
Preliminaries Provenance Applications Implementation Conclusion

Provenance in Databases
Principles and Applications

Pierre Senellart

ÉCOL E NORMAL E
S U P É R I E U R E

20 September 2019
Reasoning Web Summer School 2019

2/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance management
� Data management all about query evaluation

� What if we want something more than the query result?
� Where does the result come from?
� Why was this result obtained?
� How was the result produced?
� What is the probability of the result?
� How many times was the result obtained?
� How would the result change if part of the input data was

missing?
� What is the minimal security clearance I need to see the

result?
� What is the most economical way of obtaining the result?
� How can a result be explained in layman terms?

� Provenance management: along with query evaluation,
record additional bookkeeping information allowing to
answer the questions above

2/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance management
� Data management all about query evaluation
� What if we want something more than the query result?

� Where does the result come from?
� Why was this result obtained?
� How was the result produced?
� What is the probability of the result?
� How many times was the result obtained?
� How would the result change if part of the input data was

missing?
� What is the minimal security clearance I need to see the

result?
� What is the most economical way of obtaining the result?
� How can a result be explained in layman terms?

� Provenance management: along with query evaluation,
record additional bookkeeping information allowing to
answer the questions above

2/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance management
� Data management all about query evaluation
� What if we want something more than the query result?

� Where does the result come from?
� Why was this result obtained?
� How was the result produced?
� What is the probability of the result?
� How many times was the result obtained?
� How would the result change if part of the input data was

missing?
� What is the minimal security clearance I need to see the

result?
� What is the most economical way of obtaining the result?
� How can a result be explained in layman terms?

� Provenance management: along with query evaluation,
record additional bookkeeping information allowing to
answer the questions above

3/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries
Data management
The relational model
The relational algebra
Other data models

Provenance

Applications

Implementing Provenance Support

Conclusion

4/88

Preliminaries Provenance Applications Implementation Conclusion

Data management

Numerous applications (standalone software, Web sites, etc.)
need to manage data:
� Structure data useful to the application
� Store them in a persistent manner (data retained even

when the application is not running)
� Efficiently query information within large data volumes
� Update data without violating some structural constraints
� Enable data access and updates by multiple users, possibly

concurrently

Often, desirable to access the same data from several distinct
applications, from distinct computers.

5/88

Preliminaries Provenance Applications Implementation Conclusion

Role of a DBMS

Database Management System
Software that simplifies the design of applications that handle
data, by providing a unified access to the functionalities
required for data management, whatever the application.

Database
Collection of data (specific to a given application) managed by
a DBMS

6/88

Preliminaries Provenance Applications Implementation Conclusion

Major types of DBMSs
Relational (RDBMS). Tables, complex queries (SQL), rich

features
XML. Trees, complex queries (XQuery),

features similar to RDBMS
Graph/Triples. Graph data, complex queries expressing

graph navigation
Objects. Complex data model, inspired by OOP

Documents. Complex data, organized in documents,
relatively simple queries and features

Key–Value. Very basic data model, focus on
performance

Column Stores. Data model in between key–value and
RDBMS; focus on iteration and
aggregation on columns

N
oS

Q
L

6/88

Preliminaries Provenance Applications Implementation Conclusion

Major types of DBMSs
Relational (RDBMS). Tables, complex queries (SQL), rich

features
XML. Trees, complex queries (XQuery),

features similar to RDBMS
Graph/Triples. Graph data, complex queries expressing

graph navigation
Objects. Complex data model, inspired by OOP

Documents. Complex data, organized in documents,
relatively simple queries and features

Key–Value. Very basic data model, focus on
performance

Column Stores. Data model in between key–value and
RDBMS; focus on iteration and
aggregation on columns

N
oS

Q
L

7/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries
Data management
The relational model
The relational algebra
Other data models

Provenance

Applications

Implementing Provenance Support

Conclusion

8/88

Preliminaries Provenance Applications Implementation Conclusion

Classical relational DBMSs

� Based on the relational model: decomposition of data into
relations (i.e., tables)

� A standard query language: SQL
� Data stored on disk
� Relations (tables) stored line after line
� Centralized system, with limited distribution possibilities

9/88

Preliminaries Provenance Applications Implementation Conclusion

Relational schema
We fix countably infinite sets:
� L of labels
� V of values
� T of types, s.t., 8� 2 T ; � � V

Definition
A relation schema (of arity n) is an n-tuple (A1; : : : ; An) where
each Ai (called an attribute) is a pair (Li; �i) with Li 2 L,
�i 2 T and such that all Li are distinct

Definition
A database schema is defined by a finite set of labels L � L

(relation names), each label of L being mapped to a relation
schema.

10/88

Preliminaries Provenance Applications Implementation Conclusion

Example database schema
� Universe:

� L the set of alphanumeric character strings starting with a
letter

� V the set of finite sequences of bits
� T is formed of types such as INTEGER (representation as a

sequence of bits of integers between �231 and 231 � 1), REAL
(representation of floating-point numbers following IEEE
754), TEXT (UTF-8 representation of character strings),
DATE (ISO8601 representation of dates), etc.

� Database schema formed of 2 relation names, Guest and
Reservation

� Guest: ((id; INTEGER); (name; TEXT); (email; TEXT))
� Reservation:
((id; INTEGER); (guest; INTEGER); (room; INTEGER),
(arrival; DATE); (nights; INTEGER))

11/88

Preliminaries Provenance Applications Implementation Conclusion

Database

Definition
An instance of a relation schema ((L1; �1); : : : ; (Ln; �n)) (also
called a relation on this schema) is a finite set ft1; : : : ; tkg of
tuples of the form tj = (vj1; : : : ; vjn) with 8j8i vji 2 �i.

Definition
An instance of a database schema (or, simply, a database on
this schema) is a function that maps each relation name to an
instance of the corresponding relation schema.

Note: Relation is used somewhat ambiguously to talk about a
relation schema or an instance of a relation schema.

12/88

Preliminaries Provenance Applications Implementation Conclusion

Example
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

13/88

Preliminaries Provenance Applications Implementation Conclusion

Variant: bag semantics

� A relation instance is defined as a (finite) set of tuples.
One can also consider a bag semantics of the relational
model, where a relation instance is a multiset of tuples.

