
A Framework for Sampling-Based
XML Data Pricing

Ruiming Tang1, Antoine Amarilli2, Pierre Senellart1,2(B),
and Stéphane Bressan1

1 National University of Singapore, Singapore, Singapore
tangruiming1987@gmail.com, steph@nus.edu.sg

2 Institut Mines–Télécom, Télécom ParisTech, CNRS LTCI, Paris, France
{antoine.amarilli,pierre.senellart}@telecom-paristech.fr

Abstract. While price and data quality should define the major trade-
off for consumers in data markets, prices are usually prescribed by ven-
dors and data quality is not negotiable. In this paper we study a model
where data quality can be traded for a discount. We focus on the case of
XML documents and consider completeness as the quality dimension.

In our setting, the data provider offers an XML document, and sets
both the price of the document and a weight to each node of the doc-
ument, depending on its potential worth. The data consumer proposes
a price. If the proposed price is lower than that of the entire document,
then the data consumer receives a sample, i.e., a random rooted subtree
of the document whose selection depends on the discounted price and
the weight of nodes. By requesting several samples, the data consumer
can iteratively explore the data in the document.

We present a pseudo-polynomial time algorithm to select a rooted
subtree with prescribed weight uniformly at random, but show that this
problem is unfortunately intractable. Yet, we are able to identify several
practical cases where our algorithm runs in polynomial time. The first
case is uniform random sampling of a rooted subtree with prescribed size
rather than weights; the second case restricts to binary weights.

As a more challenging scenario for the sampling problem, we also
study the uniform sampling of a rooted subtree of prescribed weight and
prescribed height. We adapt our pseudo-polynomial time algorithm to
this setting and identify tractable cases.

1 Introduction

There are three kinds of actors in a data market: data consumers, data providers,
and data market owners [14]. A data provider brings data to the market and
sets prices on the data. A data consumer buys data from the market and pays
for it. The owner is the broker between providers and consumers, who negotiates
pricing schemes with data providers and manages transactions to trade data.

In most of the data pricing literature [4–6,9], data prices are prescribed and
not negotiable, and give access to the best data quality that the provider can
achieve. Yet, data quality is an important axis which should be used to price
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXIV, LNCS 9510, pp. 116–138, 2016.
DOI: 10.1007/978-3-662-49214-7 4



A Framework for Sampling-Based XML Data Pricing 117

documents in data markets. Wang et al. [15,19] define dimensions to assess data
quality following four categories: intrinsic quality (believability, objectivity, accu-
racy, reputation), contextual quality (value-added, relevancy, timeliness, ease of
operation, appropriate amount of data, completeness), representational quality
(interpretability, ease of understanding, concise representation, consistent repre-
sentation), and accessibility quality (accessibility, security).

In this paper, we focus on contextual quality and propose a data pricing
scheme for XML trees such that completeness can be traded for discounted
prices. This is in contrast to our previous work [18] where the accuracy of rela-
tional data is traded for discounted prices. Wang et al. [15,19] define complete-
ness as “the extent to which data includes all the values, or has sufficient breadth
and depth for the current task”. We retain the first part of this definition as there
is no current task defined in our setting. Formally, the data provider assigns, in
addition to a price for the entire document, a weight to each node of the docu-
ment, which is a function of the potential worth of this node: a higher weight is
given to nodes that contain information that is more valuable to the data con-
sumer. We define the completeness of a rooted subtree of the document as the
total weight of its nodes, divided by the total weight of the document. A data
consumer can then offer to buy an XML document for less than the provider’s
set price, but then can only obtain a rooted subtree of the original document,
whose completeness depends on the discount granted.

A data consumer may want to pay less than the price of the entire document
for various reasons: first, she may not be able to afford it due to limited budget
but may be satisfied by a fragment of it; second, she may want to explore the
document and investigate its content and structure before purchasing it fully. In
this light, one may think of discounted samples of the complete documents as
an inexpensive way for the user to discover which kind of content the document
contains, so that she can make up her mind about whether she wishes to purchase
the complete document.

The data market owner negotiates with the data provider a pricing function,
allowing them to decide the price of a rooted subtree, given its completeness
(i.e., the weight). The pricing function should satisfy a number of axioms: the
price should be non-decreasing with the weight, be bounded by the price of the
overall document, and be arbitrage-free when repeated requests are issued by
the same data consumer (arbitrage here refers to the possibility to strategize the
purchase of data). Hence, given a proposed price by a data consumer, the inverse
of the pricing function decides the completeness of the sample that should be
returned. To be fair to the data consumer, there should be an equal chance to
explore every possible part of the XML document that is worth the proposed
price. Based on this intuition, we sample a rooted subtree of the XML document
of a certain weight, according to the proposed price, uniformly at random.

The data consumer may also issue repeated requests as she is interested in
this XML document and wants to explore more information inside in an iterative
manner. For each repeated request, a new rooted subtree is returned. A principle
here is that the information (document nodes) already paid for should not be



118 R. Tang et al.

charged again. Thus, in this scenario, we sample a rooted subtree of the XML
document of a certain weight uniformly at random, without counting the weight
of the nodes already bought in previously issued requests.

The present article brings the following contributions:

– We propose to realize the trade-off between quality and discount in data mar-
kets. We propose a framework for pricing the completeness of XML data, based
on uniform sampling of rooted subtrees of prescribed weight in weighted XML
documents (Sect. 3).

– We show that the general uniform sampling problem in weighted XML trees
is intractable. In this light, we propose two restrictions: sampling based on
the number of nodes, and sampling when weights are binary (i.e., weights are
0 or 1) (Sect. 4).

– We propose a pseudo-polynomial time algorithm for the general uniform sam-
pling problem on prescribed weight, with the proof of its correctness and
complexity (Sect. 5).

– We show that the two restricted problem variants are tractable by showing
that the pseudo-polynomial time algorithm for the general sampling problem
runs in polynomial time for uniform sampling based on the size of a rooted
subtree, or on 0/1-weights (Sect. 6).

– We extend our framework to the case of repeated sampling requests with the
requirement that the data consumer is never charged twice for the same nodes.
Again, we obtain tractability when the weight of a subtree is its size (Sect. 7).

– As a more challenge scenario, we study the uniform sampling problem on both
prescribed weight and height. We devise a pseudo-polynomial time to solve
this sampling problem and also identify tractable cases for which the pseudo-
polynomial time sampling algorithm performs in polynomial-time (Sect. 8).

This article is the journal version of our previous work [17], extended with the
pseudo-polynomial time algorithm for the general weighted sampling problem,
and the problem of sampling for prescribed weight and height.

2 Related Work

Data Pricing. The basic structure of data markets and different pricing
schemes were introduced in [14]. The notion of “query-based” pricing was intro-
duced in [4,6] to define the price of a query as the price of the cheapest set
of pre-defined views that can determine the query. It makes data pricing more
flexible, and serves as the foundation of a practical data pricing system [5]. The
price of aggregate queries has been studied in [9]. Different pricing schemes are
investigated and multiple pricing functions are proposed to avoid several pre-
defined arbitrage situations in [10]. However, none of the works above takes data
quality into account, and those works do not allow the data consumer to propose
a price less than that of the data provider, which is the approach that we study
here.



