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Treewidth: Informal Definition

� Graph-theoretic measure of how close to a tree a graph is
� Computed as the minimum width of a tree decomposition,
i.e., a way to build a hierarchy of separators

� Width: maximum size of a separator minus one

� Trees have treewidth 1
� Cycles have treewidth 2
� k-cliques and (k � 1)-grids have treewidth k � 1
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Tree decomposition
Definition (Tree decomposition)
A tree decomposition of a graph (V;E) is a pair (T;B) where
T = (I; F ) is a tree and B : I ! 2V is a labeling of the nodes of
T by subsets of V (called bags), with:

1.
S

i2I B(i) = V ;

2. 8(u; v) 2 E, 9i 2 I s.t. fu; vg � B(i); and

3. 8v 2 V , fi 2 I j v 2 B(i)g induces a subtree of T .
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Treewidth: Formal Definition

Definition (Treewidth)
The width of a tree decomposition is the maximum size of a
bag in it, minus one. The treewidth of a graph is the minimum
width of a tree decomposition of this graph.

In databases:
� Readily usable notion for graph databases (treewidth of the

underlying graph)
� Treewidth of a relational database: that of its Gaifman

graph (the graph where data values are nodes, and two
data values are connected if they co-occur in the same
tuple)
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Tree Decompositions of Relational Data
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Complex Query Evaluation is Hard!
� query evaluation of Boolean monadic second-order (MSO)
queries is hard for every level of the polynomial
hierarchy (Ajtai et al., 2000);

� unless P = NP, there is no polynomial-time counting or
enumeration algorithm for first-order (FO) queries with
free second-order variables (Saluja et al., 1995; Durand and
Strozecki, 2011);

� computing the probability of conjunctive queries (CQs)
over tuple-independent databases is #P-hard (Dalvi and
Suciu, 2007);

� unless P = NP, there is no polynomial-time algorithm to
construct a deterministic decomposable negation normal
form (d-DNNF) representation of the Boolean provenance
of some CQ (Dalvi and Suciu, 2007; Jha and Suciu, 2013).
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Low Treewidth Makes Things Easy!
Assume we know that the databases we work with have
treewidth less than some fixed constant k. Then:

� query evaluation of MSO queries is linear-time (Courcelle,
1990; Flum et al., 2002);

� counting (Arnborg et al., 1987) and enumeration (Bagan,
2006; Amarilli et al., 2017) of MSO queries is linear-time;

� computing the probability of MSO queries over a
bounded-treewidth tuple-independent database is
linear-time assuming constant-time rational arithmetic
(Amarilli et al., 2015);

� a d-DNNF representation of the provenance of any MSO
query can be computed in linear time (Amarilli et al., 2016).

(These algorithms are hiding a non-elementary dependency in k, so
only feasible for very low values of k.)
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Low Treewidth: Only Hope?

� In some cases, there are other ways to have low complexity:
Query evaluation of MSO queries is linear-time
over bounded-cliquewidth databases. (Courcelle et al.,
2000)

� But in others, there are none!
There exists an FO-query Q such that for any
unbounded-treewidth family of databases D, proba-
bilistic query evaluation of Q over D is #P-hard un-
der RP reductions (assuming arity is 2, and some
technical condition). (Amarilli et al., 2016)
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Practical Implications?

� If data has low treewidth, plenty of efficient algorithms

� Exploiting low treewidth is the only way to have efficient
probabilistic query evaluation for arbitrary queries

� Are real-world databases low-treewidth?
� If not, can we still do something with them?
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Computing the Treewidth

� Even computing the treewidth is hard (Arnborg et al., 1987)

� But we can find upper bounds (Bodlaender and Koster, 2010)
and lower bounds (Bodlaender and Koster, 2011) on
treewidth relatively efficiently

� When we have a bound on the treewidth, we can find a
tree decomposition in linear-time (Bodlaender, 1996). . .

