On the Complexity of Deriving Schema Mappings from Database Instances

Pierre Senellart ${ }^{1,2,3}$ Georg Gottlob ${ }^{4}$

Principles Of Database Systems, 9 June 2008

Different sources organize the same data differently

2007		
240	EE	Foto N. Afrati, Chen Li, Jeffrey D. Ullman: Using views to generate efficient evaluation plans for queries. L. Comput. Syst. Sci. 73(5): 703-724 (2007)
2005		
239	EE	Jeffrey D. Ullman: Gradiance On-Line Accelerated Learning. ACSC 2005: 3-6
238	EE	Serge Abiteboul, Rakesh Agrawal, Philip A. Bernstein, Michael J. Carey, Stefano Ceri, W. Bruce Croft, David I. DeWitt, Michael I. Franklin, Hector Garcia-Molina, Dieter Gawlick, lim Gray, Laura M. Haas, Alon Y. Halew, Joseph M. Hellerstein, Yannis E. loannidis, Martin L. Kersten, Michael J. Pazzani, Michael Lesk, David Maier, leffrey F. Naughton, Hans-lörq Schek, Timos K. Sellis, Avi Silberschatz, Michael Zdonik: The Lowell database research self-assessment. Commun. ACM 48(5): 111-118 (2005)
237	EE	Serge Abiteboul, Richard Hull, Victor Vianu, Sheila A. Greibach, Michael A. Harrison, Ellis Horowitz, Daniel I. Rosenkrantz, Jeffrey D. Ullman, Moshe Y. Vardi: In memory of Seymour Ginsburg 1928-2004. SIGMOD Record 34(1): 5-12 (2005)
2003		
236	EE	Jeffrey D. Ullman: A Survey of New Directions in Database System. DASFAA 2003: 3-
235	EE	Jeffrey D. Ullman: Improving the Efficiency of Database-System Teaching. SIGMOD Conference 2003: 1-3
234	EE	lim Gray, Hans-Jörg Schek, Michael Stonebraker, Jeffrey D. Ullman: The Lowell Report. SIGMOD Conference 2003: 680
233	EE	Serge Abiteboul, Rakesh Agrawal, Philip A. Bernstein, Michael I. Carey, Stefano Ceri, W. Bruce Croft, David J. DeWitt, Michael J. Franklin, Hector Garcia-Molina, Dieter Gawlick, lim Gray, Laura M. Haas, Alon Y. Halew, loseph M. Hellerstein, Yannis E. loannidis, Martin L. Kersten, Michael J. Pazzani, Michael Lesk, David Maier, leffrey F. Naughton, Hans-lörq Schek, Timos K. Sellis, Avi Silberschatz, Michael Stonebraker, Richard T. Snodgrass, Jeffrey D. Ullman, Gerhard Weikum, 迕nifer Widom, Stanley B. Zdonik: The Lowell Database Research Self Assessment CoRR cs.DB/0310006: (2003)

Different sources organize the same data differently

Querying websites using compact skeletons - all 11 versions ».
A Rajaraman, JD UlIm an - Journal of Computer and System Sciences, 2003 - Elsevier
Several commercial applications, such as online comparison shopping and process automation, require integrating information that is scattered across multiple websites or XML documents. Much research has been devoted to this problem, ...
Cited by 13 - Related Articles - Web Search
[BOOK] Wprowadzenie do teorii automatów, jezyków i obliczen
JE Hopcroft, JD Ullman, B Konikow ska - 2003 - Wydaw. Naukow e PWN
Cited by 15 - Related Articles - Web Search
Improving the efficiency of database-system teaching - all 3 versions »
JD UIIm an - Proceedings of the 2003 ACM SIGMOD international conference ..., 2003 - portal.acm.org ABSTRACT The education industry has a very poor record of produc- tivity gains. In this brief article, I outline some of the ways the teaching of a college course in database systems could be made more ecient, and sta time used ...
Cited by 4 - Related Articles - Web Search
A survey of new directions in database systems - all 5 versions » JD UlIm an - Database Systems for Advanced Applications, 2003.(DASFAA ..., 2003 - ieeexplore.ieee.org
A survey of new directions in database systems. Ullman, JD Stanford University;
This paper appears in: Database Systems for Advanced Applications, 2003.
(DASFAA 2003). Proceedings. Eighth International ...
Cited by 3 - Related Articles - Web Search

Motivation

Context

- Multiple data sources containing information about similar entities, with some redundancy (e.g., sources of the deep Web).
- Several different ways to present this information, i.e., several different schemata.
- No a priori information about (some of) these schemata.