� This is what best matches how RDBMSs work. . .
� . . . but most of relational database theory has been

established for the set semantics, more convenient to work
with

� We will mostly discuss the set semantics in this lecture

14/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries
Data management
The relational model
The relational algebra
Other data models

Provenance

Applications

Implementing Provenance Support

Conclusion

15/88

Preliminaries Provenance Applications Implementation Conclusion

The relational algebra
� Algebraic language to express queries
� A relational algebra expression produces a new relation

from the database relations
� Each operator takes 0, 1, or 2 subexpressions
� Main operators:

Op. Arity Description Condition

R 0 Relation name R 2 L

�A!B 1 Renaming A;B 2 L

�A1:::An 1 Projection A1 : : : An 2 L

�' 1 Selection ' formula
� 2 Cross product
[2 Union
n 2 Difference
./' 2 Join ' formula

16/88

Preliminaries Provenance Applications Implementation Conclusion

Relation name
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: Guest
Result:

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

17/88

Preliminaries Provenance Applications Implementation Conclusion

Renaming
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: �id!guest(Guest)
Result:

guest name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

18/88

Preliminaries Provenance Applications Implementation Conclusion

Projection
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: �email;id(Guest)
Result:

email id

john.smith@gmail.com 1
alice@black.name 2
john.smith@ens.fr 3

19/88

Preliminaries Provenance Applications Implementation Conclusion

Selection
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: �arrival>2017-01-12^guest=2(Reservation)
Result:

id guest room arrival nights

4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

The formula used in the selection can be any Boolean
combination of comparisons of attributes to attributes or
constants.

20/88

Preliminaries Provenance Applications Implementation Conclusion

Cross product
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: �id(Guest)� �name(Guest)
Result:

id name

1 Alice Black
2 Alice Black
3 Alice Black
1 John Smith
2 John Smith
3 John Smith

21/88

Preliminaries Provenance Applications Implementation Conclusion

Union
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: �room(�guest=2(Reservation)) [
�room(�arrival=2017-01-15(Reservation))

Result:
room

107
302
504

This simple union could have been written
�room(�guest=2_arrival=2017-01-15(Reservation)). Not always possible.

21/88

Preliminaries Provenance Applications Implementation Conclusion

Union
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: �room(�guest=2(Reservation)) [
�room(�arrival=2017-01-15(Reservation))

Result:
room

107
302
504

This simple union could have been written
�room(�guest=2_arrival=2017-01-15(Reservation)). Not always possible.

22/88

Preliminaries Provenance Applications Implementation Conclusion

Difference
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: �room(�guest=2(Reservation)) n
�room(�arrival=2017-01-15(Reservation))

Result:
room

107

This simple difference could have been written
�room(�guest=2^arrival6=2017-01-15(Reservation)). Not always
possible.

22/88

Preliminaries Provenance Applications Implementation Conclusion

Difference
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: �room(�guest=2(Reservation)) n
�room(�arrival=2017-01-15(Reservation))

Result:
room

107

This simple difference could have been written
�room(�guest=2^arrival6=2017-01-15(Reservation)). Not always
possible.

23/88

Preliminaries Provenance Applications Implementation Conclusion

Join
Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2017-01-01 5
2 2 107 2017-01-10 3
3 3 302 2017-01-15 6
4 2 504 2017-01-15 2
5 2 107 2017-01-30 1

Expression: Reservation ./guest=id Guest
Result:

id guest room arrival nights name email

1 1 504 2017-01-01 5 John Smith john.smith@gmail.com
2 2 107 2017-01-10 3 Alice Black alice@black.name
3 3 302 2017-01-15 6 John Smith john.smith@ens.fr
4 2 504 2017-01-15 2 Alice Black alice@black.name
5 2 107 2017-01-30 1 Alice Black alice@black.name

The formula used in the join can be any Boolean combination
of comparisons of attributes of the table on the left to
attributes of the table on the right.

24/88

Preliminaries Provenance Applications Implementation Conclusion

Note on the join
� The join is not an elementary operator of the relational

algebra (but it is very useful)
� It can be seen as a combination of renaming, cross product,

selection, projection
� Thus:

Reservation ./guest=id Guest

� �id;guest;room;arrival;nights;name;email(

�guest=temp(Reservation� �id!temp(Guest)))

� If R and S have for attributes A and B, we note R ./ S the
natural join of R and S, where the join formula isV
A2A\B A = A.

25/88

Preliminaries Provenance Applications Implementation Conclusion

Bag semantics

In bag semantics (what is actually used by RDBMS):

� All operations return multisets
� In particular, projection and union can introduce multisets

even when initial relations are sets

26/88

Preliminaries Provenance Applications Implementation Conclusion

Extension: Aggregation
� Various extensions have been proposed to the relational

algebra to add additional features
� In particular, aggregation and grouping [Klug, 1982, Libkin,

2003] of results
� With a syntax inspired from [Libkin, 2003]:

�avg>3(

avg
room[�x:avg(x)](�room;nights(Reservation)))

computes the average number of nights per reservation for
each room having an average greater than 3

room avg

302 6
504 3.5

27/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries
Data management
The relational model
The relational algebra
Other data models

Provenance

Applications

Implementing Provenance Support

Conclusion

28/88

Preliminaries Provenance Applications Implementation Conclusion

NoSQL

� No SQL or Not Only SQL
� DBMSs with other trade-offs than those made by classical

systems
� Very diversified ecosystem
� Desiderata: different data model, transparent scaling up,

extreme performances
� Features abandoned: strong concurrency control and

consistency, (possibly) complex queries
� In this lecture: we only care about systems allowing