A Framework for Sampling-Based XML Data Pricing 119

The idea of trading off price for data quality has been explored in the con-
text of privacy in [8], which proposes a theoretic framework to assign prices to
noisy query answers. If a data consumer cannot afford the price of a query, she
can choose to tolerate a higher standard deviation to lower the price. However,
this work studies pricing on accuracy for linear relational queries, rather than
pricing XML data based on completeness. In [18], we propose a relational data
pricing framework in which data accuracy can be traded for discounted prices.
By contrast, this paper studies pricing for XML data, and proposes a tradeoff
based on data completeness rather than accuracy.

Subtree/Subgraph Sampling. The main technical result of this paper is the
tractability of uniform subtree sampling under a certain requested size. This
question is related to the general topic of subtree and subgraph sampling, but,
to our knowledge, it has not yet been adequately addressed.

Subgraph sampling works such as [3,7,13,16] have proposed algorithms to
sample small subgraphs from an original graph while attempting to preserve
selected metrics and properties such as degree distribution, component distri-
bution, average clustering coefficient and community structure. However, the
distribution from which these random graphs are sampled is not known and
cannot be guaranteed to be uniform.

Other works have studied the problem of uniform sampling [2,11]. How-
ever, [2] does not propose a way to fix the size of the samples. The authors
of [11] propose a sampling algorithm to sample a connected sub-graph of size k
under an approximately uniform distribution; note that this work provides no
bound on the error relative to the uniform distribution.

Sampling approaches are used in [12,20] to estimate the selectivity of XML
queries (containment join and twig queries, respectively). Nevertheless, the sam-
ples in [20] are specific to containment join queries, while those in [12] are rep-
resentatives of the XML document for any twig queries. Neither of those works
controls the distribution from which the subtrees are sampled.

In [1], Cohen and Kimelfeld show how to evaluate a deterministic tree
automaton on a probabilistic XML document. This has applications to sam-
pling possible worlds that satisfy a given constraint, e.g., expressed in monadic
second-order logic and then translated into a tree automaton. Note that the
translation of constraints to tree automata itself is not tractable in general; in
this respect, our approach can be seen as a specialization of [1] to the simpler case
of fixed-size, fixed-weight, or fixed-height tree sampling, and as an application
of it to data pricing.

3 Pricing Function and Sampling Problem

This paper studies data pricing for tree-shaped documents. We start by formally
defining the terminology that we use for such documents.

We consider trees that are unordered, directed, rooted, and weighted; we
equivalently call them XML documents. Formally, a tree t consists of a set of



120 R. Tang et al.

nodes V(t) (which are assumed to carry unique identifiers), a set of edges E(t),
and a function w mapping every node n ∈ V(t) to a non-negative rational number
w(n) which is the weight of node n. We write root(t) for the root node of t.
Whenever two nodes n1, n2 ∈ V(t) are such that (n1, n2) ∈ E(t), we say that n1

and n2 are in a parent-child relationship, that is, n1 is the parent of n2 and n2

is a child of n1.
By children(n), we represent the set of nodes that have parent n. A tree is

said to be binary if each node of the tree has at most two children, otherwise it
is unranked.

We now introduce the notion of rooted subtree of an XML document:

Definition 1. (Subtree, rooted subtree) A tree t′ is a subtree of a tree t if
V(t′) ⊆ V(t) and E(t′) ⊆ E(t). A rooted subtree t′ of a tree t is a subtree of
t such that root(t) = root(t′). We name it r-subtree for short. The weight func-
tion for a subtree t′ of a tree t is always assumed to be the restriction of the
weight function for t on the nodes in t′.

For technical reasons, we also sometimes talk of the empty subtree that con-
tains no node.

0n

1n
2n 3n

5n4n

(a) A tree

0n

1n

2n 3n

5n4n

6n

(b) A binary tree

Fig. 1. Two example trees (usage of the square node will be introduced in Sect. 5.2)

Example 1. Figure 1 presents two example trees. The nodes {n0, n2, n5}, along
with the edges connecting them, form an r-subtree of the tree in Fig. 1(a). Like-
wise, the nodes {n2, n4, n5} and the appropriate edges form a subtree of that
tree (but not an r-subtree). The tree of Fig. 1(b) is a binary tree (ignore the
different shapes of the nodes for now). ��

We now present our notion of data quality, by defining the completeness of
an r-subtree, based on the weight function of the original tree:

Definition 2. (Weight of a tree) For a node n ∈ V(t) of a tree t, we define
inductively weight(n) :=w(n)+

∑
(n,n′)∈E(t) weight(n

′). With slight abuse of nota-
tion, we note weight(t) :=weight(root(t)) as the weight of t.



A Framework for Sampling-Based XML Data Pricing 121

Definition 3. (Completeness of an r-subtree) Let t be a tree and t′ be an
r-subtree of t. The completeness of t′ with respect to t is ct(t′) := weight(t′)

weight(t) .
It is obvious that ct(t′) ∈ [0, 1].

We study a framework for data markets where the data consumer can buy
an incomplete document from the data provider while paying a discounted price.
The formal presentation of this framework consists of three parts:

1. An XML document t.
2. A pricing function ϕt for t whose input is the desired completeness for an

r-subtree of the XML document, and whose value is the price of this r-subtree.
Hence, given a proposed price pr0 by a data consumer, the completeness of
the returned r-subtree is decided by ϕ−1

t (pr0).
3. An algorithm to sample an r-subtree of the XML document uniformly at

random among those of a given completeness.

We study the question of the sampling algorithm more in detail in subse-
quent sections. For now, we focus on the pricing function, starting with a formal
definition:

Definition 4. (Pricing function) The pricing function for a tree t is a function
ϕt : [0, 1] → Q+. Its input is the completeness of an r-subtree t′ and it returns
the price of t′, as a non-negative rational.

A healthy data market should impose some restrictions on ϕt, such as:

Non-decreasing. The more complete an r-subtree is, the more expensive it
should be, i.e., c1 � c2 ⇒ ϕt(c1) � ϕt(c2).

Arbitrage-free. Buying an r-subtree of completeness c1 + c2 should not be
more expensive than buying two subtrees with respective completeness c1
and c2, i.e., ϕt(c1) + ϕt(c2) � ϕt(c1 + c2). In other words, ϕt should be sub-
additive. This property is useful when considering repeated requests, studied
in Sect. 7.

Minimum and maximum bound. We should have ϕt(0) = prmin and ϕt(1) =
prt, where prmin is the minimum cost that a data consumer has to pay using
the data market and prt is the price of the whole tree t. Note that by the
non-decreasing character of ϕt, prt � prmin � 0.

All these properties can be satisfied, for instance, by functions of the form
ϕt(c) := (prt −prmin)cp +prmin where p � 1; however, if p > 1, the arbitrage-free
property is violated.

Given a proposed price pr0 by a data consumer, ϕ−1
t (pr0) is the set of possible

corresponding completeness values. Note that ϕ−1
t is a relation and may not

be a function; ϕ−1
t is a function if different completeness values correspond to

different prices. Once a completeness value c ∈ ϕ−1
t (pr0) is chosen, the weight

of the returned r-subtree is fixed as c × weight(t).
Therefore, in the rest of the paper, we consider the problem of uniform sam-

pling an r-subtree with prescribed weight (instead of with prescribed complete-
ness). We now define the problem that should be solved by our sampling algo-
rithm:



122 R. Tang et al.

Definition 5. (Sampling problem) The problem of sampling an r-subtree, given
a tree t and a weight k, is to sample an r-subtree t′ of t, such that weight(t′) = k,
uniformly at random, if one exists, or to fail if no such r-subtree exists.

4 Tractability

Having defined our sampling problem, we now turn to the question of designing
an algorithm to solve it, and of studying its complexity.

