IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion00000000000000000

On the Complexity of Managing Probabilistic XML Data

<u>Pierre Senellart</u> Serge Abiteboul

Principles Of Database Systems, 13th June 2007

Introduction	Prob-Trees	Equivalence of Prob-Trees	Prob-Trees with Additional Constraints	Conclusion

Outline

1 Introduction

- Motivation
- Probabilistic Data Management
- Complexity Issues

2 Prob-Trees

- 3 Equivalence of Prob-Trees
- Prob-Trees with Additional Constraints

5 Conclusion

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion••••••••••••••••••••••••

Imprecise Data and Imprecise Tasks

Observations

- Many tasks generate imprecise data, with some confidence value.
- Need for a way to manage this imprecision, to work with it throughout an entire complex process.

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion••••••••••••••••••••••••

Imprecise Data and Imprecise Tasks

Observations

- Many tasks generate imprecise data, with some confidence value.
- Need for a way to manage this imprecision, to work with it throughout an entire complex process.

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion000000000000000000

A Probabilistic XML Warehouse

Pierre Senellart, Serge Abiteboul On the Complexity of Probabilistic XML

 Introduction
 Prob-Trees
 Equivalence of Prob-Trees
 Prob-Trees with Additional Constraints
 Conclusion

 ∞●∞
 ∞∞∞∞∞
 ∞∞∞∞∞
 ∞∞∞∞∞
 ∞∞∞∞
 ∞∞∞∞

Probabilistic Trees

Sample space: Set of all such data trees.

 Introduction
 Prob-Trees
 Equivalence of Prob-Trees
 Prob-Trees with Additional Constraints
 Conclusion

 ∞●∞
 ∞∞∞∞∞
 ∞∞∞∞∞
 ∞∞∞∞∞
 ∞∞∞∞
 ∞∞∞∞

Probabilistic Trees

Sample space: Set of all such data trees.

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion○●○○○○○○○○○○○○○○○○○○○

Probabilistic Trees

Sample space: Set of all such data trees.

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion○●○○○○○○○○○○○○○○○○○○○

Probabilistic Trees

Sample space: Set of all such data trees.

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion○●○○○○○○○○○○○○○○○○○○○

Probabilistic Trees

Sample space: Set of all such data trees.

- What is the complexity of queries and updates?
- Is this complexity inherent to the problem of managing tree-like probabilistic information?
- How can we check if two prob-trees are equivalent?
- Can we compute efficiently restrictions of prob-trees (e.g., by a DTD)?

- What is the complexity of queries and updates?
- Is this complexity inherent to the problem of managing tree-like probabilistic information?
- How can we check if two prob-trees are equivalent?
- Can we compute efficiently restrictions of prob-trees (e.g., by a DTD)?

- What is the complexity of queries and updates?
- Is this complexity inherent to the problem of managing tree-like probabilistic information?
- How can we check if two prob-trees are equivalent?
- Can we compute efficiently restrictions of prob-trees (e.g., by a DTD)?

- What is the complexity of queries and updates?
- Is this complexity inherent to the problem of managing tree-like probabilistic information?
- How can we check if two prob-trees are equivalent?
- Can we compute efficiently restrictions of prob-trees (e.g., by a DTD)?

- What is the complexity of queries and updates?
- Is this complexity inherent to the problem of managing tree-like probabilistic information?
- How can we check if two prob-trees are equivalent?
- Can we compute efficiently restrictions of prob-trees (e.g., by a DTD)?

Introduction	Prob-Trees	Equivalence of Prob-Trees	Prob-Trees with Additional Constraints	Conclusion

Outline

- 2 Prob-Trees
 - The Prob-Tree Model
 - Queries and Updates
- 3 Equivalence of Prob-Trees
- 4 Prob-Trees with Additional Constraints

5 Conclusion

The Prob-Tree Model

- Data tree with event conditions (conjunction of probabilistic events or negations of probabilistic events) assigned to each node.
- Probabilistic events are boolean random variables, assumed to be independent, with their own probability distribution.
- Representation à la [Imieliński & Lipksi 1984].

Semantics of Prob-Trees

Semantics of a Prob-Tree T: Set of Possible Worlds [T] (probability distribution over the set of data trees).

Actually, fully expressive.