complex queries, yield richest provenance notions

29/88

Preliminaries Provenance Applications Implementation Conclusion

Systems with a different data model
Complex queries, non-relational data model

Type Organization Queries Examples of systems

XML
Treelike, hierarchical
data

XQuery

Object
Complex data, with
properties and meth-
ods

OQL, VQL

Graph
Graph with vertices,
edges, labels

Cypher, Gremlin

Triples
RDF triples from the
Semantic Web

SPARQL

29/88

Preliminaries Provenance Applications Implementation Conclusion

Systems with a different data model
Complex queries, non-relational data model

Type Organization Queries Examples of systems

XML
Treelike, hierarchical
data

XQuery

Object
Complex data, with
properties and meth-
ods

OQL, VQL

Graph
Graph with vertices,
edges, labels

Cypher, Gremlin

Triples
RDF triples from the
Semantic Web

SPARQL

29/88

Preliminaries Provenance Applications Implementation Conclusion

Systems with a different data model
Complex queries, non-relational data model

Type Organization Queries Examples of systems

XML
Treelike, hierarchical
data

XQuery

Object
Complex data, with
properties and meth-
ods

OQL, VQL

Graph
Graph with vertices,
edges, labels

Cypher, Gremlin

Triples
RDF triples from the
Semantic Web

SPARQL

29/88

Preliminaries Provenance Applications Implementation Conclusion

Systems with a different data model
Complex queries, non-relational data model

Type Organization Queries Examples of systems

XML
Treelike, hierarchical
data

XQuery

Object
Complex data, with
properties and meth-
ods

OQL, VQL

Graph
Graph with vertices,
edges, labels

Cypher, Gremlin

Triples
RDF triples from the
Semantic Web

SPARQL

29/88

Preliminaries Provenance Applications Implementation Conclusion

Systems with a different data model
Complex queries, non-relational data model

Type Organization Queries Examples of systems

XML
Treelike, hierarchical
data

XQuery

Object
Complex data, with
properties and meth-
ods

OQL, VQL

Graph
Graph with vertices,
edges, labels

Cypher, Gremlin

Triples
RDF triples from the
Semantic Web

SPARQL

30/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance
Preliminaries
Boolean provenance
Semiring provenance
And beyond. . .

Applications

Implementing Provenance Support

Conclusion

31/88

Preliminaries Provenance Applications Implementation Conclusion

Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

31/88

Preliminaries Provenance Applications Implementation Conclusion

Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

31/88

Preliminaries Provenance Applications Implementation Conclusion

Data model

� Relational data model: data decomposed into relations,
with labeled attributes. . .

� . . . with an extra provenance annotation for each tuple
(think of it first as a tuple id)

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

32/88

Preliminaries Provenance Applications Implementation Conclusion

Relations and databases

Formally:
� A relational schema R is a finite sequence of distinct

attribute names; the arity of R is jRj
� A database schema is a mapping from relation names to

relational schemas, with finite support
� A tuple over relation schema R is a mapping from R to

data values; each tuple comes with a provenance annotation
� A relation instance (or relation) over R is a finite set of

tuples over R
� A database instance (or database) over database schema D

is a mapping from the support of D mapping each relation
name R to a relation instance over D(R)

33/88

Preliminaries Provenance Applications Implementation Conclusion

Queries

� A query is an arbitrary function that maps databases over
a fixed database schema D to relations over some relational
schema R

� The query does not consider or produce any provenance
annotations; we will give semantics for the provenance
annotations of the output, based on that of the input

� In practice, one often restricts to specific query languages:
� Monadic-Second Order logic (MSO)
� First-Order logic (FO) or the relational algebra
� SQL with aggregate functions
� etc.

34/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance
Preliminaries
Boolean provenance
Semiring provenance
And beyond. . .

Applications

Implementing Provenance Support

Conclusion

35/88

Preliminaries Provenance Applications Implementation Conclusion

Boolean provenance [Imieliński and Lipski, 1984]

� X = fx1; x2; : : : ; xng finite set of Boolean events
� Provenance annotation: Boolean function over X , i.e., a

function of the form: (X ! f?;>g)! f?;>g

� Interpretation: possible-world semantics
� every valuation � : X ! f?;>g denotes a possible world of

the database
� the provenance of a tuple on � evaluates to ? or >

depending whether this tuple exists in that possible world
� for example, if every tuple of a database is annotated with

the indicator function of a distinct Boolean event, the set of
possible worlds is the set of all subdatabases

36/88

Preliminaries Provenance Applications Implementation Conclusion

Example of possible worlds

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

�:
t1 t2 t3 t4 t5 t6 t7

> > > > > > >

36/88

Preliminaries Provenance Applications Implementation Conclusion

Example of possible worlds

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

�:
t1 t2 t3 t4 t5 t6 t7

> ? > ? > ? >

37/88

Preliminaries Provenance Applications Implementation Conclusion

Boolean provenance of query results

� �(D): the subdatabase of D where all tuples whose
provenance annotation evaluates to ? by � are removed

� The Boolean provenance provq;D(t) of tuple t 2 q(D) is the
function:

� 7!

8<
:
> if t 2 q(�(D))

? otherwise

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

New York t1 _ t2

Paris t3 _ t5 _ t6

Berlin t4 _ t7

38/88

Preliminaries Provenance Applications Implementation Conclusion

What now?

� How to compute Boolean provenance for practical query
languages? What complexity?

� What can we do with provenance?
� How should we represent provenance annotations?
� How can we implement support for provenance

management in a relational database management system?

39/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance
Preliminaries
Boolean provenance
Semiring provenance
And beyond. . .

Applications

Implementing Provenance Support

Conclusion

40/88

Preliminaries Provenance Applications Implementation Conclusion

Commutative semiring (K; 0; 1;�;
)

� Set K with distinguished elements 0, 1
� � associative, commutative operator, with identity 0K :

� a� (b� c) = (a� b)� c

� a� b = b� a

� a� 0 = 0� a = a

�
 associative, commutative operator, with identity 1K :
� a
 (b
 c) = (a
 b)
 c

� a
 b = b
 a

� a
 1 = 1
 a = a

�
 distributes over �:

a
 (b� c) = (a
 b)� (a
 c)

� 0 is annihilating for
:

a
 0 = 0
 a = 0

41/88

Preliminaries Provenance Applications Implementation Conclusion

Example semirings

� (N; 0; 1;+;�): counting semiring
� (f?;>g;?;>;_;^): Boolean semiring
� (funclassified; restricted; confidential; secret; top secretg;
top secret;unclassified;min;max): security semiring

� (N [f1g;1; 0;min;+): tropical semiring
� (fBoolean functions over Xg;?;>;_;^): semiring of

Boolean functions over X
� (N[X]; 0; 1;+;�): semiring of integer-valued polynomials

with variables in X (also called How-semiring or universal
semiring, see further)