How to know the relationships between these schemata, by just looking at the instances?

Other way to see this problem: Match operator on schema mappings, in the setting of data exchange.

Motivation

Context

- Multiple data sources containing information about similar entities, with some redundancy (e.g., sources of the deep Web).
- Several different ways to present this information, i.e., several different schemata.
- No a priori information about (some of) these schemata.

How to know the relationships between these schemata, by just looking at the instances?

Other way to see this problem: Match operator on schema mappings, in the setting of data exchange.

Motivation

Context

- Multiple data sources containing information about similar entities, with some redundancy (e.g., sources of the deep Web).
- Several different ways to present this information, i.e., several different schemata.
- No a priori information about (some of) these schemata.

How to know the relationships between these schemata, by just looking at the instances?

Other way to see this problem: Match operator on schema mappings, in the setting of data exchange.

Problem definition

Problem

Given two (relational) database instances I and J with different schemata, what is the optimal description Σ of J knowing I (with Σ a finite set of formulas in some logical language)?

(Note the asymmetry between I and J; context of data exchange where J is computed from I and Σ).

Problem definition

Problem

Given two (relational) database instances I and J with different schemata, what is the optimal description Σ of J knowing I (with Σ a finite set of formulas in some logical language)?

What does optimal implies:

- Conciseness of description.
- Validity of facts predicted by I and Σ.
- All facts of J explained by I and Σ.
(Note the asymmetry between I and J; context of data exchange where J is computed from I and Σ).

Outline

(1) Introduction
(2) TGDs, Cost, Optimality

- TGDs
- Cost and Optimality

(3) Results

(4) Extensions, Variants
(5) Conclusion

Source-to-target tuple-generating dependencies

Definition (Source-to-target tgd)

First-order formula of the form:

$$
\forall \mathbf{x} \varphi(x) \rightarrow \exists \mathbf{y} \psi(x, y)
$$

with:

- φ conjunction of source relation atoms;
- ψ conjunction of target relation atoms;
- all variables of x bound in φ.

Example

$$
\forall x_{1} \forall x_{2} R_{1}\left(x_{1}, x_{2}\right) \wedge R_{2}\left(x_{2}\right) \rightarrow \exists y R^{\prime}\left(x_{1}, y\right)
$$

Particular tgds

Two ways of having simpler tgds:

- Disallow existential quantifiers on the right hand-side: full tgds.
- Disallow cycles on both left- and right-hand sides: acyclic tgds. (Classical notion of acyclicity on hypergraphs extending the basic notion of acyclicity on graphs.)

4 different languages:

$\mathcal{L}_{+g d}:$ arbitrary source-to-target tgds;

$\mathcal{L}_{\text {acyc }}$: acyclic tgds;
$\mathcal{L}_{\text {facyc }}$ full and acyclic tgds.

Particular tgds

Two ways of having simpler tgds:

- Disallow existential quantifiers on the right hand-side: full tgds.
- Disallow cycles on both left- and right-hand sides: acyclic tgds. (Classical notion of acyclicity on hypergraphs extending the basic notion of acyclicity on graphs.)

```
Examples
\forall\mp@subsup{x}{1}{}\forall\mp@subsup{x}{2}{}\forall\mp@subsup{x}{3}{}\mp@subsup{R}{1}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\wedge\mp@subsup{R}{2}{}(\mp@subsup{x}{2}{},\mp@subsup{x}{3}{})\wedge\mp@subsup{R}{3}{}(\mp@subsup{x}{3}{},\mp@subsup{x}{1}{})->\mp@subsup{R}{}{\prime}(\mp@subsup{x}{1}{})\mathrm{ is cyclic (and full).}
\forall\mp@subsup{x}{1}{}\forall\mp@subsup{x}{2}{}\forall\mp@subsup{x}{3}{}\mp@subsup{R}{1}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\wedge\mp@subsup{R}{2}{}(\mp@subsup{x}{2}{},\mp@subsup{x}{3}{})->\mp@subsup{R}{}{\prime}(\mp@subsup{x}{1}{})\mathrm{ is acyclic (and full).}
```

4 different languages:
$\mathcal{L}_{\text {tgd }}:$ arbitrary source-to-target tgds;

$\mathcal{L}_{\text {facyc }}$: full and acyclic tgds.