Semantics of Prob-Trees

Semantics of a Prob-Tree T: Set of Possible Worlds [T] (probability distribution over the set of data trees).

Actually, fully expressive.

Semantics of Prob-Trees

Semantics of a Prob-Tree T: Set of Possible Worlds [T] (probability distribution over the set of data trees).

Actually, fully expressive.

Pierre Senellart, Serge Abiteboul On the Complexity of Probabilistic XML

Semantics of Prob-Trees

Semantics of a Prob-Tree T: Set of Possible Worlds [T] (probability distribution over the set of data trees).

Actually, fully expressive.

Locally Monotone Queries

Query: function that maps a data tree t to a set of subtrees of t containing its root.

Definition

A query Q is locally monotone if, for any data trees u, t' and t such that $u \leqslant t' \leqslant t, \ u \in Q(t) \iff u \in Q(t').$

- Tree-pattern queries with joins are locally monotone.
- "Return the root node if it has no A child, nothing otherwise." is not locally monotone.

Locally Monotone Queries

Query: function that maps a data tree t to a set of subtrees of t containing its root.

Definition

A query Q is locally monotone if, for any data trees u, t' and t such that $u \leq t' \leq t, u \in Q(t) \iff u \in Q(t')$.

- Tree-pattern queries with joins are locally monotone.
- "Return the root node if it has no A child, nothing otherwise." is not locally monotone.

Locally Monotone Queries

Query: function that maps a data tree t to a set of subtrees of t containing its root.

Definition

A query Q is locally monotone if, for any data trees u, t' and t such that $u \leq t' \leq t, u \in Q(t) \iff u \in Q(t')$.

- Tree-pattern queries with joins are locally monotone.
- "Return the root node if it has no A child, nothing otherwise." is not locally monotone.

Locally Monotone Queries

Query: function that maps a data tree t to a set of subtrees of t containing its root.

Definition

A query Q is locally monotone if, for any data trees u, t' and t such that $u \leq t' \leq t, u \in Q(t) \iff u \in Q(t')$.

- Tree-pattern queries with joins are locally monotone.
- "Return the root node if it has no A child, nothing otherwise." is not locally monotone.

Queries on Prob-Trees

Illustration of how to query prob-trees on an example.

Query: //C

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion00000000000000000000000

Queries on Prob-Trees

Illustration of how to query prob-trees on an example. Query: //C

Queries on Prob-Trees

Illustration of how to query prob-trees on an example. Query: //C

Underlying data tree.
Queries on Prob-Trees

Illustration of how to query prob-trees on an example. Query: //C

Queries on Prob-Trees

Illustration of how to query prob-trees on an example.

Query: //C

Queries on Prob-Trees

Illustration of how to query prob-trees on an example. Query: //C

Queries on Prob-Trees

Illustration of how to query prob-trees on an example.

Query: //C

Introduction Prob-Trees Equivalence of Prob-Trees Prob-Trees with Additional Constraints Conclusion 0000 00 000 00 000 000

Consistence of Queries on Prob-Trees

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion000000000000000000000000

- We consider sets of elementary insertions and deletions.
- Defined with respect to a query (mapping between nodes of the query and nodes to insert/delete).
- More involved definitions...
- ... but a similar result:

- We consider sets of elementary insertions and deletions.
- Defined with respect to a query (mapping between nodes of the query and nodes to insert/delete).
- More involved definitions...
- ... but a similar result:

- We consider sets of elementary insertions and deletions.
- Defined with respect to a query (mapping between nodes of the query and nodes to insert/delete).
- More involved definitions...

```
• ... but a similar result:
```


- We consider sets of elementary insertions and deletions.
- Defined with respect to a query (mapping between nodes of the query and nodes to insert/delete).
- More involved definitions...
- ... but a similar result:

T: prob-tree with underlying data tree t. time(Q(t)): complexity of the query Q over the data tree t.

Upper bounds for operations on T:

Operation	Complexity
Query	time(Q(t)) + polynomial in the size of T, $Q(t)$
Insertion	time(Q(t)) + polynomial in the size of $T, Q(t)$
Deletion	time(Q(t)) + exponential in the size of T, Q(t)

Proposition

If the query language is not trivial, the result of a deletion may necessarily be **exponential**.

T: prob-tree with underlying data tree t. time(Q(t)): complexity of the query Q over the data tree t.