� but this algorithm is too costly in practice. Better use
upper bound algorithms that also provide a tree
decomposition
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Upper Bound Algorithms (Bodlaender and Koster, 2010)

� General strategy:
� Choose an ordering strategy between nodes (e.g., start with

nodes with low degree)
� Eliminate nodes in this order
� As nodes are eliminated, put remaining neighbors in a bag

and add edges between them so that they form a clique

� The resulting procedure constructs a tree decomposition of
the graph

� Algorithms differ by their choice of ordering strategy:
� minimum degree first
� minimum fill-in first (# edges to add)
� combination of both

13/27
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Lower Bound Algorithms (Bodlaender and Koster, 2011)

� Use a proxy that is proved to be always lower than the
treewidth:
� Second lowest degree
� Second lowest degree in a subgraph of the graph
� Second lowest degree in a minor of the graph

� Algorithms differ in the way they explore subgraphs or
minors (usually greedily):
� by removing nodes of smallest degree
� by removing nodes of smallest degree except for a fixed

node, and trying all such fixed nodes
� by contracting edges incident to nodes of smallest degree

14/27



Treewidth Motivation Treewidth Computation Treewidth of Real-World Data Conclusion

Outline

Treewidth

Motivation

Treewidth Computation

Treewidth of Real-World Data

Conclusion

15/27



Treewidth Motivation Treewidth Computation Treewidth of Real-World Data Conclusion

Experimental Setup

� 25 datasets from 8 different domains
� All tests ran on a machine with 32GB RAM, Intel Xeon
1.70GHz CPU

� Up to two weeks of computation time before termination
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Datasets (1/2)
type name nodes edges

infrastructure Ca 1 965 206 2 766 607

Pa 1 088 092 1 541 898

Tx 1 379 917 1 921 660

Bucharest 189 732 223 143

HongKong 321 210 409 038

Paris 4 325 486 5 395 531

London 2 099 114 2 588 544

Stif 17 720 31 799

USPowerGrid 4 941 6 594

social Facebook 4 039 88 234

Enron 36 692 183 831

WikiTalk 2 394 385 4 659 565

CitHeph 34 546 420 877
17/27
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Datasets (2/2)
social Stack-TCS 25 232 69 026

Stack-Math 1 132 468 2 853 815

LiveJournal 3 997 962 34 681 189

web Wikipedia 252 335 2 427 434

Google 875 713 4 322 051

communication Gnutella 65 586 147 892

hierarchy Royal 3 007 4 862

Math 101 898 105 131

ontology Yago 2 635 315 5 216 293

DbPedia 7 697 211 30 622 392

database Tpch 1 381 291 79 352 127

biology Yeast 2 284 6 646

18/27



Treewidth Motivation Treewidth Computation Treewidth of Real-World Data Conclusion

Lower and Upper Bounds (Absolute)
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Lower and Upper Bounds (Relative)
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Partial Tree Decompositions

If a database has high-treewidth, possible to:
� Isolate a part of low treewidth
� Process this part with efficient techniques
� Process the high-treewidth part (+ whatever is needed to
keep track of the low-treewidth part) with other techniques
(e.g., approximation algorithms)

� Combine results in a well-founded manner
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Partial Tree Decomposition Results
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Example Application: Probability of Connectedness
(Maniu et al., 2017)

� Partial tree decomposition with:
� tendrils of low-treewidth
� a root node of high-treewidth

� Algorithm for probabilistic query evaluation for the
connectedness query:
� Process the tree decomposition bottom-up, keeping track of

the provenance of connectedness between exported nodes
� Add virtual edges with this provenance as annotation
� When one reaches the core, use Monte-Carlo sampling to

approximate the probability

23/27



Treewidth Motivation Treewidth Computation Treewidth of Real-World Data Conclusion

Example Application: Probability of Connectedness
(Maniu et al., 2017)

� Partial tree decomposition with:
� tendrils of low-treewidth
� a root node of high-treewidth

� Algorithm for probabilistic query evaluation for the
connectedness query:
� Process the tree decomposition bottom-up, keeping track of

the provenance of connectedness between exported nodes
� Add virtual edges with this provenance as annotation
� When one reaches the core, use Monte-Carlo sampling to

approximate the probability

23/27



Treewidth Motivation Treewidth Computation Treewidth of Real-World Data Conclusion

Performance for Connectedness (Maniu et al., 2017)
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Summary

� Treewidth is never low (<10) /

� Infrastructure network have treewidth lower than other
kind of networks: O( 3

p
n)?

� Partial tree decompositions can be very effective
� Big gap between upper and lower bounds on treewidth
� Also in this work:

� More experimental results
� Comparative running time of different upper and lower

bound algorithms
� Partial tree decompositions of synthetic graph models
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