Particular tgds

Two ways of having simpler tgds:

- Disallow existential quantifiers on the right hand-side: full tgds.
- Disallow cycles on both left- and right-hand sides: acyclic tgds. (Classical notion of acyclicity on hypergraphs extending the basic notion of acyclicity on graphs.)

Examples

$\forall x_{1} \forall x_{2} \forall x_{3} R_{1}\left(x_{1}, x_{2}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{3}\left(x_{3}, x_{1}\right) \rightarrow R^{\prime}\left(x_{1}\right)$ is cyclic (and full). $\forall x_{1} \forall x_{2} \forall x_{3} R_{1}\left(x_{1}, x_{2}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \rightarrow R^{\prime}\left(x_{1}\right)$ is acyclic (and full).

4 different languages:
$\mathcal{L}_{\text {tgd }}$: arbitrary source-to-target tgds;
$\mathcal{L}_{\text {full }}$: full tgds;
$\mathcal{L}_{\text {acyc }}$: acyclic tgds;
$\mathcal{L}_{\text {facyc }}:$ full and acyclic tgds.

How to define the pertinence of a set of tgds?

Example

$$
\begin{aligned}
& R \\
& \text { a } \\
& \text { b } \\
& \text { C } \\
& \text { d } \\
& \frac{R^{\prime}}{\mathrm{a} \mathrm{a}} \\
& \text { b b } \\
& \text { C a } \\
& \text { d d } \\
& \text { g } h \\
& \Sigma_{0}=\varnothing \\
& \Sigma_{1}=\left\{\forall x R(x) \rightarrow R^{\prime}(x, x)\right\} \\
& \Sigma_{2}=\left\{\forall x R(x) \rightarrow \exists y R^{\prime}(x, y)\right\} \\
& \Sigma_{3}=\left\{\forall x_{1} \forall x_{2} R\left(x_{1}\right) \wedge R\left(x_{2}\right) \rightarrow R^{\prime}\left(x_{1}, x_{2}\right)\right\} \\
& \Sigma_{4}=\left\{\exists y_{1} \exists y_{2} R^{\prime}\left(y_{1}, y_{2}\right)\right\}
\end{aligned}
$$

How to define the pertinence of a set of tgds?

Example

$$
\begin{aligned}
& \text { R } \\
& \text { a } \\
& \text { b } \\
& \text { c } \\
& \text { d } \\
& \frac{R^{\prime}}{\mathrm{a} \quad \mathrm{a}} \\
& \text { b b } \\
& \text { c a } \\
& \text { d d } \\
& \text { g h } \\
& \Sigma_{0}=\varnothing \\
& \Sigma_{1}=\left\{\forall x R(x) \rightarrow R^{\prime}(x, x)\right\} \\
& \Sigma_{2}=\left\{\forall x R(x) \rightarrow \exists y R^{\prime}(x, y)\right\} \\
& \Sigma_{3}=\left\{\forall x_{1} \forall x_{2} R\left(x_{1}\right) \wedge R\left(x_{2}\right) \rightarrow R^{\prime}\left(x_{1}, x_{2}\right)\right\} \\
& \Sigma_{4}=\left\{\exists y_{1} \exists y_{2} R^{\prime}\left(y_{1}, y_{2}\right)\right\}
\end{aligned}
$$

Idea

- Size of a formula: number of occurrences of variables and constants.
- Cost of a schema mapping Σ : Size of the minimum repair of Σ that is valid and explains all facts of J.
- Types of repairs considered:
- "fix" a universal quantifier by adding conditions ($x=a$ or $x \neq a$);
- "fix" an existential quantifier by giving corresponding constants ($\tau(\mathbf{x}) \rightarrow y=a$ with τ a conjunction of conditions on universally quantified variables);
- add ground facts to the target instance.
- The problem is then to find a schema mapping of minimal cost.