4.1 Intractability of the Sampling Problem

We start by showing that this problem is NP-hard in the general formulation
that we gave.

Proposition 1. Given a tree t and a weight k, it is NP-complete to decide
whether there exists an r-subtree of weight k, and NP-hard to sample such an
r-subtree uniformly at random.

Proof. Deciding whether there exists an r-subtree of weight k is in NP, since,
given an r-subtree, it takes polynomial time to check whether this r-subtree is
of weight k by summing up the weights of all the nodes.

We now show that the problem is NP-hard, by describing a PTIME reduction
from the NP-hard subset-sum problem. This is the problem of determining, given
a set S of integers and a target value v (written in binary), whether there exists
a subset S′ ⊆ S which sums to v. Any set S can be encoded in polynomial time
to a tree t such that w(n) = 0 except if n is a leaf, and the leaves correspond
to the elements of S. Now, clearly there is an r-subtree of weight v in t iff there
is a subset of S with sum v. This completes the reduction and shows that the
problem of deciding the existence of an r-subtree of weight k is NP-complete.

Now there is a PTIME-reduction from the decision problem to the sampling
problem, as an algorithm for sampling can be used to decide whether there exists
an r-subtree of the desired weight (the algorithm returns one such) or if none
exists (the algorithm fails). Therefore, the sampling problem is NP-hard. ��

Even though the general sampling problem is intractable, we devise in Sect. 5
a pseudo-polynomial time algorithm to solve it, which runs in polynomial time
in the value of k (but is exponential in the size of k).

4.2 Tractable Cases

We now define restricted variants of the sampling problem where the weight
function is assumed to be of a certain form. In Sect. 6, we show that sampling
for these variants can be performed in PTIME.



A Framework for Sampling-Based XML Data Pricing 123

Unweighted Sampling. In this setting, we take the weight function w(n) = 1
for all n ∈ V(t). Hence, the weight of a tree t is actually the number of nodes
in t, i.e., its size, which we write size(t).

In this case, the hardness result of Proposition 1 does not apply anymore.
However, sampling an r-subtree with prescribed size uniformly at random is still
not obvious to do, as the following example shows:

Example 2. Consider the problem of sampling an r-subtree t′ of size 3 from
the tree t in Fig. 1(a). We can enumerate all such r-subtrees: {n0, n1, n2},
{n0, n1, n3}, {n0, n2, n3}, {n0, n2, n4} and {n0, n2, n5}, and choose one of them
at random with probability 1

5 . However, as the number of r-subtrees may be
exponential in the size of the document in general, we cannot hope to perform
this approach in PTIME.

Observe that it is not easy to build a random r-subtree node by node: it is
clear that node n0 must be included, but then observe that we cannot decide to
include n1, n2, or n3 uniformly at random. Indeed, if we do this, our distribution
on the r-subtrees will be skewed, as n1 (or n3) occurs in 2

5 of the outcomes
whereas n2 occurs in 4

5 of them. Intuitively, this is because there are more ways
to choose the next nodes when n2 is added, than when n1 or n3 are added. ��

0/1-weights Sampling. In this problem variant, we require that w(n) ∈ {0, 1}
for all n ∈ V(t), i.e., the weight is a binary value. This variant generalizes the
unweighted sampling case, but allows the data provider to give a weight of zero
to some nodes that she is willing to give away for free. This can be useful, e.g.,
for nodes that are only structural and do not contain any useful information.

5 Algorithms for General Sampling Problem

In this section, we present a pseudo-polynomial algorithm for the general sam-
pling problem, namely the problem of sampling an r-subtree of weight k from
an XML document, uniformly at random.

We first describe the algorithm for the case of binary trees, in Sect. 5.1. Next,
we adapt the algorithm in Sect. 5.2 to show how to apply it to arbitrary trees.

5.1 Sampling for Binary Trees

In this section, we provide an algorithm which proves the following theorem:

Theorem 1. The sampling problem for binary trees can be solved in time
O(nk2), where n is the number of nodes in the tree and k is the desired weight
value.

Our general algorithm to solve this problem is given as Algorithm1. The
algorithm has two phases, which we study separately in what follows. For sim-
plicity, whenever we discuss binary trees in this section, we will add special



124 R. Tang et al.

Algorithm 1. Algorithm for the sampling problem on binary trees
Input: a binary tree t and an integer k � 0
Result: an r-subtree t′ of t of weight(t′) = k uniformly at random
// Phase 1: count the number of subtrees

1 D ← SubtreeCounting(t);
// Phase 2: sample a random subtree

2 if k � weight(t) ∧ Droot(t)[k] �= 0 then
3 return UniformSampling(root(t), D, k);
4 else
5 fail ;

NULL children to every node of the tree (except NULL nodes themselves), so
that all nodes, including leaf nodes (but excluding NULL nodes), have exactly
two children (which may be NULL). This will simplify the presentation of the
algorithms. Of course weight(NULL) = 0.

First Phase: Subtree Counting (Algorithm2). We start by computing
a matrix D such that, for every node ni of the input tree t and any value
0 � x � weight(t), Di[x] is the number of subtrees of weight x rooted at node ni.
We do so with Algorithm 2 which we now explain in detail.

There is only one subtree rooted at the special NULL node, namely the empty
subtree, with weight 0, which provides the base case of the algorithm (line 3).
Otherwise, we compute Di for a node ni from the values Dl and Dr of D for
its children nl and nr (which may be NULL); those values have been computed
before because nodes are considered bottom-up.

Intuitively, any r-subtree of weight x > 0 rooted at ni is obtained by retain-
ing ni, and choosing two r-subtrees tl and tr, respectively rooted at nl and nr (the
children of ni), such that weight(tl)+weight(tr) = x−w(ni) (which accounts for
the weight of the additional node ni). The number of such choices is computed
by the convolution of Dl and Dr in line 7, defined as:

For 0 � p � weight(t), (Dl ∗ Dr)[p] :=
p∑

m=0

Dl[m] × Dr[p − m].

We explain Algorithm2 by considering the cases of w(ni) = 0 (line 8 to line 11)
and of w(ni) 	= 0 (line 13 to line 15), respectively.

If w(ni) = 0, the number of r-subtrees of weight x > 0 rooted at ni is the
number of pairs of r-subtrees tl and tr, respectively rooted at nl and nr (the
children of ni), such that weight(tl) + weight(tr) = x (because node ni does not
contribute weight). That is to say, Di[x] = (Dl ∗ Dr)[x] for x > 0 (line 11). By
contrast, for x = 0, an r-subtree of weight 0 rooted at ni can be obtained either in
the same way, or by keeping the empty subtree. Therefore Di[0] = 1+(Dl∗Dr)[0]
(line 9).

If w(ni) 	= 0, there is only one r-subtree of weight 0 at ni, namely the empty
tree. That is to say, Di[0] = 1 as shown in line 13. The number of r-subtrees



A Framework for Sampling-Based XML Data Pricing 125

Algorithm 2. SubtreeCounting(t)
Input: a binary tree t
Result: a matrix D such that Di[x] is the number of r-subtrees of weight x

rooted at ni for all ni and x

1 for x ∈ [0,weight(t)], ni ∈ V(t) � {NULL} do
2 Di[x] ← 0;
3 DNULL[0] ← 1;

// We browse all nodes in topological order, from leaves to the root

4 foreach non-NULL node ni accessed bottom-up do
5 nl ← first child of ni;
6 nr ← second child of ni;
7 T ← Dl ∗ Dr;
8 if w(ni) = 0 then
9 Di[0] ← 1 + T [0];

10 for x ∈ [1,weight(ni)] do
11 Di[x] ← T [x];

12 else
13 Di[0] ← 1;
14 for x ∈ [w(ni),weight(ni)] do
15 Di[x] ← T [x − w(ni)];

16 return D;

of weight x � w(ni) rooted at ni is the number of pairs of r-subtrees tl and tr
rooted at nl and nr (the children of ni) respectively such that weight(tl) +
weight(tr) = x−w(ni), which implies that Di[x] = (Dl ∗Dr)[x−w(ni)] (line 15).
For x ∈ [1,w(ni) − 1], it is impossible to get an r-subtree of weight x at ni, so
Di[x] remains at 0.

