〉.
Therefore Algorithm 3 is correct.

Algorithm 2 introduces m+∑
q
i=1(ki−1) new events. The set of equations can be solved in

linear time because every variable only occurs in one equation. Therefore the complexity of
Algorithm 3 is linear (even though there are exponentially many local possible worlds).

9 MutEx Descendance Constraints

In this section, we consider the mutually exclusive descendance (MED) constraint (Constraint
3 in the example in Section 1), i.e., the nodes in N = {x1,x2, ...,xq} are mutually exclusive and
every pair of the nodes in N shares the same lowest common ancestor – node m (node m is not in
N). The id of the root of D is 0. There are m+1 nodes in the path from node 0 to node m.

There are ki nodes along the path from node m to node xi (excluding node m and including
node xi). We use (i, j) to represent the jth node along the path from node m to node xi. The
associated event of node (i, j) is e(i, j). Note that the node xi is the node (i,ki).

According to Corollary 2, the local tree of the input probabilistic XML document is the part
including nodes in path node(0,xi) (i ∈ [1,q]). We will not discuss the formulae of the other
nodes.

We consider the MED constraint under WOMBA semantics.

21

DRAFT

0

1

2 3 4

1e

2e 3e 4e

0

1

2 3 4

1a

2a 32 aa  32 aa 

0e 0a

0

1

2

1e

2e

3e

0e

3 4

5

4e

5e

0

1

2

3 4

5
2a

4a

0a

1a

2a

0

1

2 3

1e

2e
3e

0e

4

5

4e

0

1

2 3 32 aa 

4

5

42 aa 

0a

1a

2a

2a

5e 2a

0

1

2 3

1e

2e
3e

0e

4

5

4e

0

1

2 3 ')(332 aaa 

4

5

')(442 aaa 

0a

1a

2a

5e '52 aa 

0

1 3 5
1e 3e 5e

0e

2 4 62e 4e
6e

0

1 2

3 4

0e

1e 2e

3e 4e

label(0)=R
label(1)=A
label(2)=B
label(3)=C
label(4)=D

Figure 8: Probabilistic XML documents in Example 8

The constraint is exactly one node in N exists. The constraint C says that (1) nodes in
path node(0,m) exist; (2) when xi exists, any xk(k 6= i) cannot exist, however, the nodes between
node m and node xk may exist. The constraint can be formulated as follows:

C =
m∧

i=0

ei∧
q∨

i=1

(
ki∧

j=1

e(i, j)∧
q∧

u=1,u6=i

(¬
ku∧

j=1

e(u, j)))

The probability of the constraint is

p1(C) =
m

∏
i=0

p1(ei)
q

∑
i=1

(
ki

∏
j=1

p1(e(i, j))
q

∏
u=1,u6=i

(1−
ku

∏
j=1

p1(e(u, j)))

=
m

∏
i=0

p1(ei)
q

∏
i=1

(1−
ki

∏
j=1

p1(e(i, j)))(
q

∑
i=1

∏
ki
j=1 p1(e(i, j))

1−∏
ki
j=1 p1(e(i, j))

)

Example 8. Consider a local tree of a probabilistic XML document in Figure 8. The constraint
is one of nodes 2,4,6 exists. The constraint can be formulated as:

C = e0∧ (e1∧ e2∧¬(e3∧ e4)∧¬(e5∧ e6)∨ e3∧ e4∧
¬(e1∧ e2)∧¬(e5∧ e6)∨ e5∧ e6∧¬(e1∧ e2)∧¬(e3∧ e4))

Its probability is

p1(C) = p1(e0)(p1(e1)p1(e2)(1− p1(e3)p1(e4))(1− p1(e5)p1(e6))

+ p1(e3)p1(e4)(1− p1(e1)p1(e2))(1− p1(e5)p1(e6))+

p1(e5)p1(e6)(1− p1(e1)p1(e2))(1− p1(e3)p1(e4)))

= p1(e0)(1− p1(e1)p1(e2))(1− p1(e3)p1(e4))(1− p1(e5)p1(e6))

(
p1(e1)p1(e2)

1− p1(e1)p1(e2)
+

p1(e3)p1(e4)

1− p1(e3)p1(e4)
+

p1(e5)p1(e6)

1− p1(e5)p1(e6)
)

This probability p1(C) can be computed in linear time to the size of the constraint.
Similarly as in the other cases, we can devise an algorithm to condition probabilistic XML

documents under this kind of constraint (such an algorithm is described in [25]). This algorithm
introduces m+ k1 + kq−q+2+∑

q−1
i=2 2ki new events and p1(C) can be computed in linear time.