Example of cost computation

Example

$$
\left.\begin{array}{cc}
\begin{array}{c}
R \\
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array} & \begin{array}{c}
R^{\prime} \\
\mathrm{d}
\end{array} \\
& \mathrm{a} \quad \mathrm{a} \\
& \mathrm{~b} \quad \mathrm{~b} \\
& \mathrm{c} \quad \mathrm{a} \\
& \mathrm{~d} \quad \mathrm{~d} \\
\mathrm{~g} & \mathrm{~h}
\end{array}\right]
$$

Example of cost computation

Example

R	R^{\prime}	
	a	a
a	b	b
b	c	a
c	d	d
d	g	h
$\forall x R(x) \wedge x \neq c \rightarrow R^{\prime}(x, x)$		$\begin{gathered} \text { Predicted } R^{\prime} \\ \text { a a } \end{gathered}$
		b b
		d d

Example of cost computation

Example

R	R^{\prime}	
	a	a
a	b	b
b	c	a
c	d	d
d	g	h
$\forall x R(x) \wedge x \neq c \rightarrow R^{\prime}(x, x)$		Predicted R^{\prime}
$R^{\prime}(c, a)$		a a
		b b
		c a
		d d

Example of cost computation

Example

R	R^{\prime}
a	a
b	a
c	b
d	c
d	a
	d
g	
	g

$\forall x R(x) \wedge x \neq c \rightarrow R^{\prime}(x, x)$

$$
\begin{aligned}
& R^{\prime}(c, a) \\
& R^{\prime}(g, h)
\end{aligned}
$$

Predicted R^{\prime}
a a
b b
c c
d d
g h

Example of cost computation

Example

R	R^{\prime}
a	a
b	a
c	b
d	c
d	a
	d
g	
	g

$$
\begin{aligned}
& \forall x R(x) \wedge x \neq c \rightarrow R^{\prime}(x, x) \\
& \exists y_{1} \exists y_{2} R^{\prime}\left(y_{1}, y_{2}\right) \wedge y_{1}=c \wedge y_{2}=a \\
& \exists y_{1} \exists y_{2} R^{\prime}\left(y_{1}, y_{2}\right) \wedge y_{1}=g \wedge y_{2}=h
\end{aligned}
$$

Predicted R^{\prime}
a a
b b
c c
d d
g h

Example of cost computation

Example

R	R^{\prime}
a	a
b	a
c	b
d	c
d	a
	d
g	
	g

$$
\begin{aligned}
& \forall x R(x) \wedge x \neq c \rightarrow R^{\prime}(x, x) \\
& \exists y_{1} \exists y_{2} R^{\prime}\left(y_{1}, y_{2}\right) \wedge y_{1}=c \wedge y_{2}=a \\
& \exists y_{1} \exists y_{2} R^{\prime}\left(y_{1}, y_{2}\right) \wedge y_{1}=g \wedge y_{2}=h
\end{aligned}
$$

Predicted R^{\prime}
a a
b b
c c
d d
g h

Problems considered

Decision problems of interest:
Cost: Is the cost of a given schema mapping less than K ?
Optimality: Is a given schema mapping optimal?

Problems considered

Decision problems of interest:
Cost: Is the cost of a given schema mapping less than K ?
Optimality: Is a given schema mapping optimal?

Complexity? Algorithms?

Outline

(1) Introduction
(2) TGDs, Cost, Optimality
(3) Results

- Justification
- Complexity Analysis

4. Extensions, Variants
(5) Conclusion

Behavior for simple operators

Consider the elementary operators of the relational algebra:

- Projection
- Intersection
- Selection (conjunction of atomic conditions)
- Cross Product
- Join (on a given attribute)

Theorem
For any elementary operator γ, the tgd naturally associated with γ is optimal with respect to $(I, \gamma(I)$) (or $(\gamma(J), J)$), under some basic assumptions.

Behavior for simple operators

Consider the elementary operators of the relational algebra:

- Projection
- Intersection
- Selection (conjunction of atomic conditions)
- Cross Product
- Join (on a given attribute)

Theorem

For any elementary operator γ, the tgd naturally associated with γ is optimal with respect to $(I, \gamma(I))$ (or $(\gamma(J), J)$), under some basic assumptions.