� (P(P(X)); ;; f;g;[;d): Why-semiring over X
(A dB := fa [b j a 2 A; b 2 Bg)

42/88

Preliminaries Provenance Applications Implementation Conclusion

Semiring provenance [Green et al., 2007]

� We fix a semiring (K; 0;1;�;
)

� We assume provenance annotations are in K

� We consider a query q from the positive relational algebra
(selection, projection, renaming, cross product, union; joins
can be simulated with renaming, cross product, selection,
projection)

� We define a semantics for the provenance of a tuple
t 2 q(D) inductively on the structure of q

43/88

Preliminaries Provenance Applications Implementation Conclusion

Selection, renaming
Provenance annotations of selected tuples are unchanged

Example (�name!n(�city=“New York”(R)))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

n position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

44/88

Preliminaries Provenance Applications Implementation Conclusion

Projection
Provenance annotations of identical, merged, tuples are �-ed

Example (�city(R))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

New York t1 � t2

Paris t3 � t5 � t6

Berlin t4 � t7

45/88

Preliminaries Provenance Applications Implementation Conclusion

Union
Provenance annotations of identical, merged, tuples are �-ed

Example
�city(�ends-with(position;“agent”)(R)) [�city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

Paris t3 � t5

Berlin t4 � t7

46/88

Preliminaries Provenance Applications Implementation Conclusion

Cross product
Provenance annotations of combined tuples are
-ed

Example
�city(�ends-with(position;“agent”)(R)) on �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

Paris t3
 t5

Berlin t4
 t7

47/88

Preliminaries Provenance Applications Implementation Conclusion

What can we do with it?

counting semiring: count the number of times a tuple can be
derived, multiset semantics

Boolean semiring: determines if a tuple exists when a
subdatabase is selected

security semiring: determines the minimum clearance level
required to get a tuple as a result

tropical semiring: minimum-weight way of deriving a tuple
(think shortest path in a graph)

Boolean functions: Boolean provenance, as previously defined

integer polynomials: universal provenance, see further

Why-semiring: Why-provenance [Buneman et al., 2001], set of
combinations of tuples needed for a tuple to exist

48/88

Preliminaries Provenance Applications Implementation Conclusion

Example of security provenance

�city(�name<name2(�name;city(R) on �name!name2(�name;city(R))))

name position city prov

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

city prov

New York restricted
Paris confidential
Berlin secret

49/88

Preliminaries Provenance Applications Implementation Conclusion

Notes [Green et al., 2007]

� Computing provenance has a PTIME data complexity
overhead

� Semiring homomorphisms commute with provenance
computation: if there is a homomorphism from K to K 0,
then one can compute the provenance in K, apply the
homomorphism, and obtain the same result as when
computing provenance in K 0

� The integer polynomial semiring is universal: there is a
unique homomorphism to any other commutative semiring
that respects a given valuation of the variables

� This means all computations can be performed in the
universal semiring, and homomorphisms applied next

� Two equivalent queries can have two different provenance
annotations on the same database, in some semirings

50/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance
Preliminaries
Boolean provenance
Semiring provenance
And beyond. . .

Applications

Implementing Provenance Support

Conclusion

51/88

Preliminaries Provenance Applications Implementation Conclusion

Semirings with monus [Amer, 1984, Geerts and Poggi, 2010]

� Some semirings can be equipped with a 	 verifying:
� a� (b	 a) = b� (a	 b)
� (a	 b)	 c = a	 (b+ c)
� a	 a = 0	 a = 0

� Boolean function semiring with ^:, Why-semiring with n,
counting semiring with truncated difference. . .

� Most natural semirings (but not all semirings [Amarilli and
Monet, 2016]!) can be extended into semirings with monus

� Sometimes strange things happen [Amsterdamer et al.,
2011a]: e.g,
 does not always distribute over 	

� Allows supporting full relational algebra with the n
operator, still PTIME

� Semantics for Boolean function semiring coincides with
that of Boolean provenance

52/88

Preliminaries Provenance Applications Implementation Conclusion

Difference
Provenance annotations of diff-ed tuples are 	-ed

Example
�city(�ends-with(position;“agent”)(R)) n �city(�position=“Analyst”(R))

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

city prov

Paris t5 	 t3

Berlin t4 	 t7

53/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance for aggregates
[Amsterdamer et al., 2011b, Fink et al., 2012]

� Trickier to define provenance for queries with aggregation,
even in the Boolean case

� One can construct a K-semimodule K �M for each monoid
aggregate M over a provenance database with a semiring
in K

� Data values become elements of the semimodule

Example (count(�name(�city=“Paris”(R)))

t3 � 1 + t5 � 1 + t6 � 1

54/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance in XML databases
[Foster et al., 2008]

Data: Trees (with different kinds of nodes, with data
values on leaves. . .)

Queries: XPath, XQuery, expressing in particular
tree-pattern queries

Provenance annotations: on nodes of the tree; a node “inherits”
annotations of its ancestors

Boolean and semiring provenance extend quite naturally to this
setting, cf. works on Probabilistic XML [Abiteboul et al., 2009]
and Annotated XML [Foster et al., 2008].

55/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance in graph databases
[Ramusat et al., 2018]

Data: Graphs (with properties on nodes, edges. . .)

Queries: Graph query languages (such as Cypher),
especially Regular Path Queries

Provenance annotations: on nodes or edges of the graphs

Semiring provenance extends to this setting, but queries
inherently recursive, so need for technical conditions on
semiring (e.g., !-continuity [Green et al., 2007], absorptivity
[Deutch et al., 2014], existence of a ? operator [Ramusat et al.,
2018]) for provenance to be definable and for specific algorithms.