However, we do not have a proof that shows the set of equations in the algorithm always has
a solution, though the set of equations did have such a solutions in all cases we experimented
with. When there is a solution, the algorithm runs in polynomial-time to provide an approximate
solution to the equations.

22

DRAFT
Example 9. We illustrate the algorithm on Example 8. After the conditioning, the formulae of all
the nodes are: 

f2(0) = a0, f2(1) = a1, f2(2) = a2
f2(3) = (¬(f2(1)∧ f2(2))∧θ1)∨η1
f2(4) = ¬(f2(1)∧ f2(2)∧ f2(3))∧η2
f2(5) = ¬(f2(1)∧ f2(2))∧¬(f2(3)∧ f2(4))∨α1
f2(6) = ¬(f2(1)∧ f2(2))∧¬(f2(3)∧ f2(4))

There are 7 new created events. In order to compute the probabilities of these events, a
straightforward way is to enumerate all the possible worlds and set equations to make sure that
their probabilities are the same after conditioning.

There are 12 possible worlds, 4 for each of the following cases: when node 2 exists while node
4, 6 do not; when node 4 exists while node 2, 6 do not; and when node 6 exists while node 2, 4 do
not.

The algorithm gives us a set of 7 equations to solve to get the probabilities of the new events.
They are: 

p2(a0) = 1

p2(a1)p2(a2)(1− p2(η1))(1− p2(α1)) =
p1(e0)p1(e1)p1(e2)(1− p1(e3))(1− p1(e5))

p1(C)

(1− p2(a1))(p2(θ1)+ p2(η1)− p2(θ1)p2(η1)) · p2(η2)(1− p2(α1)) =

p1(e0)(1− p1(e1))p1(e3)p1(e4)(1− p1(e5))

p1(C)

(1− p2(a1))(1− p2(η1))(1− p2(θ1)) =
p1(e0)(1− p1(e1))(1− p1(e3))p1(e5)p1(e6)

p1(C)

1− p2(a1)

p2(a1)(1− p2(a2))
=

1− p1(e1)

p1(e1)(1− p1(e2))

1− p2(η1)

p2(η1)
=

1− p1(e3)

p1(e3)(1− p1(e4))

(1− p2(η1))(1− p2(θ1))

(p2(θ1)+ p2(η1)− p2(θ1)p2(η1))(1− p2(η2))
=

1− p1(e3)

p1(e3)(1− p1(e4))

Assume p1(e0) = 1, p1(e1) = p1(e2) =
1
2 , p1(e3) = p1(e4) =

1
3 , p1(e5) = p1(e6) =

1
4 . Resolv-

ing the equations, the probabilities of the new events are p2(a0) = 1, p2(a1) =
143
189 , p2(a2) =

120
143 , p2(θ1) =

15
23 , p2(η1) =

1
4 , p2(η2) =

15
17 , p2(α1) =

1
5 .

Theorem 6. The algorithm for MED constraints presented in [25] outputs a world equivalent
〈LT(C,D),E2, f2, /0, p2〉 in polynomial-time, given 〈LT(C,D),E1, f1,C, p1〉, assuming that the
equation system has a solution.

The proof of this theorem is omitted and is available in [25].

10 Conclusion

In this paper, we have studied the problem of conditioning probabilistic XML data. In general, as
observed in Section 5, conditioning is intractable and obtaining minimal representations relate to
long-standing open problems in circuit complexity. We presented an exponential-time algorithm

23

DRAFT
for the general case. Then we focused on the special case of probabilistic XML with independent
events and constraints as mutually exclusive constraints. We proposed a rather simplified but
reasonable query language to represent the considered mutually exclusive constraints. We devised
and presented tractable algorithms for four classes of mutually exclusive constraints. Note
that incorporating this kind of mutually exclusive constraints in what is essentially a PrXMLind

document is more powerful than simply adding mux nodes as the mutually exclusive constraints
considered span the whole document.

We are currently investigating the following issues. We have not been able to establish or
disprove the existence of a polynomial conditioning algorithm for general mutually exclusive
constraints on the probabilistic XML model with independent events. One constructive way to
do so is to establish under which conditions the existence of solutions for the equation systems
yielded by the conditioning problems is assured; note that these equations are not necessarily
linear, though it is in practice possible to numerically solve them if approximate solutions are
enough. A further question is that of the minimality of the obtained conditioned document – does
there exist another unconstrained document with simpler annotations that is world-equivalent to
the original probabilistic document?

References

[1] ABITEBOUL, S., KIMELFELD, B., SAGIV, Y., AND SENELLART, P. On the expressiveness
of probabilistic XML models. VLDB Journal 18, 5 (2009), 1041–1064.