Examples of naturally associated tgds

Examples

	Condition	I and J	Optimal tgd
Projection	$\pi_{1}(J) \cap \pi_{2}(J)=\varnothing$,	$J=\pi_{1}(I)$	$R(x, y) \rightarrow R^{\prime}(x)$
	$\left\|\pi_{1}(J)\right\| \geqslant 2$	$I=\pi_{1}(J)$	$R(x) \rightarrow \exists y R^{\prime}(x, y)$
	$\left\|\sigma_{\varphi}(I)\right\| \geqslant \frac{\operatorname{size}(\varphi)+2}{3}$	$J=\sigma_{\varphi}(I)$	$R(x) \rightarrow R^{\prime}(x)$
	$\sigma_{\varphi}(J) \neq \varnothing$	$I=\sigma_{\varphi}(J)$	$R(x) \rightarrow R^{\prime}(x)$
Product	$R_{1}^{I} \neq \varnothing, R_{2}^{I} \neq \varnothing$	$J=R_{1}^{I} \times R_{2}^{I}$	$R_{1}(x) \wedge R_{2}(y) \rightarrow R^{\prime}(x, y)$
	$R_{1}^{\prime J} \neq \varnothing, R_{2}^{\prime J} \neq \varnothing$	$I=R_{1}^{\prime J} \times R_{2}^{\prime J}$	$R(x, y) \rightarrow R_{1}^{\prime}(x) \wedge R_{2}^{\prime}(y)$

The Polynomial Hierarchy

P
 NP coNP

polynomial deterministic algorithm polynomial non-deterministic algorithm complement NP
polynomial non-deterministic with Σ_{1}^{P} oracle complement Σ_{2}^{P}
polynomial non-deterministic with Σ_{n}^{P} oracle complement Σ_{n+1}^{P}

The Polynomial Hierarchy

P

$\mathrm{NP}=\Sigma_{1}^{P}$
$\operatorname{coNP}=\Pi_{1}^{P}$

polynomial deterministic algorithm
polynomial non-deterministic algorithm complement NP
polynomial non-deterministic with Σ_{1}^{P} oracle complement Σ_{2}^{P}
polynomial non-deterministic with Σ_{n}^{P} oracle complement Σ_{n+1}^{P}

The Polynomial Hierarchy

polynomial deterministic algorithm polynomial non-deterministic algorithm complement NP
polynomial non-deterministic with Σ_{1}^{P} oracle complement Σ_{2}^{P}
polynomial non-deterministic with Σ_{n}^{P} oracle complement Σ_{n+1}^{P}

The Polynomial Hierarchy

```
P
\(\mathrm{NP}=\Sigma_{1}^{P}\)
\(\operatorname{coNP}=\Pi_{1}^{P}\)
\(\Sigma_{2}^{P}\)
\(\Pi_{2}^{P}\)
\(\Sigma_{n+1}^{P}\)
\(\Pi_{n+1}^{P}\)
```

polynomial deterministic algorithm polynomial non-deterministic algorithm complement NP
polynomial non-deterministic with Σ_{1}^{P} oracle complement Σ_{2}^{P}
polynomial non-deterministic with Σ_{n}^{P} oracle complement Σ_{n+1}^{P}

The Polynomial Hierarchy

```
P
\(\mathrm{NP}=\Sigma_{1}^{P}\)
\(\operatorname{coNP}=\Pi_{1}^{P}\)
\(\Sigma_{2}^{P}\)
\(\Pi_{2}^{P}\)
\(\Sigma_{n+1}^{P}\)
\(\Pi_{n+1}^{P}\)
```

polynomial deterministic algorithm polynomial non-deterministic algorithm complement NP
polynomial non-deterministic with Σ_{1}^{P} oracle complement Σ_{2}^{P}
polynomial non-deterministic with Σ_{n}^{P} oracle complement Σ_{n+1}^{P}

Union of all these classes: $\mathbf{P H} \subseteq$ PSPACE, the polynomial hierarchy.

