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Imprecise Data and Imprecise Tasks

Observations
Many tasks generate imprecise data, with some confidence
value.

Need for a way to manage this imprecision, to work with it
throughout an entire complex process.
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Details: no attributes, no mixed content. . .
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probability distribution over this sample space.
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Complexity Issues

Prob-tree model defined in [Abiteboul & Senellart 2006]. Here,
we tackle complexity questions about it:

What is the complexity of queries and updates?

Is this complexity inherent to the problem of managing
tree-like probabilistic information?

How can we check if two prob-trees are equivalent?

Can we compute efficiently restrictions of prob-trees (e.g.,
by a DTD)?
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The Prob-Tree Model

Data tree with event conditions (conjunction of
probabilistic events or negations of probabilistic events)
assigned to each node.

Probabilistic events are boolean random variables, assumed
to be independent, with their own probability distribution.

Representation à la [Imieliński & Lipksi 1984].
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w2

Event Prob.
w1 0:8

w2 0:7
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Semantics of Prob-Trees

Semantics of a Prob-Tree T : Set of Possible Worlds JT K
(probability distribution over the set of data trees).
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Locally Monotone Queries

Query: function that maps a data tree t to a set of subtrees of t
containing its root.

Definition
A query Q is locally monotone if, for any data trees u, t0 and t
such that u 6 t0 6 t, u 2 Q(t) () u 2 Q(t0).

Examples
Tree-pattern queries with joins are locally monotone.

“Return the root node if it has no A child, nothing
otherwise.” is not locally monotone.
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Queries on Prob-Trees

Illustration of how to query prob-trees on an example.

Query: //C
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Underlying data tree.
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Consistence of Queries on Prob-Trees

Theorem

Prob-Tree Prob-Tree

Possible Worlds Possible Worlds

query

semantics

query

semantics
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What about updates?

We consider sets of elementary insertions and deletions.

Defined with respect to a query (mapping between nodes
of the query and nodes to insert/delete).

More involved definitions. . .

. . . but a similar result:

Theorem

Prob-Tree Prob-Tree

Possible Worlds Possible Worlds

update

semantics

update

semantics
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Complexity Results

T : prob-tree with underlying data tree t.
time(Q(t)): complexity of the query Q over the data tree t.

Upper bounds for operations on T :

Operation Complexity
Query time(Q(t)) + polynomial in the size of T , Q(t)
Insertion time(Q(t)) + polynomial in the size of T , Q(t)
Deletion time(Q(t)) + exponential in the size of T , Q(t)

Proposition

If the query language is not trivial, the result of a deletion
may necessarily be exponential.

Go to proof
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Two Notions of Equivalence

What does it mean for two prob-trees to represent the same
information?

Two different notions:

Structural Equivalence: we keep the same event variables.

Semantic Equivalence: we only consider the possible worlds
semantics.

Complexity results? Relation between these two notions?
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Structural Equivalence

Definition
Two prob-trees T and T 0 are structurally equivalent
(T �struct T

0) if they have the same event variables, the same
probability distribution, and if they define the same possible
world for every valuation of the event variables.

A

B
w1;:w2

C

D
w2

�struct

A

B
w1;:w2

C
w2

D

C
:w2
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Complexity of Structural Equivalence

Theorem
Structural Equivalence is a coRP problem: there exists a
randomized polynomial-time algorithm that returns true if
two prob-trees are equivalent, and false with probability
> 1=2 otherwise.

Based on the notion of count-equivalence:

Definition
Two propositional formulas  ,  0 in DNF are count-equivalent
( 

+
�  0) if, for every valuation of the variables of  and  0, the

same number of disjuncts of  and  0 are satisfied.

A � A _ (A ^B) but A 6
+
� A _ (A ^B)
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Idea behind the Probabilistic Algorithm

In a very simple case:

A

B

w1

B

w2;:w3
�struct

A

B

w1; w2;:w3

B
w1; w2

B

w1;:w2

B
:w1; w2;:w3

() w1 _ (w2 ^ :w3)
+
� (w1 ^ w2 ^ :w3) _ (w1 ^ w2) _

(w1 ^ :w2) _ (:w1 ^ w2 ^ :w3)

() X1 +X2(1�X3) = X1X2(1�X3) +X1X2 +

X1(1�X2) + (1�X1)X2(1�X3)

(see [Green, Karvounarakis & Tannen 2007]).

Polynomial-time randomized algorithm for determining if a
multivariate polynomial is zero [Schwartz 1980].
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Semantic Equivalence

Definition
Two prob-trees T and T 0 are semantically equivalent
(T �sem T 0) if JT K = JT 0K.

A

B
w1; w2

�sem

6�struct

A

B
w3

Event Prob.
w1 0:5

w2 0:8

w3 0:4
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Semantic and Structural Equivalence

Facts
1 If T �struct T

0, then T �sem T 0

2 If T �sem T 0 for every possible probability distribution,
then T �struct T

0.

Complexity of semantic equivalence: open issue. Easy
EXPTIME upper bound.
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Restriction to a Probability Threshold

Is it possible to remove from a prob-tree least probable
worlds?

JT Kj>p : set of possible worlds in JT K whose probabilities
are greater than p.

Proposition
The prob-tree representation of JT Kj>p is sometimes
necessarily exponential.
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DTD Validation

Is it possible to compute the restriction of a prob-tree to
worlds valid against a given DTD?

DTD definition adapted to the case of unordered trees, and
without disjunction.

Proposition
Deciding if, given a prob-tree, there exists a possible
world valid against a DTD is NP-complete.

Deciding if, given a prob-tree, all possible worlds are
valid against a DTD is coNP-complete.

In some cases, the prob-tree representation of the
restriction of a prob-tree to a given DTD is of
exponential size.
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Summary

A model for representing probabilistic information in
semi-structured databases.

Polynomial complexity for queries and insertions.

Unavoidable exponential complexity for deletions.

Characterization of the complexity of key problems.

Structural equivalence: randomized polynomial algorithm.
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Perspectives

Complexity of semantic equivalence.

Prob-tree simplification.

Top-k possible worlds from a prob-tree.

Aggregate functions in queries.
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Merci.
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Proof of the Exponential Complexity of Deletion

Proof.
Deletion d: “If the root has a C-child, then delete all B-children
of the root.”

T =

A

B C

w
(0)
1 ; w

(1)
1

. . . C

w
(0)
n

; w
(1)
n

8i; �(wi) = 1=2

Then, it can be shown that if T 0 �struct d(T ), at least 2n literals
appear in T 0.

Return to theorem
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