Example 3. Let t be the tree presented in Fig. 1(b) (again, ignore the different
shapes of nodes for now). Assume w(n0) = w(n1) = w(n2) = 0, w(n3) = w(n4) =
1, w(n5) = w(n6) = 2. Starting from the leaf nodes, we compute D4 = D3 =
(1, 1) and D5 = (1, 0, 1), with T = DNULL ∗ DNULL = (1), by line 13 to line 15.
We compute D1 = (2) with line 8 to line 11.

Now, when computing D2, we first convolve D4 and D5 to get the numbers
of pairs of r-subtrees of different weights at {n4, n5}, i.e., D4 ∗ D5 = (1, 1, 1, 1),
so that D2 = (2, 1, 1, 1) (applying line 8 to line 11). When computing D6, we
first compute D2 ∗ D3 = (2, 3, 2, 2, 1), so that D6 = (1, 0, 2, 3, 2, 2, 1) (applying
line 13 to line 15). Finally, D0 = (3, 0, 4, 5, 4, 4, 3). ��

We now state the correctness and running time of this algorithm.

Lemma 1. Algorithm2 terminates in O(nk2) time (where n is the number of
nodes in the given tree, and k is the desired weight) and returns D such that, for
every ni and x, Di[x] is the number of r-subtrees of weight x rooted at node ni.

Proof. We first prove the running time. All arrays under consideration have size
at most W (where W = weight(t)), so computing the convolution of two such



126 R. Tang et al.

arrays is in time O(W 2). The number of convolutions to compute overall is O(n),
because each array Di occurs in exactly one convolution. The overall running
time is thus O(nW 2). The running time can be optimized because, in fact, the
arrays in D do not need to have size W , but can be bounded to size k (subtrees
larger than k are never relevant). Therefore the complexity is in fact O(nk2).

We now show correctness. We proceed by induction on the node ni to prove
the claim for every x. The base case is the NULL node, whose correctness is
straightforward. To prove the induction step, let ni be a node, and assume by
induction that Dl[x′] is correct for every x′ and every child nl of ni. We fix x
and show that Di[x] is correct.

We distinguish two cases in the proof: w(ni) 	= 0 and w(ni) = 0.
We first prove the case where w(ni) 	= 0. To select an r-subtree at ni, (1) if

x = 0, there is exactly one possibility (the empty subtree); (2) if x ∈ [1,w(ni)),
there is no such possibility; (3) if x � w(ni), the number of possibilities is the
number of ways to select a pair of r-subtrees at the children of ni so that their
weights sum to x − w(ni). This is the role of line 13 to line 15.

Now, to enumerate the ways of choosing r-subtrees at children of ni whose
weight sum to x −w(ni), we can first decide the weight of the selected r-subtree
for each child: the ways to assign such weights form a partition of the possible
outcomes, so the number of outcomes is the sum, over all such assignments of
r-subtree weights to children, of the number of outcomes for this assignment. For
a fixed assignment, the subtrees rooted at each children are chosen separately,
so the number of outcomes for a fixed assignment is the product of the number
of outcomes for the given weight for each child, which by induction hypothesis
is correctly reflected by the corresponding Dl[x′]. Hence, for a given x, (1) when
x = 0, Di[x] = 1 (line 13); (2) when x ∈ [1,w(ni)), Di[x] = 0 (from how Di is
initialized); (3) when x � w(ni), Di[x] is (Dl ∗ Dr)[x − w(ni)] by line 15, which
sums, over all possible subtree weights assignments, the number of choices for
this subtree weight assignment.

We next prove the case where w(ni) = 0. To select an r-subtree at ni, (1) if
x = 0, the number of possibilities is the number of ways to select a pair of
r-subtrees at the children of ni so that their weights sum to 0 plus one (this
extra possibility is the empty subtree); (2) if x > 0, the number of possibilities
is the number of ways to select a pair of r-subtrees at the children of ni so that
their weights sum to x, because node ni contributes no weight. Similar to the
previous case, the number of ways to select a pair of r-subtrees at the children
of ni so that their weights sum to x is (Dl ∗ Dr)[x]. Therefore, for a given x, (1)
when x = 0, Di[x] = 1+(Dl∗Dr)[0] (line 9); (2) when x 	= 0, Di[x] = (Dl∗Dr)[x]
(line 11).

Hence, by induction, we have shown the desired claim. ��

Second Phase: Uniform Sampling (Algorithm3). In the second phase of
Algorithm 1, we sample an r-subtree from t in a recursive top-down manner,
based on the matrix D computed by Algorithm 2. Our algorithm to perform this
uniform sampling is Algorithm3. The basic idea is that to sample an r-subtree



A Framework for Sampling-Based XML Data Pricing 127

Algorithm 3. UniformSampling(ni,D, x)
Input: a node ni (or NULL), the precomputed D, and a weight value x
Result: an r-subtree of weight x at node ni

1 if x = 0 ∧ w(ni) �= 0 then
2 return ∅;

3 p0 ← rand([0, 1]); // p0 is generated from [0, 1] randomly

4 if x = 0 ∧ w(ni) = 0 ∧ p0 � 1
Di[0]

then

5 return ∅;

6 nl ← first child of ni;
7 nr ← second child of ni;
8 for 0 � sl, sr � x s.t. sl + sr = x − w(ni) do
9 p(sl, sr) ← Dl[sl] × Dr[sr];

10 Sample an (sl, sr) with probability p(sl, sr) normalized by
∑

sl,sr
p(sl, sr);

11 L ← UniformSampling(nl, D, sl);
12 R ← UniformSampling(nr, D, sr);
13 return the tree rooted at ni with child subtrees L and R;

rooted at a node ni, we decide on the weight of the subtrees rooted at each
child node, biased by the number of outcomes as counted in D, and then sample
r-subtrees of the desired weights recursively.

We now explain Algorithm 3 in detail.
If x = 0 and w(ni) 	= 0, we must return the empty tree (line 1 to line 2), since

the empty tree is the only choice in this case. If x = 0 and w(ni) = 0, there are
Di[0] r-subtrees of weight 0 at node ni, of which one is the empty tree while the
others are non-empty retaining ni. Therefore, to ensure the uniform distribution
of the samples, we return the empty tree with probability 1

Di[0]
(line 4 to line 5),

and return a non-empty tree of weight 0 retaining ni with probability 1 − 1
Di[0]

(the rest of the algorithm).
Except for the above two cases that return the empty subtree, we return ni

and subtrees tl and tr rooted at the children nl and nr of ni. We first decide on
the weight sl and sr of tl and tr (line 8 to line 10), biasing by the number of
outcomes for each weight combination, and then recursively sample a subtree of
the prescribed weight (line 11 to line 12), uniformly at random, and return it.

