General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 000 00000000000 [e]e]

Efficient Provenance-Aware Querying of Graph Databases
with Datalog

Yann Ramusat Silviu Maniu Pierre Senellart

institut

=y - .®
Ak | PSLX @ lreezia — l@ universitaire - (NIVErsite

PARIS-SACLAY

Grades-NDA 2022, 12 June 2022

1/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 000 00000000000 [e]e]

Provenance Annotations

Provenance annotations provide additional information within a database to gain
more information about query results.

These annotations are propagated to query results and can be used for example to:

® determine how the result has been computed;
¢ understand how it would reacts to slight changes in the initial database;

e perform computations alongside query evaluation.

2/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
0e000000000 000 00000000000 [e]e]

Semiring-Based Provenance

A strong mathematical foundation is to choose provenance annotations to be
elements of a semiring (Green et al., 2007).

Semirings are a well-suited model for operations (e.g., choices and sequences)
carried along in computations.

3/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00@00000000 000 00000000000 [e]e]

Working Example (Tropical Semiring)

2, road 10, road
1, road @
1, highway 3, road

These integers represent time to move between two vertices.

What is the minimum travel time between s and 7

4/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00@00000000 000 00000000000 [e]e]

Working Example (Tropical Semiring)

2, road 10, road
1, road @
1, highway 3, road

These integers represent time to move between two vertices.
What is the minimum travel time between s and £7?

And now, if we only consider paths avoiding highways?

4/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
000e0000000 000 00000000000 [e]e]

Working Example (Counting Semiring)

2, road 10, road
1, road @
1, highway 3, road

These integers represent number of paths between two vertices.

What is the total number of paths between s and ¢?

5/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
000e0000000 000 00000000000 [e]e]

Working Example (Counting Semiring)

2, road 10, road
1, road @
1, highway 3, road

These integers represent number of paths between two vertices.
What is the total number of paths between s and ¢?

And now, if we only consider paths avoiding highways?

5/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00008000000 000 00000000000 [e]e]

Working Example (Top-2 Semiring)

2, road 10, road
1, road @
1, highway 3, road

These integers represent time to move between two vertices.

What are the best two travel times between s and ¢?

6/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00008000000 000 00000000000 [e]e]

Working Example (Top-2 Semiring)

2, road 10, road
1, road @
1, highway 3, road

These integers represent time to move between two vertices.
What are the best two travel times between s and ¢?

And now, if we only consider paths avoiding highways?

6/28

General Introduction
00000@00000

Provenance Model for Graph Databases Datalog Provenance for Graph Queries
000 00000000000

Working Example (k-feature Semiring)

h<4 h < 2.10, charging station

®

h < 2.10

There exists a path from s to ¢ going through a charging station.

There exists another one allowing 3m high vehicles to reach £.

7/28

Conclusion
[e]e]

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000800000 000 00000000000 [e]e]

Working Example (k-feature Semiring)

h<4 h < 2.10, charging station

®

h < 2.10

There exists a path from s to ¢ going through a charging station.

There does not exist one permitting 3m high vehicles to reach £.

7/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000080000 000 00000000000 [e]e]

Algebraic Foundations — Operators @& and ®

®-associativity: §; ® $2 ® 53 = (51 ® $2) ® 53 = 1 ® (52 ® s3)

S1
’ 52 \M
-------- ®
oS3 L7

@-commutativity: s1 @ so = 55 D 51
@-associativity: s1 @ 5o @ 53 := (51 D $2) D 3 = 51 D (52 ® 83)

® ® ®

neutral @ element: @p ;=0 neutral ® element: ®y =1

8/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000008000 000 00000000000 [e]e]

Algebraic Foundations — Mixing both Operators

5 AD
C S1

53

@

® distributivity over @&: 51 ® (52 @ s3) = (51 ® 52) B (51 ® 53)

® O——®

0 annihilates ®: 0® s; =0

9/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000008000 000 00000000000 [e]e]

Algebraic Foundations — Mixing both Operators

@,
S1 C

53

Q)

® distributivity over @&: (s2 @ s3) ® 51 = (52 ® 51) B (53 ® 51)

@——® @

0 annihilates ®: s;®0 =0

9/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000800 000 00000000000 [e]e]

Semirings — Basic Properties

Some semirings may satisfy additional properties:
e commutativity: for all a,b € S, a ®b=56® a;

0-closed, bounded: foralla € S, 1®a =1;

e pre-order: aCgb:=3dh €S, a®h =0:

¢ smallest element: for alla € S, 0 Cg a;
® monotonicity: aCgb — a®clgbdcAha®clsgb®c.

® when Cg is a partial order it is called the natural order <g:
® (O-closed implies <g is a partial order;
® a semiring need not be 0-closed to be naturally ordered.