[2] ABITEBOUL, S., AND SENELLART, P. Querying and updating probabilistic information in
XML. In Proc. EDBT (2006).

[3] ALLENDER, E. Chipping away at P vs NP: How far are we from proving circuit size lower
bounds? In CATS (2008), p. 3.

[4] AMARILLI, A., AND SENELLART, P. On the connections between relational and XML
probabilistic data models. In BNCOD (2013).

[5] AMER-YAHIA, S., CHO, S., LAKSHMANAN, L. V. S., AND SRIVASTAVA, D. Minimiza-
tion of tree pattern queries. In Proc. SIGMOD (2001).

[6] BA, M. L., ABDESSALEM, T., AND SENELLART, P. Uncertain version control in open
collaborative editing of tree-structured documents. In Proc. DocEng (Florence, Italy, 2013).

[7] BARBARÁ, D., GARCIA-MOLINA, H., AND PORTER, D. The management of probabilistic
data. Proc. IEEE Trans. Knowl. Data Eng. (1992).

[8] CAVALLO, R., AND PITTARELLI, M. The theory of probabilistic databases. In Proc. VLDB
(1987).

[9] CHANG, C.-H., KAYED, M., GIRGIS, M. R., AND SHAALAN, K. F. A survey of Web
information extraction systems. IEEE Trans. on Knowl. and Data Eng. (2006).

24

DRAFT
[10] COHEN, S., KIMELFELD, B., AND SAGIV, Y. Incorporating constraints in probabilistic

XML. In Proc. PODS (2008).

[11] DONG, X. L., HALEVY, A., AND YU, C. Data integration with uncertainty. VLDB Journal
(2009).

[12] EITER, T., LUKASIEWICZ, T., AND WALTER, M. A data model and algebra for probabilis-
tic complex values. Proc. Ann. Math. Artif. Intell. (2001).

[13] HUNG, E., GETOOR, L., AND SUBRAHMANIAN, V. S. Probabilistic interval XML. In
Proc. ICDT (2003).

[14] HUNG, E., GETOOR, L., AND SUBRAHMANIAN, V. S. PXML: A probabilistic semistruc-
tured data model and algebra. In Proc. ICDE (2003).

[15] KANNAN, R. Circuit-size lower bounds and non-reducibility to sparse sets. Information
and Control 55, 1-3 (1982), 40–56.

[16] KHARLAMOV, E., NUTT, W., AND SENELLART, P. Updating probabilistic XML. In Proc.
EDBT/ICDT Workshops (2010).

[17] KHARLAMOV, E., AND SENELLART, P. Modeling, Querying, and Mining Uncertain XML
Data. In XML Data Mining: Models, Methods, and Applications, A. Tagarelli, Ed. Proc.
IGI Global, 2011.

[18] KIMELFELD, B., AND SENELLART, P. Probabilistic XML: Models and complexity. In
Proc. Advances in Probabilistic Databases for Uncertain Information Management, Z. Ma
and L. Yan, Eds. Springer-Verlag, 2013.

[19] KOCH, C., AND OLTEANU, D. Conditioning probabilistic databases. Proc. PVLDB (2008).

[20] NIERMAN, A., AND JAGADISH, H. V. ProTDB: Probabilistic data in XML. In Proc. VLDB
(2002).

[21] NILSSON, N. J. Probabilistic logic. Artif. Intell. 28, 1 (1986), 71–87.

[22] PAPADIMITRIOU, C. H. Computational Complexity. Addison-Wesley, 1994.

[23] SUCIU, D., OLTEANU, D., RÉ, C., AND KOCH, C. Probabilistic Databases. Morgan &
Claypool, 2011.

[24] TANG, R., CHENG, R., WU, H., AND BRESSAN, S. A framework for conditioning
uncertain relational data. In Proc. DEXA (2012).

[25] TANG, R., SHAO, D., BA, M. L., SENELLART, P., AND BRESSAN, S. A framework for
conditioning probabilistic XML data (extended version). Tech. rep., National University of
Singapore, Singapore, 2014. Available at http://www.comp.nus.edu.sg/~tang1987/
tech-reports/conditioningXML.pdf.

[26] VAN KEULEN, M., DE KEIJZER, A., AND ALINK, W. A probabilistic XML approach to
data integration. In Proc. ICDE (2005).

25

http://www.comp.nus.edu.sg/~tang1987/tech-reports/conditioningXML.pdf
http://www.comp.nus.edu.sg/~tang1987/tech-reports/conditioningXML.pdf

