Verifying multipliers with *BMDs and a backward construction algorithm

May 3rd 2002

Introduction

- BDDs (Bryant, 1986) very powerful tools for veifying arithmetic circuits.
- But exponential on multipliers.
- *BMDs (Bryant, 1994) give a polynomial algorithm but need high-level information.
- Backward construction algorithm (Hamaguchi et al, 1995)

Moment decomposition of a function

$$
\begin{aligned}
& f:\{0,1\}^{n} \longrightarrow \mathbb{N} \\
& f_{\overline{x_{i}}}:\{0,1\}^{n-1} \quad \rightarrow \mathbb{N} \\
& \left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) \mapsto f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right) \\
& f_{x_{i}}:\{0,1\}^{n-1} \quad \rightarrow \mathbb{N} \\
& \left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) \mapsto f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

Moment decomposition of a function (continuing...)

$$
f_{\dot{x}_{i}}=f_{x_{i}}-f_{\overline{x_{i}}}
$$

$f\left(x_{1}, \ldots, x_{n}\right)=\underbrace{f_{\overline{x_{i}}}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)}_{\text {constant moment }}+x_{i} \underbrace{f_{\dot{x_{i}}}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)}_{\text {linear moment }}$

BMDs and *BMDs

Arithmetic operations

Addition

Multiplication
*BMDs of classical arithmetic operations are of linear size.

Backward construction algorithm - step 1

Beginning of the algorithm: the cut crosses all the primary outputs. The *BMD of the word-level interpretation of the output is constructed.

Backward construction algorithm - step 2

A gate just left to the cut is chosen and its output is substitued in the *BMD by the corresponding function of its inputs.

Backward construction algorithm - step 3

At any time, the *BMD expresses the word-level representation of the output as a function of the nets currently crossed by the cut.

Backward construction algorithm - step 4 (first try)

Problem: intermediary results must be kept!

Backward construction algorithm - step 4

Condition: a gate may be chosen only if its output is connected to only the input of the gates that have been already taken.

Backward construction algorithm - step 5

End of the algorithm: the cut crosses all primary outputs. The *BMD expresses the word-level representation of the output as a function of the inputs.

Add-step and carry-save multiplication

Add-step multiplication

Carry-save multiplication

Experimental results

Number of bits	Time Add-step (s)	Time Carry-save (s)
4	1	3
8	12	58
16	161	1115
32	2083	
	$O\left(n^{3.7}\right)$	$O\left(n^{4.3}\right)$

(Lava, Hotlips)

What now?

- Backward Construction Algorithm: very efficient, in comparison with former methods
- Still, need of something better: $O\left(n^{4}\right)$ is too much!
- Completely different direction?