10/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000080 000 00000000000 [e]e]

Semirings — Examples

Tropical semiring (min, +):
— 0-closed, commutative, <s= rev(<y) is total.

Counting semiring (+, x):
— commutative, <g=<«y is total.

Top-k (distinct) semiring (min¥, +%):
— (0-closed), commutative, s is partial.
k

, max*):
— 0O-closed, commutative, <g is a lattice order.

k-feature semiring (min

11/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000080 000 00000000000 [e]e]

Semirings — Examples

e Tropical semiring (min, +):
— 0-closed, commutative, <s= rev(<y) is total.

e k-feature semiring (min®, max*):

— 0O-closed, commutative, <g is a lattice order.

11/28

General Introduction Provenance Model for Graph Databases

ovenance for Graph Queries Conclusion
000000000 0e

Dijkstra for provenance (Ramusat et al., 2021)

e When the semiring is 0-closed and the natural order is total, possible to
compute the provenance using Dijkstra algorithm: maintain a priority queue
of nodes encountered but not yet processed, ordered according to the natural
order of the provenance expression computed so far for that node.

® When the semiring is 0-closed and the order is not necessarily total but a
lattice order of finite dimension, possible to apply Dijkstra on each dimension
of the lattice.

12/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 @00 00000000000 [e]e}

Contents

Provenance Model for Graph Databases

13/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 o] Yo} 00000000000 oo

Definition of the Model

Definition (Graph database)

A graph database G over % is a pair (V, B). V finite set of node ids.
An edge in G is a triple (v, a,v') € V x & x V, whose interpretation is an a-labeled
edge from v to v’ in G.

v

Definition (Graph database with provenance indication)

A graph database with provenance indication (V, E,w) over S is a graph
database (V, E) together with a weight function, w: E — S for (S,®,®,0,1) a
semiring.

14/28

Provenance Model for Graph Databases
ooe

Weighted Sets of Paths

k
e Extend the weight function w to paths: w(n] = Q wle;].
=1
e And further to any finite set of paths:
w[U ™) = @w[m].
=1 1=1

Denote by p(e) the label of an edge e € E.
Extend labels to paths, p(7) € T*:

p(m) = p(ex)p(ez) - - - plex—1)p(ex).

15/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 000 ©0000000000 00

Contents

Datalog Provenance for Graph Queries

16/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries

Conclusion
00000000000 000 0@000000000

e}

Motivations

We leverage these three facts:
e Datalog is a very expressive framework for expressing queries;
® very rich literature around Datalog and Datalog provenance;

® some practical systems are built on top of Datalog;

— to obtain new (and better!) effective solutions to practical scenarios (i.e., real
transportation networks over large areas);

— to process queries that go beyond the simple class of RPQs.

17/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 000 00@00000000 oo

Overview of SOUFFLE (Scholz et al., 2016)

SOUFFLE is a logic programming language based on Datalog.

Designed to perform efficient synthesis of static program analysis specifications,
employing Datalog as a domain specific language.
SOUFFLE's relevant features for us:

® competes with hand-written specifications for static program analysis;

¢ does not restrict to a specific target application;

® comes along with its own optimized data structures;

¢ possesses an (tnformational) provenance evaluation strategy for
debugging (Zhao et al., 2020).

18/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 000 000@0000000 oo

Best-First Method

We adapt the generalization of DIJKSTRA’s algorithm to the grammar problem
due to Knuth (1977).

This permits to compute Datalog provenance over 0-closed semirings having a
total natural order.

DIJKSTRA is a subcase, corresponding to right (or left) linear Datalog programs.

19/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 000 0000@000000 oo

Extending the Semi-Naive Evaluation Strategy

But... how do we get an efficient implementation?

¢ consider each instantiation of a rule only once, when all the premises are
provenance annotated:
— update the tentative provenance for the head, in the priority queue,
— if the head is already in the IDB, it has a better annotation!

® only consider mutually recursive predicates to mitigate the load of the priority
queue.

We basically apply the semi-naive evaluation strategy, with a small twist!

20/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries

Conclusion
00000000000 000

00000e00000 e}

Introducing SOUFFLE-PROV

We implement the best-first method, adapting SOUFFLE’s semi-naive evaluation
strategy powered by its efficient data structures, and set of optimizations.

— SOUFFLE-PROV is to SOUFFLE what PROVSQL (Senellart et al., 2018) is to
POSTGRESQL.

Key points:
¢ We do not break any of SOUFFLE’s optimizations!

e The lattice-theoretic approach stays applicable in this context.