Upper bounds for operations on T:

Operation	Complexity
Query	time(Q(t)) + polynomial in the size of T, $Q(t)$
Insertion	time(Q(t)) + polynomial in the size of $T, Q(t)$
Deletion	time(Q(t)) + exponential in the size of T, Q(t)

Proposition

If the query language is not trivial, the result of a deletion may necessarily be **exponential**.

T: prob-tree with underlying data tree t. time(Q(t)): complexity of the query Q over the data tree t.

Upper bounds for operations on T:

Operation	Complexity
Query	time(Q(t)) + polynomial in the size of T, $Q(t)$
Insertion	time(Q(t)) + polynomial in the size of T, $Q(t)$
Deletion	time(Q(t)) + exponential in the size of T, Q(t)

Proposition

If the query language is not trivial, the result of a deletion may necessarily be **exponential**.

T: prob-tree with underlying data tree t. time(Q(t)): complexity of the query Q over the data tree t.

Upper bounds for operations on T:

Operation	Complexity
Query	time(Q(t)) + polynomial in the size of T, $Q(t)$
Insertion	time(Q(t)) + polynomial in the size of T, $Q(t)$
Deletion	time(Q(t)) + exponential in the size of $T, Q(t)$

Proposition

If the query language is not trivial, the result of a deletion may necessarily be **exponential**.

T: prob-tree with underlying data tree t. time(Q(t)): complexity of the query Q over the data tree t.

Upper bounds for operations on T:

Operation	Complexity
Query	time(Q(t)) + polynomial in the size of $T, Q(t)$
Insertion	time(Q(t)) + polynomial in the size of $T, Q(t)$
Deletion	time $(Q(t))$ + exponential in the size of T, $Q(t)$

Proposition

If the query language is not trivial, the result of a deletion may necessarily be *exponential*.

Introduction	Prob-Trees	Equivalence of Prob-Trees	Prob-Trees with Additional Constraints	Conclusion

Outline

- 2 Prob-Trees
- 3 Equivalence of Prob-Trees
 - Two Notions of Equivalence
 - Structural Equivalence
 - Semantic Equivalence

4 Prob-Trees with Additional Constraints

5 Conclusion

What does it mean for two prob-trees to represent the same information?

Two different notions:

Structural Equivalence: we keep the same event variables. Semantic Equivalence: we only consider the possible worlds semantics.

What does it mean for two prob-trees to represent the same information?

Two different notions:

Structural Equivalence: we keep the same event variables. Semantic Equivalence: we only consider the possible worlds semantics.

What does it mean for two prob-trees to represent the same information?

Two different notions:

Structural Equivalence: we keep the same event variables. Semantic Equivalence: we only consider the possible worlds semantics.

What does it mean for two prob-trees to represent the same information?

Two different notions:

Structural Equivalence: we keep the same event variables. Semantic Equivalence: we only consider the possible worlds semantics.

Structural Equivalence

Definition

Two prob-trees T and T' are structurally equivalent $(T \equiv_{struct} T')$ if they have the same event variables, the same probability distribution, and if they define the same possible world for every valuation of the event variables.

Structural Equivalence

Definition

Two prob-trees T and T' are structurally equivalent $(T \equiv_{struct} T')$ if they have the same event variables, the same probability distribution, and if they define the same possible world for every valuation of the event variables.

Complexity of Structural Equivalence

Theorem

Structural Equivalence is a coRP problem: there exists a randomized polynomial-time algorithm that returns true if two prob-trees are equivalent, and false with probability $\ge 1/2$ otherwise.

Based on the notion of count-equivalence:

Definition

Two propositional formulas ψ , ψ' in DNF are count-equivalent $(\psi \stackrel{+}{\equiv} \psi')$ if, for every valuation of the variables of ψ and ψ' , the same number of disjuncts of ψ and ψ' are satisfied.

$A\equiv A\lor (A\land B) \qquad ext{but} \qquad A ot \triangleq A\lor (A\land B)$

Complexity of Structural Equivalence

Theorem

Structural Equivalence is a coRP problem: there exists a randomized polynomial-time algorithm that returns true if two prob-trees are equivalent, and false with probability $\ge 1/2$ otherwise.