56/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance in triple stores
[Damásio et al., 2012]

Data: Triples (subject, predicate, object) in an open
world

Queries: SPARQL (including negation capabilities, e.g.,
optionality)

Provenance annotations: on triples

Provenance definition extends, but need for negation support,
so m-semiring provenance; additional axioms need to be
satisfied for compatibility with SPARQL semantics [Geerts et al.,
2016]

57/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance

Applications
Probabilistic databases
Views
Explanation

Implementing Provenance Support

Conclusion

58/88

Preliminaries Provenance Applications Implementation Conclusion

Application: Probabilistic databases
[Green and Tannen, 2006, Suciu et al., 2011]

� Tuple-independent database: each tuple t in a database is
annotated with independent probability Pr(t) of existing

� Probability of a possible world D0 � D:

Pr(D0) =
Q
t2D0 Pr(t)�

Q
t2D0nD(1� Pr(t0))

� Probability of a tuple for a query q over D:

Pr(t 2 q(D)) =
P

D0�D
t2q(D0)

Pr(D0)

� If Pr(xi) := Pr(ti) where xi is the provenance annotation of
tuple ti then Pr(t 2 q(D)) = Pr(provq;D(t))

� Computing the probability of a query in probabilistic
databases thus amounts to computing Boolean provenance,
and then computing the probability of a Boolean function

� Also works for more complex probabilistic models

59/88

Preliminaries Provenance Applications Implementation Conclusion

Example of probability computation
name position city classification prov prob

John Director New York unclassified t1 0.5
Paul Janitor New York restricted t2 0.7
Dave Analyst Paris confidential t3 0.3
Ellen Field agent Berlin secret t4 0.2
Magdalen Double agent Paris top secret t5 1.0
Nancy HR director Paris restricted t6 0.8
Susan Analyst Berlin secret t7 0.2

city prov

New York t1 _ t2

Paris t3 _ t5 _ t6

Berlin t4 _ t7

59/88

Preliminaries Provenance Applications Implementation Conclusion

Example of probability computation
name position city classification prov prob

John Director New York unclassified t1 0.5
Paul Janitor New York restricted t2 0.7
Dave Analyst Paris confidential t3 0.3
Ellen Field agent Berlin secret t4 0.2
Magdalen Double agent Paris top secret t5 1.0
Nancy HR director Paris restricted t6 0.8
Susan Analyst Berlin secret t7 0.2

city prov prob

New York t1 _ t2 1� (1� 0:5)� (1� 0:7) = 0:85

Paris t3 _ t5 _ t6 1.00
Berlin t4 _ t7 1� (1� 0:2)� (1� 0:2) = 0:36

60/88

Preliminaries Provenance Applications Implementation Conclusion

Application: Probabilistic XML

A

B C

D

w1;:w2

w2

Event Prob.

w1 0:8

w2 0:7

semantics

A

C

D

p2 = 0:70

A

C

p1 = 0:06

A

B C

p3 = 0:24

60/88

Preliminaries Provenance Applications Implementation Conclusion

Application: Probabilistic XML

A

B C

D

w1;:w2

w2

Event Prob.

w1 0:8

w2 0:7

semantics

A

C

D

p2 = 0:70

A

C

p1 = 0:06

A

B C

p3 = 0:24

61/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance

Applications
Probabilistic databases
Views
Explanation

Implementing Provenance Support

Conclusion

62/88

Preliminaries Provenance Applications Implementation Conclusion

Views

� Views are named queries
� They are used in the same way as tables within other

queries
� Semantics: one replaces the view by the result of the

evaluation of the corresponding query

63/88

Preliminaries Provenance Applications Implementation Conclusion

Virtual and materialized views

� A view may be virtual or materialized
� No semantic difference
� Operational difference, with an impact on the efficiency of

query evaluation:
virtual view: the query defining the view is evaluated each

time the view is used in a query
materialized view: the query defining the view is evaluated

when the view is created and the result is
stored in an auxiliary table; this table is
directly used each time the view is used in
another query

64/88

Preliminaries Provenance Applications Implementation Conclusion

Why using views?

Logical independence: an application can access views, without
the need to know how data is effectively organized
in the database (the organization can change in a
transparent manner, by just redefining the views)

Access control: different access rights can be given to base
tables and to views, so that a given user or
application only has access to a restricted subset of
the content of the database

Data integration: views can be defined to gather data from
multiple sources with different schemas

Optimization: materialized views can be defined for frequent
queries or subqueries, so that they do not need to
be evaluated each time they are used

65/88

Preliminaries Provenance Applications Implementation Conclusion

Views and updates

Views interact in complex ways with updates (insertions,
modifications, deletions).

View maintenance: when an update is performed on base
tables, this update should be reflected in the views
� Nothing to do for virtual views
� More complex for materialized views, that
need to be maintained in terms of the updates

View update: one wants in some settings to perform an update
directly on a view, which causes appropriate
updates on base tables

How to do it? With provenance! At least for deletions

65/88

Preliminaries Provenance Applications Implementation Conclusion

Views and updates

Views interact in complex ways with updates (insertions,
modifications, deletions).

View maintenance: when an update is performed on base
tables, this update should be reflected in the views
� Nothing to do for virtual views
� More complex for materialized views, that
need to be maintained in terms of the updates

View update: one wants in some settings to perform an update
directly on a view, which causes appropriate
updates on base tables

How to do it? With provenance! At least for deletions

65/88

Preliminaries Provenance Applications Implementation Conclusion

Views and updates

Views interact in complex ways with updates (insertions,
modifications, deletions).

View maintenance: when an update is performed on base
tables, this update should be reflected in the views
� Nothing to do for virtual views
� More complex for materialized views, that
need to be maintained in terms of the updates

View update: one wants in some settings to perform an update
directly on a view, which causes appropriate
updates on base tables

How to do it? With provenance! At least for deletions

66/88

Preliminaries Provenance Applications Implementation Conclusion

View maintenance for deletions

� Just use Boolean provenance!
� Remove all tuples whose provenance annotation evaluates

to ?

name position city prov

John Director New York t1

Paul Janitor New York t2

Dave Analyst Paris t3

Ellen Field agent Berlin t4

Magdalen Double agent Paris t5

Nancy HR director Paris t6

Susan Analyst Berlin t7

city prov

New York t1 ^ t2

Paris t3 ^ t5 _ t3 ^ t6 _ t5 ^ t6

Berlin t4 ^ t7

If t1 disappears, New York disappears from the result of the
view.