21/28

Datalog Provenance for Graph Queries
000000@0000

Datalog Program for Transitive Closure

Algorithm 1 Transitive Closure (SOUFFLE syntax)

: .decl edge(s:number, t:number|[, @prov:semiring value])
: .decl path(s:number, t:number|, @prov:semiring value])
.input edge

.output path

: path(x, y) :- edge(x, y).

: path(x, y) :- path(x, z), edge(z,).

22/28

Datalog Provenance for Graph Queries
00000008000

Corresponding SOUFFLE RAM Program

Algorithm 2 RAM Program for Transitive Closure

1: if —(edge = @) then

2: for t0 in edge: add (t0.0, t0.1) in path
3: for t0 in path: add (0.0, t0.1) in dpath
4: loop

5. if =(épath = @) A =(edge = 0) then

6: for t0 in dpath do

7: for t1 in edge on index t1.0 = t0.1 do
8: if —(t0.0, t0.1) € path then

9: add (t0.0, t0.1) in path’
10: if path’ = 0 then exit
11: for t0 in path’: add (t0.0, t0.1) in path
12: swap épath with path’
13: clear path

23/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 000 00000000800 oo

Corresponding SOUFFLE-PROV RAM Program

Algorithm 3 RAM Program for Provenance-Aware Transitive Closure
1: if —(edge = @) then

2: for t0 in edge: update™ (0.0, t0.1, t0.prov) in path

3: for t0 in path: add (%0.0, 0.1, t0.prov) in dpath

4: loop

5. if =(épath = 0) A ~(edge = 0) then

6: for t0 in dpath do

7 for t1 in edge on index t1.0 = t0.1 do

8: if =(£0.0, $1.1, 1) € path then

9: update (0.0, t0.1, t0.prov ® t1.prov) in pq
10: clear dpath

11 If pq is empty then exit

12: add pg.top() in pq.top().relation and in pq.top().drelation

pq may contain tuples from every mutually recursive predicate!
24/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 000 00000000080 oo

Computing All-Pairs Shortest Distances
Comparison between algorithms for all-pairs shortest distances:
100,000
10,000
1,000
100

10

0.1

time (s)

T T T
RoME99 USPOWERGRID YEAST STIF

loSourrLi (Trop.) [INopEELIM-Id (Trop.) [ONoprELIM-Degree (Trop.) 10SourrLE-PrROV (Trop.) ‘

25/28

General Introduction Provenance Model for Graph Databases Datalog Provenance for Graph Queries Conclusion
00000000000 000 0000000000e oo

Efficiency for a Selection of Graph Patterns

Patterns:

r(z,y) - path(z, 2)

pi(z,v, 2) :- edgea(z,y), pathy(y, 2), edge. (2, z)

* pr(w,z,v,2) - pathy(w,), pathy(z, y), path,(y, 2)
* p3(w,z,9,2) - pathy(w, z), edgep(2, y), patha(y, 2)

For relevant output DB sizes (containing from 0.5M to 20M tuples):
® SOUFFLE-PROV is 2.8 to 3.6 times slower than SOUFFLE,

® up-to 1M output tuples processed by seconds.

26/28

Contents

General Introduction
Provenance Model for Graph Databases
Datalog Provenance for Graph Queries

Conclusion

27/28

nance for Graph Queries Conclusion
oe

venance Model for Graph Databases

In brief

e Efficient computation of provenance of graph databases is possible, for a rich
class of queries (Datalog), and with a reasonable overhead

® .. as long as the provenance semiring is O-closed, and either naturally
ordered or a lattice order with low dimension

® Perspectives:

® Further optimizations, getting as close as possible to the performance of
standard Datalog Evaluation
® Beyond 0-closed semirings: k-closed semirins, locally k-closed semirings, etc.

28/28

References

Bibliography I

Green, T. J., Karvounarakis, G., and Tannen, V. (2007). Provenance semirings. In
PODS, pages 31-40.

Knuth, D. E. (1977). A generalization of Dijkstra’s algorithm. Information
Processing Letters, 6(1).

Ramusat, Y., Maniu, S., and Senellart, P. (2021). Provenance-Based Algorithms
for Rich Queries over Graph Databases. In EDBT.

Scholz, B., Jordan, H., Suboti¢, P., and Westmann, T. (2016). On fast large-scale
program analysis in datalog. In International Conference on Compiler
Construction, page 196—-206.

Senellart, P., Jachiet, L., Maniu, S., and Ramusat, Y. (2018). Provsql: Provenance

and probability management in postgresql. Proc. VLDB Endow.,
11(12):2034-2037.

References

Bibliography II

Zhao, D., Suboti¢, P., and Scholz, B. (2020). Debugging large-scale datalog: A
scalable provenance evaluation strategy. ACM TOPLAS, 42(2).

	General Introduction
	Provenance Model for Graph Databases
	Datalog Provenance for Graph Queries
	Conclusion
	*
	References

