Verifying multipliers with *BMDs and a backward construction algorithm

Pierre Senellart

May 3rd 2002

Introduction

- BDDs (Bryant, 1986) very powerful tools for veifying arithmetic circuits.
- But exponential on multipliers.
- *BMDs (Bryant, 1994) give a polynomial algorithm but need high-level information.
- Backward construction algorithm (Hamaguchi et al, 1995)

Moment decomposition of a function

$$f: \{0,1\}^n \longrightarrow \mathbb{N}$$

$$\begin{aligned} f_{\bar{x}_i} : & \{0,1\}^{n-1} & \to & \mathbb{N} \\ & (x_1,\dots,x_{i-1},x_{i+1},\dots,x_n) & \mapsto & f(x_1,\dots,x_{i-1},0,x_{i+1},\dots,x_n) \end{aligned}$$

$$\begin{aligned} f_{x_i} : & \{0,1\}^{n-1} & \to & \mathbb{N} \\ & (x_1,\dots,x_{i-1},x_{i+1},\dots,x_n) & \mapsto & f(x_1,\dots,x_{i-1},1,x_{i+1},\dots,x_n) \end{aligned}$$

2

Moment decomposition of a function (continuing...)

$$f_{\dot{x_i}} = f_{x_i} - f_{\bar{x_i}}$$

$$f(x_1, \dots, x_n) = \underbrace{f_{\bar{x}_i}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)}_{\text{constant moment}} + x_i \underbrace{f_{\bar{x}_i}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)}_{\text{linear moment}}$$

BMDs and *BMDs

f(x, y, z) = 8 - 20z + 2y + 4yz + 12x + 24xz + 15xy

Arithmetic operations

*BMDs of classical arithmetic operations are of linear size.

Beginning of the algorithm: the cut crosses all the primary outputs. The *BMD of the word-level interpretation of the output is constructed.

A gate just left to the cut is chosen and its output is substitued in the *BMD by the corresponding function of its inputs.

At any time, the *BMD expresses the word-level representation of the output as a function of the nets currently crossed by the cut.

Backward construction algorithm - step 4 (first try)

Problem: intermediary results must be kept!

Condition: a gate may be chosen only if its output is connected to only the input of the gates that have been already taken.

End of the algorithm: the cut crosses all primary outputs. The *BMD expresses the word-level representation of the output as a function of the inputs.

Add-step and carry-save multiplication

Add-step multiplication

				1	1	
	X		1	1	1	
				1	1	•
	+		1	1	•	
	+	1	1	•	•	
			{11	0, 1	1}	
	+	1	1	•	•	
		{10	001,	110	0}	
	1	0	1	0	1	•
Carry-save multiplication						

Experimental results

Number of bits	Time Add-step (s)	Time Carry-save (s)
4	1	3
8	12	58
16	161	1115
32	2083	
	$O(n^{3.7})$	$O(n^{4.3})$

(Lava, Hotlips)

What now?

- Backward Construction Algorithm: very efficient, in comparison with former methods
- Still, need of something better: $O(n^4)$ is too much!
- Completely different direction?