To be a suitable choice, the weight pair (sl, sr) must be such that sl + sr =
x − w(ni) (which accounts for node ni). Intuitively, to perform a uniform sam-
pling, we now observe that the choice of the weight pair (sl, sr) partitions the
set of outcomes. Hence, the probability that we select one weight pair should
be proportional to the number of possible outcomes for this pair, namely, the
number of r-subtrees tl and tr such that weight(tl) = sl and weight(tr) = sr.
We compute this from Dl and Dr (line 9) by observing that the number of
pairs (tl, tr) is the product of the number of choices for tl and for tr, as every
combination of choices is possible.



128 R. Tang et al.

Example 4. Follow Example 3. Assume we want to sample an r-subtree t′ of
weight(t′) = 3 uniformly. Let D be the result of Algorithm 2.

We first call UniformSampling(n0,D, 3). We have to return n0 (as w(n0) = 0).
Now n0 has two children, n1 and n6. The only possible weight pair is (0, 3), with
probability p(0, 3) = 1. We now call recursively UniformSampling(n1,D, 0) and
UniformSampling(n6,D, 3).

When callingUniformSampling(n1,D, 0), since w(n1) = 0, we return ∅ with
probability 1

D1[0]
= 1

2 and return n1 with probability 1 − 1
D1[0]

= 1
2 . Assume n1

is returned.
We proceed to UniformSampling(n6,D, 3). We have to return n6 (note that

w(n6) = 2). Now n6 has two children, n2 and n3. The possible weight pairs
for this call are (1, 0) and (0, 1), with respective (unnormalized) probabilities
p(1, 0) = D2[1]×D3[0] = 1× 1 = 1 and p(0, 1) = D2[0]×D3[1] = 2× 1 = 2. The
normalized probabilities are p(1, 0) = 1

3 and p(0, 1) = 2
3 . Assume that we choose

(0, 1) with probability 2
3 . We now call recursively UniformSampling(n2,D, 0) and

UniformSampling(n3,D, 1).
When calling UniformSampling(n2,D, 0) (note w(n2) = 0), we return ∅ with

probability 1
D2[0]

= 1
2 and return n2 with probability 1 − 1

D2[0]
= 1

2 . Assume n2

is returned.
We finish with UniformSampling(n3,D, 1). Node n3 is selected.
Hence, the end result is the r-subtree whose nodes are {n0, n1, n6, n2, n3}

(and whose edges can clearly be reconstituted in PTIME from t). This r-subtree
is selected with the probability 1

2 × 2
3 × 1

2 = 1
6 . Indeed, recall that we know there

are 6 r-subtrees of t of weight 3, according to D0[3] = 6. ��
We now show the tractability and correctness of Algorithm3, concluding the

proof of Theorem 1.

Lemma 2. For any tree t, node ni ∈ V(t) and integer 0 � x � weight(ni), given
D computed by Algorithm2, UniformSampling(ni,D, x) terminates in O(nk) time
(where n is the number of nodes in the given tree and k is the desired weight) and
returns an r-subtree of weight x rooted at ni, uniformly at random (i.e., solves
the sampling problem for binary trees).

Proof. We first prove the complexity claim. On every node ni of the binary tree t,
the number of possibilities to consider is at most k, and for each possibility the
number of operations performed is constant (assuming that drawing a number
uniformly at random can be performed in constant time). The overall running
time is O(nk).

We now show correctness by induction on ni. The base case is ni = NULL,
in which case we must have x = 0 and we correctly return ∅. We now assume
that ni is not NULL. If x = 0 and w(ni) 	= 0, the only possibility is the empty
subtree and we correctly return ∅. If x = 0 and w(ni) = 0, there are Di[0] r-
subtrees of weight 0 at node ni, of which one is the empty subtree while the
others are non-empty and retain ni. To ensure that the distribution is uniform,
we return the empty tree with probability 1

Di[0]
and return a non-empty tree of



A Framework for Sampling-Based XML Data Pricing 129

weight 0 retaining ni with probability 1− 1
Di[0]

. Otherwise, we need to return an
r-subtree retaining ni. As in the proof of Lemma1, the set of possible outcomes
of the sampling process is partitioned by the possible assignments, and only the
valid ones correspond to a non-empty set of outcomes. Hence, we can first choose
a weight pair, weighted by the proportion of outcomes which are outcomes for this
pair, and then choose an outcome for this pair. Now, observe that, by Lemma1,
D correctly represents the number of outcomes for each child of ni, so that our
computation of p (which mimics that of Algorithm 2) correctly represents the
proportion of outcomes for each weight pair. We then choose an assignment
according to p, and then observe that choosing an outcome for this assignment
amounts to choosing an outcome for each child of ni whose weight is given by the
assignment. By induction hypothesis, this is precisely what the recursive calls to
UniformSampling(ni,D, x) perform. This concludes the proof. ��

5.2 Sampling for Unranked Trees

In this section, we show that the algorithm of the previous section can be adapted
so that it works on arbitrary unranked trees, not just binary trees.

We first observe that the straightforward generalization of Algorithm1 to
trees of arbitrary arity, where assignments and convolutions are performed for
all children, is still correct. However, its running time would no longer be poly-
nomial in n and k, as there would be a potentially exponential number of weight
assignments to consider.

Fortunately, there is still hope to avoid considering all weights assignments
over all the children, because convolution is associative. Informally, assuming we
have three children {n1, n2, n3}, we do the following: we treat {n1} as a group
and {n2, n3} as the second group, then enumerate weight pairs over {n1} and
{n2, n3}; once a weight pair, in which a positive integer is assigned to {n2, n3},
is selected, we can treat {n2} and {n3} as new groups and enumerate weight
pairs over {n2} and {n3}. In other words, this strategy can be implemented by
transforming the original tree to a binary tree.

We now present an encoding process transforming unranked trees to encoded
trees, which are binary trees whose nodes are either regular nodes or dummy
nodes. Intuitively, the encoding operation replaces sequences of more than two
children by a hierarchy of dummy nodes representing those children; replacing
dummy nodes by the sequence of their children yields back the original tree. The
encoding is illustrated in Fig. 1, where the tree in Fig. 1(b) is the encoded tree
of the one in Fig. 1(a) (dummy nodes are represented as squares). We require
that the weight of every dummy node is 0, i.e., w(ni) = 0 where ni is a dummy
node. (However, dummy nodes are not exactly equivalent to regular nodes with
weight 0, as we must not consider that we have the possibility of either keeping
them or not keeping them.)

We formally present an algorithm (Algorithm4) for this encoding process.
Algorithm 4 performs a constant number of operations on every considered node
plus a constant number of operations on every child of the considered node.
Hence, the overall number of operations performed for every node (both when



130 R. Tang et al.

Algorithm 4. Transforming to binary tree
Data: a tree t with nodes n0, . . . , nk−1

Result: the encoded tree t′

1 m ← k and t′ ← t;
2 for each node ni of t do
3 if |children(ni)| > 2 then
4 create dummy nodes nm, nm+1, . . . , nm+|children(ni)|−3 in V(t′);
5 for 0 � j < |children(ni)| − 3 do
6 create an edge from nm+j to nm+j+1 in t′;

7 create an edge from ni to nm in t′;
8 disconnect the 2nd, 3rd, . . . , children of ni from ni in t′;
9 for 0 � j � |children(ni)| − 3 do

10 create an edge in t′ from nm+j to the (j + 2)th child of ni in t;

11 create an edge in t′ from nm+|children(ni)|−3 to the last child of ni in t;
12 m ← m + |children(ni)| − 3 + 1;

examining it and when examining its unique parent) is constant, so it completes
in linear time. For a tree t with n nodes, the number of nodes in its encoded
tree t′ is no more than n + n − 3 (the worst case being achieved by a tree with
a root node and n − 1 children). Therefore the size of the encoded tree is linear
in the size of the original tree. Note that the weights of created dummy nodes
are set to 0.

