Querying and Updating Probabilistic Information in XML

Serge Abiteboul Pierre Senellart

EDBT 2006 March 28th, 2006

• Many tasks generate imprecise data, with some confidence value:

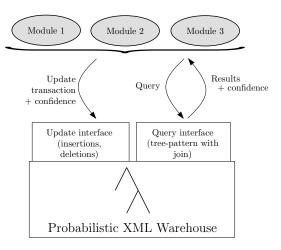
- Many tasks generate imprecise data, with some confidence value:
 - Information Extraction

- Many tasks generate imprecise data, with some confidence value:
 - Information Extraction
 - Natural Language Processing

- Many tasks generate imprecise data, with some confidence value:
 - Information Extraction
 - Natural Language Processing
 - Data Cleaning

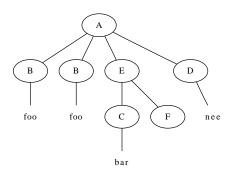
2/19

- Many tasks generate imprecise data, with some confidence value:
 - Information Extraction
 - Natural Language Processing
 - Data Cleaning
 - Schema Matching

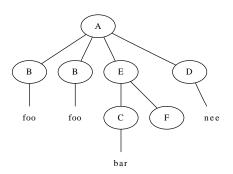

- Many tasks generate imprecise data, with some confidence value:
 - Information Extraction
 - Natural Language Processing
 - Data Cleaning
 - Schema Matching
 - ...

- Many tasks generate imprecise data, with some confidence value:
 - Information Extraction
 - Natural Language Processing
 - Data Cleaning
 - Schema Matching
 - ...
- Need for a way to manage this imprecision, to work with it throughout an entire complex process.

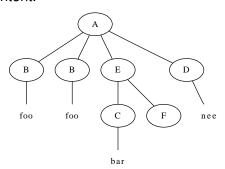
A Probabilistic XML Warehouse


Outline

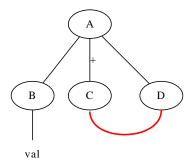
- Introduction
- 2 Framework
 - Data Trees
 - Queries
 - Updates
- Possible Worlds Mode
- Fuzzy Tree Model
- Conclusion


Data Trees

• Finite, unordered, trees.

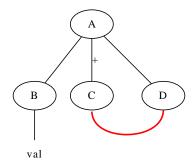

Data Trees

- Finite, unordered, trees.
- No distinction between attribute and element nodes.

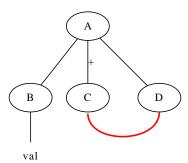

Data Trees

- Finite, unordered, trees.
- No distinction between attribute and element nodes.
- No mixed content.

Tree-Pattern With Join Queries


 Queries: Tree-Pattern With Join (TPWJ) (standard subset of XQuery)

Tree-Pattern With Join Queries


 Queries: Tree-Pattern With Join (TPWJ) (standard subset of XQuery)

Join: by value

Tree-Pattern With Join Queries

- Queries: Tree-Pattern With Join (TPWJ) (standard subset of XQuery)
- Join: by value
- Result: minimal subtree containing all the nodes mapped by the query

Set of elementary operations:

- Set of elementary operations:
 - Insertions of subtrees

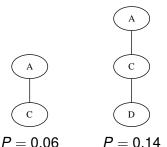
- Set of elementary operations:
 - Insertions of subtrees
 - Deletions of subtrees

- Set of elementary operations:
 - Insertions of subtrees
 - Deletions of subtrees
- Update Transaction: TPWJ query + mapping, stating where to perform operations.

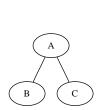
- Set of elementary operations:
 - Insertions of subtrees
 - Deletions of subtrees
- Update Transaction: TPWJ query + mapping, stating where to perform operations.
- Probabilistic update: update + confidence

Outline

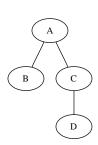
- Introduction
- 2 Framework
- Possible Worlds Model
 - Model
 - Semantic Foundation
- 4 Fuzzy Tree Model
- Conclusion


Possible Worlds Model

Semantic foundation for probabilistic data: possible worlds model. Set of tree/probability pairs, one for each possible world.



Possible Worlds Model


Semantic foundation for probabilistic data: possible worlds model. Set of tree/probability pairs, one for each possible world.

$$P = 0.24$$

$$P = 0.56$$

Queries, Updates: Semantic Foundation

Definition

If $T = \{(t_i, p_i)\}$, the result of query Q over the Possible Worlds set T is the normalization of $\{(t, p_i) | t \in Q(t_i)\}$

Queries, Updates: Semantic Foundation

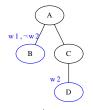
Definition

If $T = \{(t_i, p_i)\}$, the result of query Q over the Possible Worlds set T is the normalization of $\{(t, p_i)|t \in Q(t_i)\}$