Based on the notion of count-equivalence:

Definition

Two propositional formulas ψ , ψ' in DNF are count-equivalent $(\psi \stackrel{\pm}{=} \psi')$ if, for every valuation of the variables of ψ and ψ' , the same number of disjuncts of ψ and ψ' are satisfied.

$A\equiv Aee (A\wedge B) \qquad ext{but} \qquad A ot \equiv Aee (A\wedge B)$

Complexity of Structural Equivalence

Theorem

Structural Equivalence is a coRP problem: there exists a randomized polynomial-time algorithm that returns true if two prob-trees are equivalent, and false with probability $\ge 1/2$ otherwise.

Based on the notion of count-equivalence:

Definition

Two propositional formulas ψ , ψ' in DNF are count-equivalent $(\psi \stackrel{\pm}{=} \psi')$ if, for every valuation of the variables of ψ and ψ' , the same number of disjuncts of ψ and ψ' are satisfied.

$$A \equiv A \lor (A \land B)$$
 but $A \not\triangleq A \lor (A \land B)$

Introduction Prob-Trees **Equivalence of Prob-Trees** Prob-Trees with Additional Constraints Conclusion 000 00 00 00 000

Idea behind the Probabilistic Algorithm

In a very simple case:

(see [Green, Karvounarakis & Tannen 2007]).

Polynomial-time randomized algorithm for determining if a multivariate polynomial is zero [Schwartz 1980].

Introduction Prob-Trees **Equivalence of Prob-Trees** Prob-Trees with Additional Constraints Conclusion 000 00 00 00 000

Idea behind the Probabilistic Algorithm

In a very simple case:

(see [Green, Karvounarakis & Tannen 2007]).

Polynomial-time randomized algorithm for determining if a multivariate polynomial is zero [Schwartz 1980].

Introduction Prob-Trees **Equivalence of Prob-Trees** Prob-Trees with Additional Constraints Conclusion 000 00 00 000 000

Idea behind the Probabilistic Algorithm

In a very simple case:

(see [Green, Karvounarakis & Tannen 2007]).

Polynomial-time randomized algorithm for determining if a multivariate polynomial is zero [Schwartz 1980].

Introduction Prob-Trees **Equivalence of Prob-Trees** Prob-Trees with Additional Constraints Conclusion 000 00 00 000 000

Idea behind the Probabilistic Algorithm

In a very simple case:

(see [Green, Karvounarakis & Tannen 2007]).

Polynomial-time randomized algorithm for determining if a multivariate polynomial is zero [Schwartz 1980].

Introduction Prob-Trees **Equivalence of Prob-Trees** Prob-Trees with Additional Constraints Conclusion 000 00 00 00 000 000

Idea behind the Probabilistic Algorithm

In a very simple case:

(see [Green, Karvounarakis & Tannen 2007]).

Polynomial-time randomized algorithm for determining if a multivariate polynomial is zero [Schwartz 1980].

Semantic Equivalence

Definition

Two prob-trees T and T' are semantically equivalent $(T \equiv_{sem} T')$ if [T] = [T'].

Semantic Equivalence

Definition

Two prob-trees T and T' are semantically equivalent $(T \equiv_{sem} T')$ if [T] = [T'].

Semantic Equivalence

Definition

Two prob-trees T and T' are semantically equivalent $(T \equiv_{sem} T')$ if [T] = [T'].

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion000000000●0000000

Semantic and Structural Equivalence

Facts

$${f 0} \ \ {\it If} \ T \equiv_{struct} T', \ then \ T \equiv_{sem} T'$$

2 If T ≡_{sem} T' for every possible probability distribution, then T ≡_{struct} T'.

Complexity of semantic equivalence: open issue. Easy **EXPTIME** upper bound.

Semantic and Structural Equivalence

Facts

$${f 0} \ \ {\it If} \ T \equiv_{struct} T', \ then \ T \equiv_{sem} T'$$

If $T ≡_{sem} T'$ for every possible probability distribution, then $T ≡_{struct} T'$.

Complexity of semantic equivalence: open issue. Easy **EXPTIME** upper bound.

Semantic and Structural Equivalence

Facts

$${f 0} \ \ {\it If} \ T \equiv_{struct} T', \ then \ T \equiv_{sem} T'$$

If $T ≡_{sem} T'$ for every possible probability distribution, then $T ≡_{struct} T'$.

Complexity of semantic equivalence: open issue. Easy **EXPTIME** upper bound.