66/88

Preliminaries Provenance Applications Implementation Conclusion

View maintenance for deletions

� Just use Boolean provenance!
� Remove all tuples whose provenance annotation evaluates

to ?

name position city prov

John Director New York t1

Paul Janitor New York t2

Dave Analyst Paris t3

Ellen Field agent Berlin t4

Magdalen Double agent Paris t5

Nancy HR director Paris t6

Susan Analyst Berlin t7

city prov

New York t1 ^ t2

Paris t3 ^ t5 _ t3 ^ t6 _ t5 ^ t6

Berlin t4 ^ t7

If t1 disappears

, New York disappears from the result of the
view.

66/88

Preliminaries Provenance Applications Implementation Conclusion

View maintenance for deletions

� Just use Boolean provenance!
� Remove all tuples whose provenance annotation evaluates

to ?

name position city prov

John Director New York t1

Paul Janitor New York t2

Dave Analyst Paris t3

Ellen Field agent Berlin t4

Magdalen Double agent Paris t5

Nancy HR director Paris t6

Susan Analyst Berlin t7

city prov

New York t1 ^ t2

Paris t3 ^ t5 _ t3 ^ t6 _ t5 ^ t6

Berlin t4 ^ t7

If t1 disappears, New York disappears from the result of the
view.

67/88

Preliminaries Provenance Applications Implementation Conclusion

View update for deletions [Buneman et al., 2002]

� Use case for Why-provenance!
� To delete a tuple t in the result of a view, select a minimal

subset of tuples (in terms of size, or in terms of side effects
on other tuples of the deleted view) whose annotation
appears in every set of annotations of the Why-provenance
of t

� NP-complete in general

name position city prov

John Director New York t1

Paul Janitor New York t2

Dave Analyst Paris t3

Ellen Field agent Berlin t4

Magdalen Double agent Paris t5

Nancy HR director Paris t6

Susan Analyst Berlin t7

ville prov

New York
�
ft1; t2g

	
Paris

�
ft3; t5g; ft3; t6g; ft5; t6g

	
Berlin

�
ft4; t7g

	

To delete Paris, delete two tuples among t3, t5, t6.

67/88

Preliminaries Provenance Applications Implementation Conclusion

View update for deletions [Buneman et al., 2002]

� Use case for Why-provenance!
� To delete a tuple t in the result of a view, select a minimal

subset of tuples (in terms of size, or in terms of side effects
on other tuples of the deleted view) whose annotation
appears in every set of annotations of the Why-provenance
of t

� NP-complete in general

name position city prov

John Director New York t1

Paul Janitor New York t2

Dave Analyst Paris t3

Ellen Field agent Berlin t4

Magdalen Double agent Paris t5

Nancy HR director Paris t6

Susan Analyst Berlin t7

ville prov

New York
�
ft1; t2g

	
Paris

�
ft3; t5g; ft3; t6g; ft5; t6g

	
Berlin

�
ft4; t7g

	

To delete Paris

, delete two tuples among t3, t5, t6.

67/88

Preliminaries Provenance Applications Implementation Conclusion

View update for deletions [Buneman et al., 2002]

� Use case for Why-provenance!
� To delete a tuple t in the result of a view, select a minimal

subset of tuples (in terms of size, or in terms of side effects
on other tuples of the deleted view) whose annotation
appears in every set of annotations of the Why-provenance
of t

� NP-complete in general

name position city prov

John Director New York t1

Paul Janitor New York t2

Dave Analyst Paris t3

Ellen Field agent Berlin t4

Magdalen Double agent Paris t5

Nancy HR director Paris t6

Susan Analyst Berlin t7

ville prov

New York
�
ft1; t2g

	
Paris

�
ft3; t5g; ft3; t6g; ft5; t6g

	
Berlin

�
ft4; t7g

	

To delete Paris, delete two tuples among t3, t5, t6.

68/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance

Applications
Probabilistic databases
Views
Explanation

Implementing Provenance Support

Conclusion

69/88

Preliminaries Provenance Applications Implementation Conclusion

Using provenance for explanation
� Semiring provenance can be used to provide a user with

explanation on the query result:
� How-provenance (provenance polynomials) explains

precisely how a result has been computed: often too
fine-grained

� Why-provenance explains why a particular result is
generated by providing combinations of tuples required for
a tuple to be produced

� Provenance often too long and complex, (imperfect)
summarization may be required [Ainy et al., 2015]

� Still far from a natural language explanation!
� Why-not provenance: why a result was not produced.

Expressible with m-semirings, but requires dedicated
techniques [Chapman and Jagadish, 2009] for compact
explanations

70/88

Preliminaries Provenance Applications Implementation Conclusion

Where-provenance [Buneman et al., 2001]

� Different form of provenance: captures from which
database values come which output values

� Bipartite graph of provenance: two attribute values are
connected if one can be produced from the other

� Axiomatized in [Buneman et al., 2001, Cheney et al., 2009]

� Cannot be captured by provenance semirings [Cheney et al.,
2009], because of renaming (does not keep track of relation
attributes), projection (does not remember which attribute
values still exist), join (in a join, an output value comes
from two different input values)

71/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance

Applications

Implementing Provenance Support
Representation Systems for Provenance
Systems

Conclusion

72/88

Preliminaries Provenance Applications Implementation Conclusion

Representation systems

� In the Boolean semiring, the counting semiring, the
security semiring: provenance annotations are elementary

� In the Boolean function semiring, the universal semiring,
etc., provenance annotations can become quite complex

� Needs for compact representation of provenance
annotations

� Lower the provenance computation complexity as much as
possible

73/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance formulas

� Quite straightforward
� Formalism used in most of the provenance literature
� PTIME data complexity
� Expanding formulas (e.g., computing the monomials of a

N[X] provenance annotation) can result in an exponential
blowup

Example
Is there a city with both an analyst and an agent, and if Paris is
such a city, is there a director in the agency?