(Combined) Complexity Results

	$\mathcal{L}_{\operatorname{tgd}}$	$\mathcal{C}_{\text {full }}$
Cost	$\Sigma_{3}^{P}, \Pi_{2}^{P}$-hard	$\Sigma_{2}^{P},\left(\right.$ co ${ }^{\text {NP-hard }}$
Optimality	$\Pi_{4}^{P},(\mathbf{c o})$ NP-hard	$\Pi_{3}^{P},(c o)$ NP-hard

(Combined) Complexity Results

	$\mathcal{L}_{\mathrm{tgd}}$	$\mathcal{L}_{\text {full }}$
Cost	$\Sigma_{3}^{P}, \Pi_{2}^{P}$-hard	$\Sigma_{2}^{P},(\mathbf{c o})$ NP-hard
Optimality	$\Pi_{4}^{P},(\mathbf{c o})$ NP-hard	$\Pi_{3}^{P},(\mathbf{c o})$ NP-hard

(Combined) Complexity Results

	$\mathcal{L}_{\text {tgd }}$	$\mathcal{L}_{\text {full }}$
Cost	$\Sigma_{\mathbf{3}}^{P}, \Pi_{2}^{P}$-hard	$\Sigma_{\mathbf{2}}^{P},(\mathbf{c o})$ NP-hard
Optimality	$\Pi_{\mathbf{4}}^{P},(\mathbf{c o})$ NP-hard	$\Pi_{\mathbf{3}}^{P},(\mathbf{c o})$ NP-hard
	$\mathcal{L}_{\text {acyc }}$	$\mathcal{L}_{\text {facyc }}$
Cost	$\Sigma_{\mathbf{2}}^{P},(\mathbf{c o})$ NP-hard	NP-complete
Optimality	$\Pi_{\mathbf{3}}^{P},(\mathbf{c o})$ NP-hard	$\Pi_{2}^{P},($ co $)$ NP-hard

(Combined) Complexity Results

	$\mathcal{L}_{\mathrm{tgd}}$	$\mathcal{L}_{\text {full }}$
Cost	$\Sigma_{3}^{P}, \Pi_{2}^{P}$-hard	$\Sigma_{2}^{P},($ co $)$ NP-hard
Optimality	$\Pi_{4}^{P},(\mathbf{c o})$ NP-hard	$\Pi_{3}^{P},(\mathrm{co})$ NP-hard
	$\mathcal{L}_{\text {acyc }}$	$\mathcal{L}_{\text {facyc }}$
Cost	$\Sigma_{2}^{P},(\mathbf{c o})$ NP-hard	NP-complete
Optimality	$\Pi_{3}^{P},(\mathbf{c o})$ NP-hard	$\Pi_{2}^{P},($ co $)$ NP-hard

(Combined) Complexity Results

	$\mathcal{L}_{\mathrm{tgd}}$	$\mathcal{L}_{\text {full }}$
Cost	$\Sigma_{3}^{P}, \Pi_{2}^{P}$-hard	$\Sigma_{2}^{P},($ co $)$ NP-hard
Optimality	$\Pi_{4}^{P},(\mathbf{c o})$ NP-hard	$\Pi_{3}^{P},(\mathrm{co})$ NP-hard
	$\mathcal{L}_{\text {acyc }}$	$\mathcal{L}_{\text {facyc }}$
Cost	$\Sigma_{2}^{P},(\mathbf{c o})$ NP-hard	NP-complete
Optimality	$\Pi_{3}^{P},(\mathbf{c o})$ NP-hard	$\Pi_{2}^{P},($ co $)$ NP-hard

Vertex-Cover in r-partite r-uniform hypergraph

Vertex-Cover: find a set of vertices of minimal size that cover all (hyper)edges in a (hyper)graph.

- NP-complete for general (hyper)graphs.
- PTIME for bipartite graphs (Kőnig's theorem).
r-partite: partition of the set of vertices into r sets, with no hyperedge spanning two vertices of the same set.
r-uniform: every hyperedge spans r vertices.

Vertex-Cover in r-partite r-uniform hypergraph

Vertex-Cover: find a set of vertices of minimal size that cover all (hyper)edges in a (hyper)graph.