Introduction	Prob-Trees	Equivalence of Prob-Trees	Prob-Trees with Additional Constraints	Conclusion

Outline

- 2 Prob-Trees
- 3 Equivalence of Prob-Trees
- Prob-Trees with Additional Constraints
 Restriction to a Probability Threshold
 DTD Validation

Conclusion

Restriction to a Probability Threshold

- Is it possible to remove from a prob-tree least probable worlds?
- $[T]_{\geq p}$: set of possible worlds in [T] whose probabilities are greater than p.

Proposition

The prob-tree representation of $[T]_{|\geq p}$ is sometimes necessarily exponential.

Restriction to a Probability Threshold

- Is it possible to remove from a prob-tree least probable worlds?
- $[T]_{|\geq p}$: set of possible worlds in [T] whose probabilities are greater than p.

Proposition

The prob-tree representation of $[T]_{|\geq p}$ is sometimes necessarily exponential.

Restriction to a Probability Threshold

- Is it possible to remove from a prob-tree least probable worlds?
- $[T]_{|\geq p}$: set of possible worlds in [T] whose probabilities are greater than p.

Proposition

The prob-tree representation of $[T]_{|\geq p}$ is sometimes necessarily exponential.

Introduction	Prob-Trees	Equivalence of Prob-Trees	Prob-Trees with Additional Constraints	Conclusion
			○●	

DTD Validation

- Is it possible to compute the restriction of a prob-tree to worlds valid against a given DTD?
- DTD definition adapted to the case of unordered trees, and without disjunction.

- Deciding if, given a prob-tree, there exists a possible world valid against a DTD is NP-complete.
- Deciding if, given a prob-tree, all possible worlds are valid against a DTD is coNP-complete.
- In some cases, the prob-tree representation of the restriction of a prob-tree to a given DTD is of exponential size.

DTD Validation

- Is it possible to compute the restriction of a prob-tree to worlds valid against a given DTD?
- DTD definition adapted to the case of unordered trees, and without disjunction.

- Deciding if, given a prob-tree, there exists a possible world valid against a DTD is NP-complete.
- Deciding if, given a prob-tree, all possible worlds are valid against a DTD is coNP-complete.
- In some cases, the prob-tree representation of the restriction of a prob-tree to a given DTD is of exponential size.

DTD Validation

- Is it possible to compute the restriction of a prob-tree to worlds valid against a given DTD?
- DTD definition adapted to the case of unordered trees, and without disjunction.

- Deciding if, given a prob-tree, there exists a possible world valid against a DTD is **NP**-complete.
- Deciding if, given a prob-tree, all possible worlds are valid against a DTD is coNP-complete.
- In some cases, the prob-tree representation of the restriction of a prob-tree to a given DTD is of *exponential size*.

DTD Validation

- Is it possible to compute the restriction of a prob-tree to worlds valid against a given DTD?
- DTD definition adapted to the case of unordered trees, and without disjunction.

- Deciding if, given a prob-tree, there exists a possible world valid against a DTD is NP-complete.
- Deciding if, given a prob-tree, all possible worlds are valid against a DTD is coNP-complete.
- In some cases, the prob-tree representation of the restriction of a prob-tree to a given DTD is of *exponential size*.

DTD Validation

- Is it possible to compute the restriction of a prob-tree to worlds valid against a given DTD?
- DTD definition adapted to the case of unordered trees, and without disjunction.

- Deciding if, given a prob-tree, there exists a possible world valid against a DTD is NP-complete.
- Deciding if, given a prob-tree, all possible worlds are valid against a DTD is coNP-complete.
- In some cases, the prob-tree representation of the restriction of a prob-tree to a given DTD is of *exponential size*.

IntroductionProb-TreesEquivalence of Prob-TreesProb-Trees with Additional ConstraintsConclusion0000000000000000000000000

DTD Validation

- Is it possible to compute the restriction of a prob-tree to worlds valid against a given DTD?
- DTD definition adapted to the case of unordered trees, and without disjunction.

- Deciding if, given a prob-tree, there exists a possible world valid against a DTD is NP-complete.
- Deciding if, given a prob-tree, all possible worlds are valid against a DTD is coNP-complete.
- In some cases, the prob-tree representation of the restriction of a prob-tree to a given DTD is of *exponential size*.