((t3
 t5)� (t4
 t7))
 ((t3
 t5)
 t1)

74/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance circuits [Deutch et al., 2014, Amarilli et al., 2015]

� Use arithmetic circuits (Boolean circuits for Boolean
provenance) to represent provenance

� Every time an operation reuses a previously computed
result, link to the previously created circuit gate

� Allow linear-time data complexity of provenance
computation when restricted to bounded-treewidth
databases [Amarilli et al., 2015] (MSO queries for Boolean
provenance, positive relational algebra queries for arbitrary
semirings)

� Formulas can be quadratically larger than provenance
circuits for MSO formulas, (log log)-larger for positive
relational algebra queries [Wegener, 1987, Amarilli et al., 2016]

75/88

Preliminaries Provenance Applications Implementation Conclusion

Example provenance circuit

t7 t4t5t3

t1

�

76/88

Preliminaries Provenance Applications Implementation Conclusion

OBDD and d-DNNF

� Various subclasses of Boolean circuits commonly used:
OBDD: Ordered Binary Decision Diagrams

d-DNNF: deterministic Decomposable Negation Normal
Form

� OBDDs can be obtained in PTIME data complexity on
bounded-treewidth databases [Amarilli et al., 2016]

� d-DNNFs can be obtained in linear-time data complexity
on bounded-treewidth databases

� Application: probabilistic query evaluation in linear-time
data complexity on bounded-treewidth databases (d-DNNF
evaluation is in linear-time)

77/88

Preliminaries Provenance Applications Implementation Conclusion

Provenance cycluits [Amarilli et al., 2017]

� Cycluit (cyclic circuit): arithmetic circuit with cycles
� Well-defined semantics on some semirings where infinite

loops do not matter
� Allows computing provenance in linear-time combined

complexity for recursive queries of a certain form
(ICG-Datalog of bounded body size [Amarilli et al., 2017],
capturing �-acyclic conjunctive queries, 2RPQs, etc.), on
bounded tree-width databases

� Related to provenance equation systems and formal series
introduced in [Green et al., 2007]

78/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance

Applications

Implementing Provenance Support
Representation Systems for Provenance
Systems

Conclusion

79/88

Preliminaries Provenance Applications Implementation Conclusion

Desiderata for a provenance-aware DBMS

� Extends a widely used database management system
� Easy to deploy
� Easy to use, transparent for the user
� Provenance automatically maintained as the user interacts

with the database management system
� Provenance computation benefits from query optimization

within the DBMS
� Allow probability computation based on provenance
� Any form of provenance can be computed: Boolean

provenance, semiring provenance in any semiring (possibly,
with monus), aggregate provenance, where-provenance, on
demand

80/88

Preliminaries Provenance Applications Implementation Conclusion

ProvSQL: Provenance within PostgreSQL (1/2)
[Senellart et al., 2018]

� Lightweight extension/plugin for PostgreSQL � 9:5

� Provenance annotations stored as UUIDs, in an extra
attribute of each provenance-aware relation

� A provenance circuit relating UUIDs of elementary
provenance annotations and arithmetic gates stored as
table

� All computations done in the universal semiring (more
precisely, with monus, in the free semiring with monus; for
where-provenance, in a free term algebra)

81/88

Preliminaries Provenance Applications Implementation Conclusion

ProvSQL: Provenance within PostgreSQL (2/2)
[Senellart et al., 2018]

� Query rewriting to automatically compute output
provenance attributes in terms of the query and input
provenance attributes:
� Duplicate elimination (DISTINCT, set union) results in

aggregation of provenance values with �
� Cross products, joins results in combination of provenance

values with

� Difference rewritten in a join, with combination of

provenance values with 	
� Additional circuit gates on projection, join for support of

where-provenance
� Probability computation from the provenance circuits, via

various methods (naive, sampling, compilation to
d-DNNFs)

82/88

Preliminaries Provenance Applications Implementation Conclusion

Challenges
� Low-level access to PostgreSQL data structures in

extensions
� No simple query rewriting mechanism
� SQL is much less clean than the relational algebra
� Multiset semantics by default in SQL
� SQL is a very rich language, with many different ways of

expressing the same thing
� Inherent limitations: e.g., no aggregation within recursive

queries
� Implementing provenance computation should not slow

down the computation
� User-defined functions, updates, etc.: unclear how

provenance should work

83/88

Preliminaries Provenance Applications Implementation Conclusion

ProvSQL: Current status
� Supported SQL language features:

� Regular SELECT-FROM-WHERE queries (aka conjunctive
queries with multiset semantics)

� JOIN queries (regular joins and outer joins; semijoins and
antijoins are not currently supported)

� SELECT queries with nested SELECT subqueries in the
FROM clause

� GROUP BY queries (without aggregation)
� SELECT DISTINCT queries (i.e., set semantics)
� UNION’s or UNION ALL’s of SELECT queries
� EXCEPT queries

� Longer term project: aggregate computation
� Try it (and see a demo) from

https://github.com/PierreSenellart/provsql

https://github.com/PierreSenellart/provsql

84/88

Preliminaries Provenance Applications Implementation Conclusion

Other databases with provenance management
� Older probabilistic database systems can compute some

forms of provenance (especially, Boolean provenance); but
tied to a specific version of PostgreSQL, hard to deploy

Trio: http://infolab.stanford.edu/trio/
[Benjelloun et al., 2006]

MayBMS: http://maybms.sourceforge.net/ [Huang
et al., 2009]

� Perm https://github.com/IITDBGroup/perm [Glavic and
Alonso, 2009] now obsolete system for provenance
management; also tied to a specific version of PostgreSQL

� GProM http:
//www.cs.iit.edu/~dbgroup/projects/gprom.html
[Arab et al., 2018] is similar to ProvSQL (though no
probabilistic database capabilities), with some extra
features; implemented as a middleware

http://infolab.stanford.edu/trio/
http://maybms.sourceforge.net/
https://github.com/IITDBGroup/perm
http://www.cs.iit.edu/~dbgroup/projects/gprom.html
http://www.cs.iit.edu/~dbgroup/projects/gprom.html

85/88

Preliminaries Provenance Applications Implementation Conclusion

Outline

Preliminaries

Provenance

Applications

Implementing Provenance Support

Conclusion

86/88

Preliminaries Provenance Applications Implementation Conclusion

Database Provenance [Senellart, 2017]

� Quite rich foundations of provenance management:
� Different types of provenance
� Semiring formalism to unify most provenance forms
� (Partial) extensions for difference, recursive queries,

aggregation; to other data models
� Compact provenance representation formalisms

� Some theory still missing:
� Provenance and updates
� Going beyond the relational algebra for full semiring

provenance
� Now is the time to work on concrete implementation
� Need good implementation to convince users they should
track provenance!

� How to combine provenance computation and efficient
query evaluation, e.g., through tree decompositions?