Definition

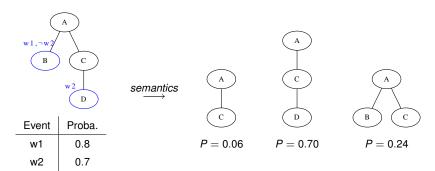
The result of an update *t* with confidence *c* on a Possible Worlds set *T* is the normalization of:

```
\{(t,p) \in T \mid t \text{ is not selected by Q}\}
\bigcup \{(\tau(t), p \cdot c) \mid t \text{ is selected by Q}\}
\bigcup \{(t, p \cdot (1-c)) \mid t \text{ is selected by Q}\}
```

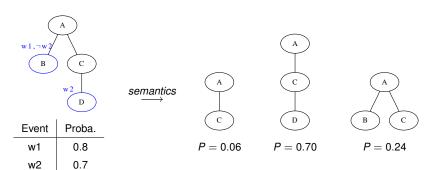

Outline

- Introduction
- 2 Framework
- Possible Worlds Model
- Fuzzy Tree Model
 - Model and Possible Worlds Semantics
 - Queries
 - Updates
 - Implementation
- Conclusion

Fuzzy Trees


Data tree with event conditions (conjunction of probabilistic events or negations of probabilistic events) assigned to each node.

Event	Proba.
w1	0.8
w2	0.7


Fuzzy Trees

Data tree with event conditions (conjunction of probabilistic events or negations of probabilistic events) assigned to each node.

Fuzzy Trees

Data tree with event conditions (conjunction of probabilistic events or negations of probabilistic events) assigned to each node.

Theorem

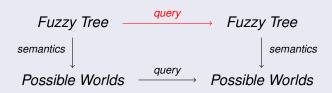
The fuzzy tree model is as expressive as the Possible Worlds model.

Queries on Fuzzy Trees

Definition

Queries on fuzzy trees:

- Query on underlying tree.
- Probabilities: probability of the conjunction of the conditions of nodes of the mapping.


Queries on Fuzzy Trees

Definition

Queries on fuzzy trees:

- Query on underlying tree.
- Probabilities: probability of the conjunction of the conditions of nodes of the mapping.

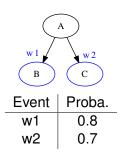
Theorem

Updates on Fuzzy Trees

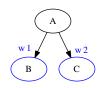
 Insertions: no problem. Conditions required for the query to match added to inserted nodes.

Updates on Fuzzy Trees

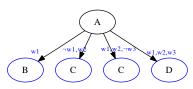
- Insertions: no problem. Conditions required for the query to match added to inserted nodes.
- Deletions: ok, but more problematic. May yield an exponential growth of the fuzzy tree in case of complex dependencies.


Updates on Fuzzy Trees

- Insertions: no problem. Conditions required for the query to match added to inserted nodes.
- Deletions: ok, but more problematic. May yield an exponential growth of the fuzzy tree in case of complex dependencies.


Example: Conditional Replacement

Replacement of *C* by *D* if *B* is present, with confidence 0.9.



Example: Conditional Replacement

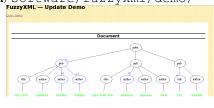
Replacement of *C* by *D* if *B* is present, with confidence 0.9.

Event	Proba.
w1	0.8
w2	0.7

Event	Proba.
w1	0.8
w2	0.7
w3	0.9

Java-based

- Java-based
- File system storage (will look at an XML DB next)


- Java-based
- File system storage (will look at an XML DB next)
- Query evaluation: Qizx/open XQuery engine

- Java-based
- File system storage (will look at an XML DB next)
- Query evaluation: Qizx/open XQuery engine
- Updates expressed in XUpdate

- Java-based
- File system storage (will look at an XML DB next)
- Query evaluation: Qizx/open XQuery engine
- Updates expressed in XUpdate
- Available freely at http://pierre.senellart.com/software/fuzzyxml/

- Java-based
- File system storage (will look at an XML DB next)
- Query evaluation: Qizx/open XQuery engine
- Updates expressed in XUpdate
- Available freely at http://pierre.senellart.com/software/fuzzyxml/
- cf demo

http://pierre.senellart.com/software/fuzzyxml/demo/

Outline

- Introduction
- 2 Framework
- Possible Worlds Model
- 4 Fuzzy Tree Mode
- Conclusion
 - Summary
 - Perspectives

Summary

 A model for representing probabilistic information for semi-structured data.

Summary

- A model for representing probabilistic information for semi-structured data.
- Sound and complete support for an important subset of XQuery.

- A model for representing probabilistic information for semi-structured data.
- Sound and complete support for an important subset of XQuery.
- Sound and complete support for XUpdate-based transactions with inserts and deletes.

Summary

- A model for representing probabilistic information for semi-structured data.
- Sound and complete support for an important subset of XQuery.
- Sound and complete support for XUpdate-based transactions with inserts and deletes.
- An implementation based on compilation to XQuery/XUpdate.

 Complexity analysis: query, update, simplification.

- Complexity analysis: query, update, simplification.
- Query optimization.

- Complexity analysis: query, update, simplification.
- Query optimization.
- Fuzzy data simplification.

- Complexity analysis: query, update, simplification.
- Query optimization.
- Fuzzy data simplification.
- Extensions: negation, some limited order.