Introduction	Prob-Trees	Equivalence of Prob-Trees	Prob-Trees with Additional Constraints	Conclusion

Outline

- 1 Introduction
- 2 Prob-Trees
- 3 Equivalence of Prob-Trees
- 4 Prob-Trees with Additional Constraints

5 Conclusion

- Summary
- Perspectives

Introduction	Prob-Trees	Equivalence of Prob-Trees	Prob-Trees with Additional Constraints	Conclusion
				000

- A model for representing probabilistic information in semi-structured databases.
- Polynomial complexity for queries and insertions.
- Unavoidable exponential complexity for deletions.
- Characterization of the complexity of key problems.
- Structural equivalence: randomized polynomial algorithm.

- A model for representing probabilistic information in semi-structured databases.
- Polynomial complexity for queries and insertions.
- Unavoidable exponential complexity for deletions.
- Characterization of the complexity of key problems.
- Structural equivalence: randomized polynomial algorithm.

- A model for representing probabilistic information in semi-structured databases.
- Polynomial complexity for queries and insertions.
- Unavoidable exponential complexity for deletions.
- Characterization of the complexity of key problems.
- Structural equivalence: randomized polynomial algorithm.

- A model for representing probabilistic information in semi-structured databases.
- Polynomial complexity for queries and insertions.
- Unavoidable exponential complexity for deletions.
- Characterization of the complexity of key problems.
- Structural equivalence: randomized polynomial algorithm.

- A model for representing probabilistic information in semi-structured databases.
- Polynomial complexity for queries and insertions.
- Unavoidable exponential complexity for deletions.
- Characterization of the complexity of key problems.
- Structural equivalence: randomized polynomial algorithm.

- Complexity of semantic equivalence.
- Prob-tree simplification.
- Top-k possible worlds from a prob-tree.
- Aggregate functions in queries.

- Complexity of semantic equivalence.
- Prob-tree simplification.
- Top-k possible worlds from a prob-tree.
- Aggregate functions in queries.

 $\begin{array}{ccc} \mbox{Introduction} & \mbox{Prob-Trees} & \mbox{Equivalence of Prob-Trees} & \mbox{Prob-Trees with Additional Constraints} & \mbox{Conclusion} & \mbox{ooc} & \mbox{$

- Complexity of semantic equivalence.
- Prob-tree simplification.
- Top-*k* possible worlds from a prob-tree.
- Aggregate functions in queries.

 $\begin{array}{ccc} \mbox{Introduction} & \mbox{Prob-Trees} & \mbox{Equivalence of Prob-Trees} & \mbox{Prob-Trees with Additional Constraints} & \mbox{Conclusion} & \mbox{ooc} & \mbox{$

- Complexity of semantic equivalence.
- Prob-tree simplification.
- Top-*k* possible worlds from a prob-tree.
- Aggregate functions in queries.

Introduction	Prob-Trees	Equivalence of Prob-Trees	Prob-Trees with Additional Constraints	Conclusion
				000

Merci.

Pierre Senellart, Serge Abiteboul On the Complexity of Probabilistic XML

Proof.

Deletion d: "If the root has a C-child, then delete all B-children of the root."

$$T = egin{array}{c} A \\ w_1^{(0)}, w_1^{(1)} \\ B \\ C \\ \end{array} & \cdots \\ C \\ \end{array} & C \\ \end{array} & \psi_n^{(0)}, w_n^{(1)} \quad orall i, \pi(w_i) = 1/2 \\ \end{array}$$

Then, it can be shown that if $T' \equiv_{struct} d(T)$, at least 2^n literals appear in T'.

Pierre Senellart, Serge Abiteboul On the Complexity of Probabilistic XML

Tomasz Imieliński and Witold Lipski.

Incomplete information in relational databases. *Journal of the ACM*, 31(4):761-791, 1984.

J. T. Schwartz.

Fast probabilistic algorithms for verification of polynomial identities.

Journal of the ACM, 27(4):701-717, 1980.

Serge Abiteboul and Pierre Senellart. Querying and updating probabilistic information in XML. In *Extending DataBase Technology*, Munich, Germany, March 2006.

Todd J. Green, Grigoris Karvounarakis and Val Tannen. Provenance semirings. In Principles of DataBase Systems, Beijing, China, June 2007.