Based on this encoding process, we now state our result:

Theorem 2. The sampling problem can be solved in O(nk2) (where n is the
number of nodes in the given tree and k is the desired weight), for arbitrary
unranked trees.

Proof. It can be shown that, up to the question of keeping or deleting the dummy
nodes with no regular descendants (we call them bottommost), there is a bijection
between r-subtrees in the original tree and r-subtrees in the encoded tree. Hence,
we can solve the sampling problem by choosing an r-subtree in the encoded tree
with a set of regular nodes of weight k, uniformly at random, and imposing the
choice of keeping bottommost dummy nodes.

We do this by adapting Algorithms 2 and 3 to run correctly on encoded trees,
that is, managing dummy nodes correctly, by imposing that they are always
retained.

In Algorithm 2, we have to define the computation of Di for a dummy node ni

as Di ← Dl ∗ Dr (as it must always be kept, and does not increase the weight
of the r-subtree).

In Algorithm 3, some operations have to be distinguished between regular
nodes and dummy nodes. In line 1 and line 4, we additionally require in the if
clauses that ni is either NULL or a regular node: indeed, for dummy nodes, even
if x = 0 we cannot return ∅, because we must keep them.



A Framework for Sampling-Based XML Data Pricing 131

The correctness and running time of the modified algorithms can be proved
by straightforward adaptations of Lemmas 1 and 2. ��

6 Tractable Uniform Sampling

As presented in the previous section, the complexity of Algorithm1 (and its
variant in Theorem 2) is O(nk2), where n is the number of nodes in the given
tree and k is the desired weight. It is thus a pseudo-polynomial time algorithm
to solve the general sampling problem, which is polynomial in the value of k,
but is still exponential in the size of k.

We now observe that for the tractable cases in Sect. 4.2, Algorithm 1 (and
its variant in Theorem 2) runs in time polynomial in the size of the input tree;
more specifically, in O(n3). Indeed, for unweighted sampling (where w(ni) = 1
for every ni) and 0/1-weights sampling (where w(ni) = {0, 1} for every ni), the
desired weight k is bounded by the size of the tree, since k � weight(t) � n.
Therefore the complexity of Algorithm 1 (and its variant in Theorem2) is then
O(n3), that is, cubic in the size of the input tree. Hence, we have the following
claim:

Theorem 3. The unweighted sampling and 0/1-weights sampling can be solved
in O(n3) time, where n is the number of nodes in the given tree.

7 Repeated Requests

In this section, we consider the more general problem where the data consumer
requests a completion of a certain price to data that they have already bought.
The motivation is that, after having bought incomplete data, the user may realize
that they need additional data, in which case they would like to obtain more
incomplete data that is not redundant with what they already have.

A first way to formalize the problem is as follows, where data is priced accord-
ing to a known subtree (provided by the data consumer) by considering that
known nodes are free (but that they may or may not be returned again).

Definition 6. The problem of sampling an r-subtree of weight k in a tree t
conditionally to an r-subtree t′ is to sample an r-subtree t′′ of t uniformly at
random, such that weight(t′′) − ∑

n∈(V(t′)∩V(t′′)) w(n) = k.

An alternative is to consider that we want to sample an extension of a fixed
size to the whole subtree, so that all known nodes are always part of the output:

Definition 7. The problem of sampling an r-subtree of weight k in a tree t that
extends an r-subtree t′ is to sample an r-subtree t′′ of t uniformly at random,
such that (1) t′ is an r-subtree of t′′; (2) weight(t′′) − weight(t′) = k.



132 R. Tang et al.

Note that those two formulations are not the same: the first one does not
require the known part of the document to be returned, while the second one
does. While it may be argued that the resulting outcomes are essentially equiva-
lent (as they only differ on parts of the data that are already known to the data
consumer), it is important to observe that they define different distributions:
though both problems require the sampling to be uniform among their set of
outcomes, the additional possible outcomes of the first definition means that the
underlying distribution is not the same.

As the uniform sampling problem for r-subtrees can be reduced to either prob-
lem by setting t′ to be the empty subtree, the NP-hardness of those two problems
follows from Proposition 1. However, we can show that, in the unweighted case,
those problems are tractable, because they reduce to the 0/1-weights sampling
problem which is tractable by Theorem 3:

Proposition 2. The problem of sampling an r-subtree of weight k in a tree t
conditionally to an r-subtree t′ can be solved in O(n3) time if t is unweighted.
The same holds for the problem of sampling an r-subtree that extends another
r-subtree.

Proof. For the problem of Definition 6, set the weight of the nodes of t′ in t to
be zero (the intuition is that all the known nodes are free). The problem can
then be solved by applying Theorem2.

For the problem of Definition 7, set the weight of the nodes of t′ in t to be
zero but we have to ensure that the nodes in t′ are always returned. To do so,
we adapt Theorem 2 by handling the nodes in t′ in the same way as handling
dummy nodes in the previous section. ��

8 Sampling Extension: Sampling on Weight and Height

In this section, we consider a more complicated sampling scenario: sampling an
r-subtree of weight k and height h uniformly at random. We present a pseudo-
polynomial time algorithm for this sampling problem. To start with, we define
the height of a tree.

Definition 8. (Height of a tree) For a node n ∈ V(t), we define inductively
height(n) := 1 + max(n,n′)∈E(t) height(n′), with height(n) = 1 if n is a leaf of t.
With slight abuse of notation, we note height(t) = height(root(t)) the height of t.

We first revisit the problem of pricing a tree depending on its weight and
height. Then, in Sect. 8.2, we first describe the algorithm for the case of binary
trees. Next, we adapt the algorithm in Sect. 8.3 to show how to apply it to
arbitrary trees.

8.1 Pricing Function

Height, as well as weight, can be used as a measure of data completeness: two
trees of same weight could be priced differently if they have a different height.



A Framework for Sampling-Based XML Data Pricing 133

Algorithm 5. Algorithm for the sampling problem on binary trees
Input: a binary tree t and two integers k � 0 and h � 0
Result: an r-subtree t′ of t of weight(t′) = k and height(t′) = h uniformly at

random
// Phase 1: count the number of subtrees

1 D ← SubtreeCounting(t);
// Phase 2: sample a random subtree

2 if k � weight(t) ∧ h � height(t) ∧ Droot(t)[k, h] �= 0 then
3 return UniformSampling(root(t), D, k, h);
4 else
5 fail ;

We are thus in a setting where a pricing function ϕt(k, h) for the tree t should
take into account both the weight k and the height h of an r-subtree. A healthy
data market should impose at least the following conditions on ϕt:

Non-decreasing for weight. k1 � k2 ⇒ ϕt(k1, h) � ϕt(k2, h).
Non-decreasing for height. h1 � h2 ⇒ ϕt(k, h1) � ϕt(k, h2).
Arbitrage-free for weight. ϕt(k1, h) + ϕt(k2, h) � ϕt(k1 + k2, h).
Arbitrage-free for both. ϕt(k1, h1) + ϕt(k2, h2) � ϕt(k1 + k2, h1 + h2).

An example pricing function is ϕt(k, h) := αh + β k
k+1 , where α � 1 � β � 0.