- NP-complete for general (hyper)graphs.
- PTIME for bipartite graphs (Kőnig's theorem).

Lemma

Vertex-Cover is NP-complete for r-partite r-uniform hypergraphs for $r \geqslant 3$.
r-partite: partition of the set of vertices into r sets, with no hyperedge spanning two vertices of the same set.
r-uniform: every hyperedge spans r vertices.

Encoding of 3-SAT

Cost is NP-hard for $\mathcal{L}_{\text {facyc }}$

Reduction from Vertex-Cover in 3-partite 3-uniform hypergraphs.

Without $x=a$ repairs on the left-hand side of a tgd:

- $R\left(x_{1}, x_{2}, x_{3}\right) \rightarrow R^{\prime}\left(x_{1}\right)$
- Source instance: hypergraph
- Target instance: empty

Cost: size of the tgd plus twice the minimum size of a vertex cover.

With $x=a$ repairs: a little more difficult, but feasible!

Cost is NP-hard for $\mathcal{L}_{\text {facyc }}$

Reduction from Vertex-Cover in 3-partite 3-uniform hypergraphs.

Without $x=a$ repairs on the left-hand side of a tgd:

- $R\left(x_{1}, x_{2}, x_{3}\right) \rightarrow R^{\prime}\left(x_{1}\right)$
- Source instance: hypergraph
- Target instance: empty

With $x=a$ repairs: a little more difficult, but feasible!

Cost is NP-hard for $\mathcal{L}_{\text {facyc }}$

Reduction from Vertex-Cover in 3-partite 3-uniform hypergraphs.

Without $x=a$ repairs on the left-hand side of a tgd:

- $R\left(x_{1}, x_{2}, x_{3}\right) \rightarrow R^{\prime}\left(x_{1}\right)$
- Source instance: hypergraph
- Target instance: empty

Cost: size of the tgd plus twice the minimum size of a vertex cover.

With $x=a$ repairs: a little more difficult, but feasible!

Cost is NP-hard for $\mathcal{L}_{\text {facyc }}$

Reduction from Vertex-Cover in 3-partite 3-uniform hypergraphs.

Without $x=a$ repairs on the left-hand side of a tgd:

- $R\left(x_{1}, x_{2}, x_{3}\right) \rightarrow R^{\prime}\left(x_{1}\right)$
- Source instance: hypergraph
- Target instance: empty

Cost: size of the tgd plus twice the minimum size of a vertex cover.

With $x=a$ repairs: a little more difficult, but feasible!

Outline

(1) Introduction
(2) TGDs, Cost, Optimality
(3) Results

4 Extensions, Variants

- Relational Calculus
- Other Cost Functions
(5) Conclusion

Extension to Relational Calculus

- Definition of repairs can be extended to relational calculus.
- Same definition of cost, optimality.
- Cost is not recursive (but co-r.e.).
- Computability of Optimality: open (!).

Other Cost Functions

Why not counting the number of tuples to add or remove in J ?
because it can be exponential in the size of the schema mapping!

Why not counting the number of tuples to add or remove in I or J ? because selections are not captured!

Other Cost Functions

Why not counting the number of tuples to add or remove in J ?
... because it can be exponential in the size of the schema mapping!

Why not counting the number of tuples to add or remove in I or J ? because selections are not captured!

Other Cost Functions

Why not counting the number of tuples to add or remove in J ?
... because it can be exponential in the size of the schema mapping!

Why not counting the number of tuples to add or remove in I or J ? because selections are not captured!

Other Cost Functions

Why not counting the number of tuples to add or remove in J ?
... because it can be exponential in the size of the schema mapping!

Why not counting the number of tuples to add or remove in I or J ?
... because selections are not captured!

Outline

(1) Introduction
(2) TGDs, Cost, Optimality
(3) Results
(4) Extensions, Variants
(5) Conclusion

- Summary

In summary...

- Formal framework for the discovery of symbolic relations between two data sources.
- High complexity (up to fourth level of PH).

In summary...

- Formal framework for the discovery of symbolic relations between two data sources.
- High complexity (up to fourth level of PH).

- Link with Inductive Logic Programming?
- Heuristics?
- Approximation algorithms?
- Generalization of acyclicity?

Merci.