87/88

Preliminaries Provenance Applications Implementation Conclusion

Preparing for tomorrow’s hands-on session

� Bring your own computer
� Make sure you have an Internet connection
� Install a (reasonably recent) PostgreSQL client:

Debian, Ubuntu: sudo apt-get install
postgresql-client

Fedora: sudo dnf install postgresql.x86_64
Mac OS X: brew install libpq

brew link --force libpq
Windows: Install from

htps://www.enterprisedb.com/downloads/
postgres-postgresql-downloads (you can
deselect everything but the client)

htps://www.enterprisedb.com/downloads/postgres-postgresql-downloads
htps://www.enterprisedb.com/downloads/postgres-postgresql-downloads

Merci.
https://github.com/PierreSenellart/provsql

https://youtu.be/iqzSNfGHbEE?vq=hd1080

https://github.com/PierreSenellart/provsql
https://youtu.be/iqzSNfGHbEE?vq=hd1080

Bibliography I

Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and Pierre
Senellart. On the expressiveness of probabilistic XML
models. VLDB Journal, 18(5):1041–1064, October 2009.

Eleanor Ainy, Pierre Bourhis, Susan B. Davidson, Daniel
Deutch, and Tova Milo. Approximated summarization of
data provenance. In CIKM, 2015.

Antoine Amarilli and Mikaël Monet. Example of a naturally
ordered semiring which is not an m-semiring.
http://math.stackexchange.com/questions/1966858,
2016.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart.
Provenance circuits for trees and treelike instances. In Proc.
ICALP, pages 56–68, Kyoto, Japan, July 2015.

http://math.stackexchange.com/questions/1966858

Bibliography II

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart.
Tractable lineages on treelike instances: Limits and
extensions. In Proc. PODS, pages 355–370, San Francisco,
USA, June 2016.

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre
Senellart. Combined tractability of query evaluation via tree
automata and cycluits. In ICDT, 2017.

K. Amer. Equationally complete classes of commutative
monoids with monus. Algebra Universalis, 18(1), 1984.

Yael Amsterdamer, Daniel Deutch, and Val Tannen. On the
limitations of provenance for queries with difference. In
TaPP, 2011a.

Yael Amsterdamer, Daniel Deutch, and Val Tannen.
Provenance for aggregate queries. In PODS, 2011b.

Bibliography III

Bahareh Sadat Arab, Su Feng, Boris Glavic, Seokki Lee, Xing
Niu, and Qitian Zeng. GProM - A swiss army knife for your
provenance needs. IEEE Data Eng. Bull., 41(1):51–62, 2018.

Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer
Widom. ULDBs: Databases with uncertainty and lineage. In
VLDB, pages 953–964, 2006.

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why
and where: A characterization of data provenance. In
Database Theory - ICDT 2001, 8th International
Conference, London, UK, January 4-6, 2001,
Proceedings., 2001.

Bibliography IV

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. On
propagation of deletions and annotations through views. In
Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 3-5, Madison, Wisconsin, USA,
pages 150–158, 2002. doi: 10.1145/543613.543633. URL
http://doi.acm.org/10.1145/543613.543633.

Adriane Chapman and H. V. Jagadish. Why not? In
SIGMOD, 2009.

James Cheney, Laura Chiticariu, and Wang Chiew Tan.
Provenance in databases: Why, how, and where.
Foundations and Trends in Databases, 1(4), 2009.

Carlos Viegas Damásio, Anastasia Analyti, and Grigoris
Antoniou. Provenance for SPARQL queries. In ISWC, 2012.

http://doi.acm.org/10.1145/543613.543633

Bibliography V

Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen.
Circuits for Datalog provenance. In ICDT, 2014.

Robert Fink, Larisa Han, and Dan Olteanu. Aggregation in
probabilistic databases via knowledge compilation.
Proceedings of the VLDB Endowment, 5(5):490–501, 2012.

J. Nathan Foster, Todd J. Green, and Val Tannen. Annotated
XML: queries and provenance. In PODS, 2008.

Floris Geerts and Antonella Poggi. On database query
languages for k-relations. J. Applied Logic, 8(2), 2010.

Floris Geerts, Thomas Unger, Grigoris Karvounarakis, Irini
Fundulaki, and Vassilis Christophides. Algebraic structures
for capturing the provenance of SPARQL queries. J. ACM,
63(1), 2016.

Bibliography VI

Boris Glavic and Gustavo Alonso. Perm: Processing provenance
and data on the same data model through query rewriting.
In ICDE, pages 174–185, 2009.

Todd J. Green and Val Tannen. Models for incomplete and
probabilistic information. IEEE Data Eng. Bull., 29(1),
2006.

Todd J Green, Grigoris Karvounarakis, and Val Tannen.
Provenance semirings. In PODS, 2007.

Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan
Olteanu. MayBMS: a probabilistic database management
system. In SIGMOD, pages 1071–1074, 2009.

Tomasz Imieliński and Jr. Lipski, Witold. Incomplete
information in relational databases. J. ACM, 31(4), 1984.

Bibliography VII
Anthony C. Klug. Equivalence of relational algebra and

relational calculus query languages having aggregate
functions. J. ACM, 29(3):699–717, 1982.

Leonid Libkin. Expressive power of SQL. Theor. Comput.
Sci., 296(3):379–404, 2003.

Yann Ramusat, Silviu Maniu, and Pierre Senellart. Semiring
provenance over graph databases. In TaPP, 2018.

Pierre Senellart. Provenance and probabilities in relational
databases: From theory to practice. SIGMOD Record, 46(4),
December 2017.

Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann
Ramusat. ProvSQL: provenance and probability management
in postgresql. In VLDB, 2018. Demonstration.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch.
Probabilistic Databases. Morgan & Claypool, 2011.

Bibliography VIII

Ingo Wegener. The Complexity of Boolean Functions. Wiley,
1987.

	Preliminaries
	Data management
	The relational model
	The relational algebra
	Other data models

	Provenance
	Preliminaries
	Boolean provenance
	Semiring provenance
	And beyond…

	Applications
	Probabilistic databases
	Views
	Explanation

	Implementing Provenance Support
	Representation Systems for Provenance
	Systems

	Conclusion
	

	Appendix
	
	References