Similarly as in Sect. 3, once such a pricing function is fixed, the problem
becomes to sample a tree of prescribed weight and height uniformly at random.

8.2 Sampling for Binary Trees

In this section, we provide an algorithm which proves the following theorem for
binary trees:

Theorem 4. The sampling problem for binary trees is solvable in time
O(nk2h2), where n is the number of nodes in the tree, k is the desired weight
value, and h is the desired height.

The sampling algorithm is adapted from the one in Sect. 5.1, and presented as
Algorithm 5. The detailed adaptation of the two phases in the sampling algorithm
is discussed in the following.

Modifications in Phase 1. As in Algorithm 2 (where Di[x] stores the number
of r-subtrees of weight x rooted at node ni), we need to record not only the weight
but also the height of such r-subtrees. More precisely, we use Di[x, y] to denote
the number of r-subtrees of weight x and height y rooted at node ni, where
x ∈ [0,weight(t)] and y ∈ [0, height(t)]. We present Algorithm 6, to compute
Di[x, y] for each node ni in the given tree t.



134 R. Tang et al.

Algorithm 6. SubtreeCounting(t)
Input: a binary tree t
Result: a matrix D such that Di[x, y] is the number of r-subtrees of weight x

and height y rooted at ni for all ni, x and y

1 for x ∈ [0,weight(t)], y ∈ [0, height(t)], ni ∈ V(t) � {NULL} do
2 Di[x, y] ← 0;
3 DNULL[0, 0] ← 1;

// We browse all nodes in topological order, from leaves to the root

4 foreach non-NULL node ni accessed bottom-up do
5 Di[0, 0] = 1;
6 nl ← first child of ni;
7 nr ← second child of ni;
8 T ← Dl ∗ Dr;
9 for x ∈ [w(ni),weight(ni)] do

10 for y ∈ [1, height(ni)] do
11 Di[x, y] ← T [x − w(ni), y − 1];

12 return D;

As the base case, for NULL nodes, weight(NULL) = 0 and height(NULL) = 0.
Hence DNULL[0, 0] = 1 (as shown in line 3). For other cases (i.e., x > 0 or y > 0),
DNULL = 0.

For a non-NULL node, if the height is 0, then either the weight is also 0
and only the empty tree is possible, or the weight is greater than 0 and there
is no possibility. Otherwise, intuitively, an r-subtree of weight x � 0 and height
y > 0 rooted at node ni is obtained by retaining ni and choosing two r-subtrees tl
and tr, respectively rooted at nl and nr (the children of ni), such that weight(tl)+
weight(tr) = x − w(ni) and max{height(tl), height(tr)} = y − 1 (which accounts
for the weight and height of the additional node ni). Similar to Algorithm2, the
number of such choices is computed in line 8 as the convolution of Dl and Dr in
a certain sense, defined as follows, for 0 � p � weight(t) and 0 � q � height(t):

(Dl ∗ Dr)[p, q] :=
∑

0�h1,h2�q
h1=q or h2=q

p∑

m=0

Dl[m,h1] × Dr[p − m,h2]

(Dl ∗Dr)[p, q] represents the number of pairs of r-subtrees tl and tr such that
weight(nl) +weight(nr) = p and max{height(tl), height(tr)} = q. In other words,
there are three mutually exclusive ways to meet the requirement on the heights:

1. height(tl) < q and height(tr) = q;
2. height(tl) = q and height(tr) < q;
3. height(tl) = q and height(tr) = q.

All in all, as shown in line 9 to line 11, the number of r-subtrees of weight x
and height y, namely, Di[x, y], is the number of pairs of r-subtrees tl and tr
rooted at nl and nr respectively such that weight(nl) + weight(nr) = x − w(ni)



A Framework for Sampling-Based XML Data Pricing 135

Algorithm 7. UniformSampling(ni,D, x, y)
Input: a node ni (or NULL), the precomputed D, a weight value x and a height

value y
Result: an r-subtree of weight x and height y at node ni if one exists

1 if y = 0 then
2 return ∅;

3 nl ← first child of ni;
4 nr ← second child of ni;
5 for 0 � sl, sr � x and 0 � ol, or � y s.t. sl + sr = x − w(ni) and

max{ol, or} = y − 1 do
6 p([sl, ol], [sr, or]) ← Dl[sl, ol] × Dr[sr, or];

7 Sample an ([sl, ol], [sr, or]) with probability p([sl, ol], [sr, or]) normalized by∑
([sl,ol],[sr,or ])

p([sl, ol], [sr, or]);

8 L ← UniformSampling(nl, D, sl, ol);
9 R ← UniformSampling(nr, D, sr, or);

10 return the tree rooted at ni with child subtrees L and R;

and max{height(tl), height(tr)} = y − 1 (which is T [x − w(ni), y − 1] in line 11).
Note that when w(ni) 	= 0 there exists no such r-subtrees at node ni of weight x
(where x ∈ [0,w(ni) − 1]) and height y 	= 0, so Di[x, y] remains 0 in this case.

The time complexity to compute D is O(nk2h2). To sample an r-subtree of
weight k and height h, we need to record the number of r-subtrees of weight
up to k and height up to h rooted at every node. Therefore each array in D is a
k × h array. Computing the convolution sum of such two arrays takes O(k2h2)
time, since computing each value in the convolution sum takes O(kh) time. The
number of convolution sums to compute overall is O(n), because each array Di

occurs in exactly one convolution sum. The overall running time is O(nk2h2).

Modifications in Phase 2. Similarly to Algorithm 3, we present Algorithm 7
to sample an r-subtree of weight x and height y at node ni uniformly at random,
given the computed matrix D in the previous section. If y = 0, the only possible
r-subtree is the empty tree, therefore that is the output (line 1 to line 2). Note
that the result will be incorrect if x > 0, but in this case Algorithm 5 would not
have called Algorithm 7 because there is no such subtree to sample.

Except for this special case, we return ni and subtrees tl and tr rooted at the
children nl and nr of ni. We first decide on the weight (respectively, height) sl
(respectively, ol) and sr (respectively, or) of tl and tr (line 5 to line 7) before
sampling recursively a subtree of the prescribed weight and the prescribed height
(line 8 to line 9), uniformly at random, and returning it.

The possible weight and height pairs ([sl, ol], [sr, or]) must satisfy the fol-
lowing conditions to be possible choices for the weights and the heights of the
subtrees tl and tr:

1. 0 � sl, sr � x and 0 � ol, or � y;
2. sl + sr = x − w(ni) and max{ol, or} = y − 1 (which accounts for node ni).



136 R. Tang et al.

Intuitively, to perform a uniform sampling, we now observe that the choice
of the weight and height pair ([sl, ol], [sr, or]) partitions the set of outcomes.
Hence, the probability that we select one weight and height pair should be pro-
portional to the number of possible outcomes for this pair, namely, the number of
r-subtrees tl and tr such that weight(tl) = sl, weight(tr) = sr and height(tl) = ol,
height(tr) = or. We compute this from Dl and Dr (line 6) by observing that the
number of pairs (tl, tr) is the product of the number of choices for tl and for tr,
as every combination of choices is possible.

The uniform sampling phase takes O(nkh) time. On every node ni of the
binary tree t, the number of possibilities to consider is O(kh) because every
node has exactly two children, and for each possibility the number of operations
performed is constant (assuming that drawing a number uniformly at random is
constant-time). The overall running time is O(nkh).

