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Motivation

Context
Multiple data sources containing information about similar
entities, with some redundancy (e.g., sources of the deep Web).

Several different ways to present this information, i.e., several
different schemata.

No a priori information about (some of) these schemata.

How to know the relationships between these schemata, by just looking
at the instances?

Other way to see this problem: Match operator on schema mappings,
in the setting of data exchange.
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Problem definition

Problem
Given two (relational) database instances I and J with different
schemata, what is the optimal description � of J knowing I (with �

a finite set of formulas in some logical language)?

What does optimal implies:

Conciseness of description.

Validity of facts predicted by I and �.

All facts of J explained by I and �.

(Note the asymmetry between I and J ; context of data exchange
where J is computed from I and �).
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Source-to-target tuple-generating dependencies

Definition (Source-to-target tgd)
First-order formula of the form:

8x '(x )! 9y  (x ; y)

with:

' conjunction of source relation atoms;

 conjunction of target relation atoms;

all variables of x bound in '.

Example

8x18x2 R1(x1; x2) ^R2(x2)! 9y R0(x1; y)
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Particular tgds

Two ways of having simpler tgds:

Disallow existential quantifiers on the right hand-side: full tgds.

Disallow cycles on both left- and right-hand sides: acyclic tgds.
(Classical notion of acyclicity on hypergraphs extending the basic notion
of acyclicity on graphs.)

Examples
8x18x28x3 R1(x1; x2) ^R2(x2; x3) ^R3(x3; x1)! R0(x1) is cyclic (and full).
8x18x28x3 R1(x1; x2) ^R2(x2; x3)! R0(x1) is acyclic (and full).

4 different languages:

Ltgd: arbitrary source-to-target tgds;

Lfull: full tgds;

Lacyc: acyclic tgds;

Lfacyc: full and acyclic tgds.



Introduction TGDs, Cost, Optimality Results Extensions, Variants Conclusion

Particular tgds

Two ways of having simpler tgds:

Disallow existential quantifiers on the right hand-side: full tgds.

Disallow cycles on both left- and right-hand sides: acyclic tgds.
(Classical notion of acyclicity on hypergraphs extending the basic notion
of acyclicity on graphs.)

Examples
8x18x28x3 R1(x1; x2) ^R2(x2; x3) ^R3(x3; x1)! R0(x1) is cyclic (and full).
8x18x28x3 R1(x1; x2) ^R2(x2; x3)! R0(x1) is acyclic (and full).

4 different languages:

Ltgd: arbitrary source-to-target tgds;

Lfull: full tgds;

Lacyc: acyclic tgds;

Lfacyc: full and acyclic tgds.



Introduction TGDs, Cost, Optimality Results Extensions, Variants Conclusion

Particular tgds

Two ways of having simpler tgds:

Disallow existential quantifiers on the right hand-side: full tgds.

Disallow cycles on both left- and right-hand sides: acyclic tgds.
(Classical notion of acyclicity on hypergraphs extending the basic notion
of acyclicity on graphs.)

Examples
8x18x28x3 R1(x1; x2) ^R2(x2; x3) ^R3(x3; x1)! R0(x1) is cyclic (and full).
8x18x28x3 R1(x1; x2) ^R2(x2; x3)! R0(x1) is acyclic (and full).

4 different languages:

Ltgd: arbitrary source-to-target tgds;

Lfull: full tgds;

Lacyc: acyclic tgds;

Lfacyc: full and acyclic tgds.



Introduction TGDs, Cost, Optimality Results Extensions, Variants Conclusion

How to define the pertinence of a set of tgds?

Example

R R0

a
b
c
d

a a
b b
c a
d d
g h

�0 = ?

�1 = f8x R(x )! R0(x ; x )g

�2 = f8x R(x )! 9y R0(x ; y)g

�3 = f8x18x2 R(x1) ^R(x2)! R0(x1; x2)g

�4 = f9y19y2 R0(y1; y2)g
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Idea

Size of a formula: number of occurrences of variables and
constants.

Cost of a schema mapping �: Size of the minimum repair of �
that is valid and explains all facts of J .

Types of repairs considered:

“fix” a universal quantifier by adding conditions (x = a or x 6= a);
“fix” an existential quantifier by giving corresponding constants
(� (x)! y = a with � a conjunction of conditions on universally
quantified variables);
add ground facts to the target instance.

The problem is then to find a schema mapping of minimal cost.
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Example of cost computation

Example

R R0

a
b
c
d

a a
b b
c a
d d
g h

8x R(x )! R0(x ; x )

Cost: 17

Predicted R0

a a
b b
c c
d d
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Example

R R0

a
b
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Example of cost computation

Example

R R0

a
b
c
d

a a
b b
c a
d d
g h

8x R(x ) ^ x 6= c ! R0(x ; x )
R0(c; a)

R0(g ; h)

Cost: 17

Predicted R0

a a
b b
c a
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Example of cost computation

Example

R R0

a
b
c
d

a a
b b
c a
d d
g h

8x R(x ) ^ x 6= c ! R0(x ; x )
R0(c; a)
R0(g ; h)

Cost: 17

Predicted R0

a a
b b
c c
d d
g h



Introduction TGDs, Cost, Optimality Results Extensions, Variants Conclusion

Example of cost computation

Example

R R0

a
b
c
d

a a
b b
c a
d d
g h
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Problems considered

Decision problems of interest:

Cost: Is the cost of a given schema mapping less than K ?