8.3 Sampling for Unranked Trees

In this section, we show that the algorithm of the previous section can be adapted
so that it works on arbitrary unranked trees, not just binary trees. Similarly to
Sect. 5.2, we transform an unranked tree to a binary tree whose nodes are either
regular nodes or dummy nodes. A dummy node is a virtual node gathering a
sequence of more than two nodes. Therefore a dummy node does not contribute
any weight nor height to r-subtrees. After transforming an arbitrary unranked
tree to the corresponding binary tree using Algorithm4, we apply Algorithm 5 to
solve the sampling problem, while making sure the dummy nodes are managed
correctly. We explain how to adapt Algorithms 6 and 7 to handle the dummy
nodes.

In Algorithm 6, we have to define the computation of Di for a dummy node ni

as Di ← Dl ∗ Dr (as it must always be kept, and does not increase the weight
nor the height of the r-subtree).

In Algorithm 7, some operations have to be distinguished between regular
nodes and dummy nodes. In line 1 we add one more condition in the if clause:
ni is either NULL or a regular node (for dummy nodes, even if x = 0 and y = 0
we cannot return ∅ as we must keep dummy nodes). In line 5, if ni is a dummy
node, the condition for possible weight and height pairs is: sl + sr = x and
max{ol, or} = y, because a dummy node does not contribute any weight nor
height.

These adaptations do not affect the complexity of the sampling algorithm,
therefore the algorithm for sampling unranked trees on both weight and height
is also O(nk2h2).

8.4 Tractable Cases

As presented in the previous section, the complexity of Algorithm5 (and its
variant in Sect. 8.3) is O(nk2h2), where n is the number of nodes in the given
tree, k is the desired weight and h is the desired height. As h � n, the time
complexity of Algorithm 5 is O(n3k2). It is a pseudo-polynomial time algorithm



A Framework for Sampling-Based XML Data Pricing 137

to solve the sampling problem on both weight and height, which is polynomial
in the value of k, but is still exponential in the size of k.

The tractable cases in Sect. 4.2 are still tractable when we sample on both
weight and height. To solve such tractable cases, Algorithm 5 (and its variant
in Sect. 8.3) runs in polynomial-time to the size of the tree, more specifically,
O(n5), because k � n when w(ni) = 1 or w(ni) ∈ {0, 1}. Hence:

Theorem 5. The unweighted sampling and 0/1-weights sampling on both weight
and height can be solved in O(n5) time, where n is the number of nodes in the
given tree.

9 Conclusion

We proposed a framework for a data market in which data quality can be traded
for a discount. We studied the case of XML documents with completeness as
the quality dimension. Namely, a data provider offers an XML document, and
sets both the price and weights of nodes of the document. The data consumer
proposes a price but may get only a sample if the proposed price is lower than
that of the entire document. A sample is a rooted subtree of prescribed weight,
as determined by the proposed price, sampled uniformly at random.

We proved that if nodes in the XML document have arbitrary non-negative
weights, the sampling problem is intractable. We devise a pseudo-polynomial
time algorithm to solve this general sampling problem, and proved the time com-
plexity and correctness of the algorithm. We identified tractable cases, namely
the unweighted sampling problem and 0/1-weights sampling problem, for which
the pseudo-polynomial time algorithm actually runs in polynomial time. We also
considered repeated requests and provided PTIME solutions to the unweighted
cases.

As a more complicated sampling scenario, we studied the problem of uniform
sampling an r-subtree of prescribed weight and height. We devised a pseudo-
polynomial time sampling algorithm, and showed that it still runs in polynomial
time in the tractable cases.

The more general issue that we are currently investigating is that of sampling
rooted subtrees uniformly at random under more expressive conditions than size
restrictions or 0/1-weights (with or without height). In particular, we intend to
identify the tractability boundary to describe the class of tree statistics for which
it is possible to sample r-subtrees in PTIME under a uniform distribution.

Acknowledgments. This work is supported by the French Ministry of Foreign Affairs
under the STIC-Asia program, CCIPX project.

References

1. Cohen, S., Kimelfeld, B., Sagiv, Y.: Running tree automata on probabilistic XML.
In: PODS (2009)



138 R. Tang et al.

2. Henzinger, M.R., Heydon, A., Mitzenmacher, M., Najork, M.: On near-uniform
URL sampling. Comput. Netw. 33(1–6), 295–308 (2000)

3. Hübler, C., Kriegel, H.-P., Borgwardt, K., Ghahramani, Z.: Metropolis algorithms
for representative subgraph sampling. In: ICDM (2008)

4. Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., Suciu, D.: Query-based data
pricing. In: PODS (2012)

5. Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., Suciu, D.: QueryMarket
demonstration: pricing for online data markets. PVLDB 5(12), 1962–1965 (2012)

6. Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., Suciu, D.: Toward practical
query pricing with QueryMarket. In: SIGMOD (2013)

7. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: SIGKDD (2006)
8. Li, C., Li, D.Y., Miklau, G., Suciu, D.: A theory of pricing private data. In: ICDT

(2013)
9. Li, C., Miklau, G.: Pricing aggregate queries in a data marketplace. In: WebDB

(2012)
10. Lin, B.-R., Kifer, D.: On arbitrage-free pricing for general data queries. PVLDB

7(9), 757–768 (2014)
11. Lu, X., Bressan, S.: Sampling connected induced subgraphs uniformly at random.

In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 195–212.
Springer, Heidelberg (2012)

12. Luo, C., Jiang, Z., Hou, W.-C., Yu, F., Zhu, Q.: A sampling approach for XML
query selectivity estimation. In: EDBT (2009)

13. Maiya, A.S., Berger-Wolf, T.Y.: Sampling community structure. In: WWW (2010)
14. Muschalle, A., Stahl, F., Löser, A., Vossen, G.: Pricing approaches for data markets.

In: Castellanos, M., Dayal, U., Rundensteiner, E.A. (eds.) BIRTE 2012. LNBIP,
vol. 154, pp. 129–144. Springer, Heidelberg (2013)

15. Pipino, L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM
75(4), 211–218 (2002)

16. Ribeiro, B.F., Towsley, D.F.: Estimating and sampling graphs with multidimen-
sional random walks. In: Internet Measurement Conference (2010)

17. Tang, R., Amarilli, A., Senellart, P., Bressan, S.: Get a sample for a discount. In:
Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part
I. LNCS, vol. 8644, pp. 20–34. Springer, Heidelberg (2014)

18. Tang, R., Shao, D., Bressan, S., Valduriez, P.: What you pay for is what you get.
In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part
II. LNCS, vol. 8056, pp. 395–409. Springer, Heidelberg (2013)

19. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data
consumers. J. Manag. Inf. Syst. 12(4), 5–33 (1996)

20. Wang, W., Jiang, H., Lu, H., Yu, J.X. Containment join size estimation: models
and methods. In: SIGMOD (2003)


	A Framework for Sampling-Based XML Data Pricing
	1 Introduction
	2 Related Work
	3 Pricing Function and Sampling Problem
	4 Tractability
	4.1 Intractability of the Sampling Problem
	4.2 Tractable Cases

	5 Algorithms for General Sampling Problem
	5.1 Sampling for Binary Trees
	5.2 Sampling for Unranked Trees

	6 Tractable Uniform Sampling
	7 Repeated Requests
	8 Sampling Extension: Sampling on Weight and Height
	8.1 Pricing Function
	8.2 Sampling for Binary Trees
	8.3 Sampling for Unranked Trees
	8.4 Tractable Cases

	9 Conclusion
	References