Optimality: Is a given schema mapping optimal?

Complexity? Algorithms?



Introduction TGDs, Cost, Optimality Results Extensions, Variants Conclusion

Problems considered

Decision problems of interest:

Cost: Is the cost of a given schema mapping less than K ?

Optimality: Is a given schema mapping optimal?

Complexity? Algorithms?



Introduction TGDs, Cost, Optimality Results Extensions, Variants Conclusion

Outline

1 Introduction

2 TGDs, Cost, Optimality

3 Results
Justification
Complexity Analysis

4 Extensions, Variants

5 Conclusion



Introduction TGDs, Cost, Optimality Results Extensions, Variants Conclusion

Behavior for simple operators

Consider the elementary operators of the relational algebra:

Projection

Intersection

Selection (conjunction of atomic conditions)

Cross Product

Join (on a given attribute)

Theorem
For any elementary operator 
, the tgd naturally associated with 


is optimal with respect to (I ; 
(I )) (or (
(J );J )), under some basic
assumptions.
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Examples of naturally associated tgds

Examples

Condition I and J Optimal tgd

Projection
I 6= ? J = �1(I ) R(x ; y)! R0(x )

�1(J ) \ �2(J ) = ?,
j�1(J )j > 2

I = �1(J ) R(x )! 9y R0(x ; y)

Selection
j�'(I )j > size(')+2

3 J = �'(I ) R(x )! R0(x )
�'(J ) 6= ? I = �'(J ) R(x )! R0(x )

Product
RI

1 6= ?, RI
2 6= ? J = RI

1 �RI
2 R1(x ) ^R2(y)! R0(x ; y)

R0

1
J
6= ?, R0

2
J
6= ? I = R0

1
J
�R0

2
J R(x ; y)! R0

1(x ) ^R0

2(y)
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The Polynomial Hierarchy

P polynomial deterministic algorithm
NP

=�P
1

polynomial non-deterministic algorithm
coNP

=�P
1

complement NP

�P
2 polynomial non-deterministic with �P

1 oracle
�P

2 complement �P
2

�P
n+1 polynomial non-deterministic with �P

n oracle
�P

n+1 complement �P
n+1

Union of all these classes: PH � PSPACE, the polynomial hierarchy.
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(Combined) Complexity Results

Ltgd Lfull

Cost �P
3 , �P

2 -hard �P
2 , (co)NP-hard

Optimality �P
4 , (co)NP-hard �P

3 , (co)NP-hard

Lacyc Lfacyc

Cost �P
2 , (co)NP-hard NP-complete

Optimality �P
3 , (co)NP-hard �P

2 , (co)NP-hard
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Vertex-Cover in r -partite r -uniform hypergraph

Vertex-Cover: find a set of vertices of minimal size that cover all
(hyper)edges in a (hyper)graph.

NP-complete for general (hyper)graphs.

PTIME for bipartite graphs (Kőnig’s theorem).

Lemma
Vertex-Cover is NP-complete for r-partite r-uniform hypergraphs
for r > 3.

r -partite: partition of the set of vertices into r sets, with no
hyperedge spanning two vertices of the same set.

r -uniform: every hyperedge spans r vertices.
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Encoding of 3-SAT

� �

�

��

�

x1

�x1

x2

�x2

x3

�x3

� �

�

��

�

y1

�y1

y2

�y2

y3

�y3

��

�

� �

�

z1

�z1
z2

�z2

z3

�z3

:z _ x _ y
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Cost is NP-hard for Lfacyc

Reduction from Vertex-Cover in 3-partite 3-uniform hypergraphs.

Without x = a repairs on the left-hand side of a tgd:

R(x1; x2; x3)! R0(x1)

Source instance: hypergraph

Target instance: empty

Cost: size of the tgd plus twice the minimum size of a vertex cover.

With x = a repairs: a little more difficult, but feasible!
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Extension to Relational Calculus

Definition of repairs can be extended to relational calculus.

Same definition of cost, optimality.

Cost is not recursive (but co-r.e.).

Computability of Optimality: open (!).
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Other Cost Functions

Why not counting the number of tuples to add or remove in J?
. . . because it can be exponential in the size of the schema mapping!

Why not counting the number of tuples to add or remove in I or J?
. . . because selections are not captured!
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In summary...

Formal framework for the discovery of symbolic relations between
two data sources.

High complexity (up to fourth level of PH).

Link with Inductive Logic
Programming?

Heuristics?

Approximation algorithms?

Generalization of acyclicity?
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Merci.
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